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An anisotropic strain energy function is proposed for tensile loading in graphene that provides a nonlin-
ear, hyperelastic constitutive equation. In the proposed function, the energy depends on the principal
invariants of the right Cauchy–Green tensor and the strains in the zigzag and armchair directions. The
use of the zigzag and armchair strains gives the model the ability to account for anisotropic behavior
at moderate deformations. The constitutive law parameters are determined by a least squares fit to
the energies predicted by density functional theory (DFT) calculations, and a good match is obtained
to the DFT results for zigzag and armchair graphene sheets with various loading combinations. The
law is applied in a continuum calculation of nanoindentation of a graphene membrane. The force–deflec-
tion predicted with this model show excellent agreement with analogous experimental results, thus pro-
viding a strong link between DFT calculations and nanoexperiments.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Quantum mechanics opens the possibility of developing consti-
tutive equations for crystalline materials and, with time, even
more complex materials. While mechanicians have so far relied
on experiments to develop these equations, this approach is often
limited, particularly for small crystals. By using quantum mechan-
ics, the response of a crystal to various loadings can be obtained,
and an accurate constitutive equation can be derived. In this paper,
we develop such an equation for graphene by this approach. By
means of a unit cell, we obtain the response to various loadings,
and then develop a constitutive equation that fits closely our quan-
tum–mechanical density functional theory (DFT) results.

Graphene is a two-dimensional form of carbon, consisting of a
single layer of atoms in a hexagonal arrangement. Initially it was
thought that such a crystal would be thermodynamically unstable
and could not exist (Mermin, 1968). Early reports of the exfoliation
of graphene layers from graphite suggested thicknesses of tens to
hundreds of layers (Lu et al., 1999; Shioyama, 2001); the binding
between the layers was assumed to be due to van der Waals forces.
Recently, Novoselov and Geim and colleagues (Geim and Novose-
lov, 2007; Novoselov et al., 2005) invalidated the instability
ll rights reserved.
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hypothesis and creating free-standing single layers using a micro-
mechanical cleavage technique. This pioneering work drew consid-
erable attention to this ‘‘newly-discovered’’ material. The high
mechanical strength, excellent thermal conductivity, and unusual
electrical properties of graphene present many opportunities for
application in composite materials (Stankovich et al., 2006; Paci
et al., 2007) and nanoelectronic devices (Li et al., 2008; Ohta
et al., 2006; Sakhaee-Pour et al., 2008; Stoller et al., 2008), and have
led to the creation of a large body of related scientific work.

The successful isolation of graphene sheets was quickly fol-
lowed by many laboratory studies. Frank et al. (2007) measured
the effective spring constants of stacks of graphene sheets up to
five layers by the atomic force microscopy deflection measure-
ments. The first experimental measurement of the mechanical
properties of a single layer was made by Lee et al. (2008). They
measured the deflection at the center point of the graphene sheets
in nanoindentation experiments, and obtained distributions of the
Young’s modulus. Assuming a graphene thickness 0.335 nm, the
resulting modulus is 1:0� 0:1 TPa.

The mechanical properties of both nanotubes and graphene
sheets have been studied extensively by computational and theo-
retical methods. In a sense, the study of graphene can be traced
back to when Wallace (1947) reported the band structure of graph-
ite. Sanchez-Portal et al. (1999) and Van Lier et al. (2000) deter-
mined the Young’s modulus of graphene sheets with DFT and
used the results to estimate the elastic properties of open and
closed carbon nanotubes. Kudin et al. (2001) performed similar
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calculations on graphene to estimate the flexural rigidity of carbon
nanotubes. Liu et al. (2007) computed the stress–strain relation of
graphene under uniaxial tension by DFT computations in both the
armchair and zigzag directions. Ogata and Shibutani (2003)
determined the ideal tensile strength and the band structure of sin-
gle-walled carbon nanotubes by DFT and tight binding methods.
Dumitrica et al. (2003) studied the fracture of carbon nanotubes
for a large temperature range with DFT computations. Liu et al.
(2007) examined the stress–strain relation of graphene under uni-
axial tension by DFT simulations, and Konstantinova et al. (2006)
used similar methods to analyze the stability of the graphene
structure.

The mechanical properties of nanotubes have also been studied
by variants of the Cauchy-Born rule with the Tersoff-Brenner po-
tential (Brenner, 1990, 2002). Zhao et al. (2009) studied the depen-
dence between the size and chirality of graphene nanoribbons and
their elastic properties using the AIREBO potential, which is a po-
tential similar to Tersoff-Brenner, and a tight-binding method. Ar-
royo and Belytschko (2002, 2004) presented an exponential
Cauchy-Born rule that accounted for the curvature of the nanotube.
They studied the mechanical behavior of single layer crystalline
sheets under finite deformation to simulate carbon nanotubes.
Zhang et al. (2005) performed coupled molecular and continuum
mechanics simulations on finite size graphene sheets with defects
to estimate the fracture strength of carbon nanotubes. Huang et al.
(2006b) used a Taylor series approach closely related to the Cau-
chy-Born rule to study the elastic properties of graphene; they
made an extensive study of previously published values for
Young’s modulus and the role of the ‘‘thickness’’ of the carbon
sheet on the elastic modulus. Scarpa et al. (2009) proposed a
truss-type analytical model to describe the in-plane linear elastic
properties of graphene.

First principles-based studies on large systems require tremen-
dous computing power, making it prohibitively computationally
expensive to simulate graphene sheets composed of more than
10,000 atoms with most types of DFT calculations. Force-field-
based molecular mechanics (FF-MM) simulations of this size and
larger are computationally feasible. However, the elastic properties
arising from the commonly used empirical potentials for carbon,
such as the Tersoff-Brenner potential, show anisotropy at small
strains, and are generally inconsistent with DFT results. For exam-
ple, Liu et al. (2007) showed that the tensile stress–strain behavior
for different chiralities are nearly identical up to 15% strain using
DFT, whereas they are distinctly different for the Tersoff-Brenner
potential (Khare et al., 2008b). This inconsistency is often problem-
atic in coupled quantum mechanical/molecular mechanical com-
putations as discussed in Khare et al. (2007). An energy scaling
scheme was presented by Khare et al. (2008a) that matches the
strength obtained from FF-MM simulations to DFT results, but
the approach lacks generality.

Recently several important experimental studies have made it
possible to assess the adequacy of various mechanical models for
graphene. Lee et al. (2008) performed nanoindentation experi-
ments on circular graphene sheets, and obtained strikingly consis-
tent results that suggest that defects were almost absent. They
used a second order polynomial in the Green strain to fit the uni-
axial stress–strain behavior of their sheets, but their polynomial
was calibrated for only uniaxial tension. Peng et al. (2008) and
Locascio et al. (2009) have made measurements of single-walled
and multi-walled carbon nanotubes that agree quite well with
the DFT calculations of Zhang et al. (2005), which have led to an in-
crease in confidence in DFT calculations.

In this paper we present a two-dimensional anisotropic hyper-
elastic constitutive model calibrated using DFT calculations on a
graphene unit cell. The constitutive equation is a function of two
invariants of the right Cauchy–Green tensor and also the two
diagonal components of the Green strain tensor. The equation con-
sists of three parts. The first describes the mechanical behavior of
compressible isotropic materials under deformations that cause
small changes in area, and the second and third describe deforma-
tions involving large area changes and anisotropy. It was observed
in the experiments of Tsoukleri et al. (2009) that the suspended
graphene sheets buckled at about 0.7% compressive strain. It is
not clear how to initiate this instability in DFT simulations. There-
fore, compression behavior is not considered in the material model
presented here.

Our approach is different than that of Wei et al. (2009) in which
a fifth-order Taylor series of the strain energy was constructed. Our
model is a modification of a standard isotropic hyperelastic work
energy potential. The approach of Wei et al. represents the strain
energy function as a polynomial expansion of the right-Cauchy
Green tensor, while our approach bases the strain energy function
on a polynomial expansion of the invariants of the right-Cauchy
Green tensor and adds anisotropic terms as low order corrections.
While the Wei formulation may be more accurate at very high
strains, due to the larger number of parameters used, our model
is significantly simpler and straight-forward to implement (Xu
et al., 2012). A constitutive equation for graphene was also previ-
ously developed based on comparisons to molecular mechanics
simulations (Gil et al., 2010). However, this equation is only appli-
cable in simulations of nanoindentation experiments, whereas
ours is more general. Nonlinear strain energy functions have been
similarly developed for graphene nanoribbons, for which the effect
of the surface energy of free edges is important (Lu et al., 2011). A
general continuum description of graphene sheets based on calcu-
lations using the Tersoff-Brenner potential that accounts for in-
plane and bending elasticity has also been developed (Lu and
Huang, 2009).

The remainder of the paper is organized as follows. Details of
the DFT calculations are given in Section 2. Section 3 describes
the development of the two-dimensional anisotropic hyperelastic
constitutive law. The constitutive law is then applied to a nanoin-
dentation experiment of circular graphene sheets (Lee et al., 2008),
which is presented with a numerical/experimental comparison in
Section 4. Conclusions are given in Section 5.
2. DFT Studies of mechanical properties of graphene

2.1. Computational setup

DFT calculations were performed using the SIESTA computa-
tional software package (Soler et al., 2002). A Perdew–
Burke–Ernzerhof (PBE) functional that uses a generalized gradient
approximation (GGA) in estimating the DFT exchange–correlation
term was chosen. A double-f plus polarization orbital (DZP) basis
set was used. Carbon atoms were modeled using a Troullier–Martins
pseudopotential (Troullier and Martins, 1991) with a core radius of
1:15a0 ða0 ¼ 0:529 ÅÞ and a nonlinear exchange–correlation
correction pseudo core radius of 1:50a0.

Three-dimensional periodic boundary conditions were used. We
considered two unit cells: a 4-atom cluster and a 32-atom cluster
(see Fig. 1). The dimension for the unit cell in Fig. 1a is lx ¼

ffiffiffi
3
p

r0;

ly ¼ 3r0 and it is lx ¼ 4
ffiffiffi
3
p

r0; ly ¼ 6r0 for the unit cell in Fig. 1b. r0

indicates the length of equilibrium carbon–carbon bond in graph-
ene. Below, we will refer to the x- and y-directions as ‘‘armchair’’
and ‘‘zigzag’’ directions, respectively. Note that different labeling
conventions are sometimes used by other authors. The dimension
of the unit cells along the z-direction, lz, was chosen to eliminate
spurious interactions due to the periodic boundary condition in
the z-direction. A 30 � 30 � 1 k-grid proved sufficient for accurately
sampling the Brillouin zone for the 4-atom unit cell and an
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Fig. 1. The unit cells used in DFT simulations. (a) 4-atom unit cell; (b) 32-atom unit cell.
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8 � 15 � 1 k-grid for the 32-atom unit cell. A conjugate gradient
solver was used for geometry optimization. All the results were
for 0 K and electron spin polarization was not allowed.

In computing the Young’s modulus of graphene, it is common to
use 3.4 Å (Baskin and Meyer, 1955), the interlayer distance of
graphite sheets, as the thickness, which is denoted by h. In our
treatment, we assume that this thickness is independent of load.
The stresses output by SIESTA were scaled by a ¼ lz=h to calculate
the equivalent stresses, re

ij, on surfaces with thickness h, which are
re
ij ¼ arij i; j ¼ 1;2 ð1Þ
where rij is the stress on the unit-cell wall output by SIESTA.
The stress tolerance used was 0.1 GPa, so the maximum uncer-

tainty of the normalized stress is a
10 GPa. The use of smaller stress

tolerances makes calculations more computationally demanding.
Because both the stress tolerance and the computational cost are
proportional to the length of the unit cell along the z axis, lz was cho-
sen such that it was just large enough to avoid any spurious interac-
tion along the z-direction. We tested lz ¼ 60 Å; 30 Å; 10 Å; 5 Å. It
turned out that 10 Å was the best choice among the four. Both
60 Å and 30 Å have a higher computation cost and 5 Å does not
eliminate spurious interactions. Smaller stress tolerances were con-
sidered but they require much more computational time and can
lead to unphysical results. For example, with a very small stress tol-
erance, lz converges to 5.4 Å, which is not consistent with experi-
mental observations (Baskin and Meyer, 1955). The reason for this
is that the graphene layers interact by van der Waals forces, which
PBE/DZP does not represent accurately; PBE was designed to de-
scribe covalent bond interactions which are much stronger. The
equilibrium C–C bond length in graphene lattice was found by
geometry optimization to be 1.43 Å.

Variable cell PBE/DZP computations with stress boundary con-
ditions, which correspond to uniaxial tension along the zigzag
and armchair directions were performed. Under uniaxial tension,
only one stress component was non-zero, which was the normal
stress on the surface where the tensile load was applied. The stress
increment was 1 GPa. The computations failed to converge when
the modulus of graphene sheet became negative (strain softening).
Therefore, a displacement boundary condition was used instead at
the onset of strain softening. We also computed the material re-
sponse for graphene under equal biaxial stretching. Displacement
boundary conditions were used and the stretches in both the arm-
chair and zigzag directions were enforced to be the same.
2.2. Results and discussion

The DFT results for 4- and 32-atom unit cells are identical. This
suggests that graphene can be homogenized using such small unit
cells, although we did not perform an exhaustive examination of
this issue. The stress–strain curves when the sheet is under uniax-
ial tension along the zigzag and armchair directions are shown in
Fig. 2a. The results are presented in terms of the Cauchy (physical)
stress, r, the principal stretch, ki; i ¼ 1;2; and the engineering
strain, �i. The strain is related to the principal stretch by

�i ¼ ki � 1 ¼ li

l0
i

� 1 ¼ li � l0
i

l0
i

; ð2Þ

where l0
i is the length of the undeformed unit cell along the ith

dimension and li is the length of the deformed, stressed unit cell.
Some of the results are presented in terms of the deformation gra-
dient, F ¼ @/=@X, where / is the motion and X ¼ fX;Y; Zg are the
vectors of material coordinates. Equivalently, F ¼ @x=@X, where
x ¼ /ðXÞ.

The material response of graphene under tensile stress obtained
by DFT computations are shown in Fig. 2. It can be seen in panel a
that, for a thickness of 3.4 Å, the maximum tensile stresses are
107.2 GPa and 117.5 GPa for the zigzag and armchair directions,
respectively. The corresponding stretch at the maxima of the stres-
ses are 1.20 and 1.25. The maximum stresses are very close to the
onset of the phonon instability as calculated by Liu et al. (2007). It
is also shown in Fig. 2a that the mechanical response of the graph-
ene sheet under uniaxial tension is almost linear until 10% strain.
Subsequently it deviates significantly from linearity. For example,
the slope of the curve at zero strain is four times greater than at
15% strain. It also can be seen that the stress–strain curves of the
graphene sheet in the armchair and zigzag directions are almost
identical until the engineering strain is about 15%. Thus for small
strain the material is nearly isotropic. Anisotropy develops at mod-
erate stretch. At approximately 15% strain, the zigzag stiffness rap-
idly decreases to zero, whereas in the armchair direction, the
stiffness is maintained much longer. For equal biaxial stretching,
the mechanical behavior of the armchair and zigzag directions
are identical (see Fig. 2b). No anisotropy was observed under equal
biaxial stretching, a finding consistent with the maintained hexag-
onal symmetry of the system for this case. It is then reasonable to
treat graphene as an isotropic material for biaxial strain and small
uniaxial tensile strain.

To compare DFT and molecular mechanics (MM) methods, the
MM results for the Tersoff-Brenner potential (Brenner et al.,
2002) are also shown in Fig. 2. The curves from MM calculations
terminate when instability occurs, which may be caused by defect
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nucleation. Fig. 2a shows that the graphene sheet has different
stiffnesses along the zigzag and armchair directions and the tensile
strength differs by 5–10% from the DFT results depending on the
loading direction. The orthotropicity of the Tersoff-Brenner-based
predictions of the type shown in Fig. 2a has been previously re-
ported (Reddy et al., 2006; Lu et al., 2011). It also can be seen in
Fig. 2b, that the slope of the equal biaxial stretching curve at small
strains from MM calculations is smaller than the DFT results, and
therefore the stresses predicted in biaxial tension are significantly
lower than those for DFT.
3. Proposed constitutive law for graphene

Graphene at room temperature and below appears to exhibit
perfectly reversible mechanical behavior. There is evidence that at
high temperatures (T > 2000

�
CÞ (Huang et al., 2006a), the response

is plastic, which is characterized by Stone–Wales dislocations as de-
scribed by Ding et al. (2007)). However, the activation temperature
for these dislocations is quite high, so they can probably be ignored
for constitutive models in the range T � 0—400 K. Therefore, we
have chosen a hyperelastic constitutive equation for graphene.
Based on the observation in the previous section, we developed a
two-dimensional anisotropic hyperelastic law. Only the material
behavior under tensile stresses is considered, because the graphene
sheet buckles under compression (Tsoukleri et al., 2009). The strain
energy density function is a function of the principal invariants,
(I1; I2), of the right Cauchy–Green tensor, C, and the diagonal com-
ponents of the Green strain, (E11; E22). The first principle invariant
I1 ¼ trðCÞ ¼ C11 þ C22, and the second principle invariant I2 ¼
detðCÞ, where C11 and C22 are the principal values of the Right-Cau-
chy Green deformation tensor. The deformation gradient, F, and
the Green strain, E, tensors are related to the right Cauchy–Green
tensor by C ¼ FTF ¼ 2Eþ I, where I is the identity tensor.

The potential reads
w I1; I2; E11; E22ð Þ ¼
XN1

i¼1

ci I1 � 2ð Þi þ
XN2

k¼1

dk ln Jð Þ2k � 2
XN1

i¼1

ci ln Jð Þi

þ
X5

l¼1

alflðE11; E22ÞðJ � blÞ lnðJ � blÞ½ �3 ð3Þ
where ci;dk, and al are the fitting coefficients, and J ¼ det Fð Þ ¼
ffiffiffiffi
I2
p

.
N1 and N2 are the number of polynomial terms in the constitutive
equation. They can be adjusted to find the optimal fit. The defini-
tions of the functions, fi, are
b1 ¼ 0:05; b2 ¼ 0:15; b03 ¼ 0:07; b04 ¼ 0:09; b05 ¼ 0:12 ð4Þ

f1 ¼ H E22 �
b1

2

� �
H E11 �

b1

2

� �
ð5Þ

f2 ¼ H E22 �
b2

2

� �
H E11 �

b2

2

� �
ð6Þ

fj ¼ H E22 � b0j
� �

H �E11ð Þ j ¼ 3;4;5 ð7Þ

bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b0j þ 1

q
1� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b0j þ 1

q
� 1

� �� �
� 1 j ¼ 3;4;5 ð8Þ

where Hð�Þ is the Heaviside function, bj are the threshold values in
strain where the anisotropic terms are activated, and m is the Pois-
son’s ratio which will be discussed later in this section. The terms in
Eqs. (5)–(7) account for the anisotropy.

The constants, ci and dk, were determined using the uniaxial
tension results for the armchair direction. When the coefficients
obtained were applied to biaxial stretching, the fitted stress–strain
curve started to deviate from the DFT results at J � 1:05. Therefore,
the a1 and a2 terms were added to obtain a good fit for biaxial
stretching. The a3 to a5 terms account for the anisotropy under uni-
axial tension. The exponents of these terms were chosen such that
the terms do not introduce discontinuities in the resulting stresses
and tangent stiffnesses. There are other options for the a3 to a5

terms. For example, instead of I2, the first principal invariant, I1,
could be used as the variable.

The second Piola–Kirchhoff (PK2) stress tensor S of a hyperelas-
tic material can be obtained by taking the derivative of the strain
energy density, w, with respect to C, so

S ¼ 2
@w
@C
¼ 2

@w
@I1

@I1

@C
þ @w
@I2

@I2

@C
þ @w
@E11

@E11

@C
þ @w
@E22

@E22

@C

� �
ð9Þ

The last two terms varnish because @w
@E11
¼ @w

@E22
¼ 0. The derivatives of

the invariants with respect to the right Cauchy–Green tensor are gi-
ven in Belystchko et al. (2001). They are

@I1

@C
¼ I ð10Þ

and

@I2

@C
¼ I2C�1 ð11Þ

The relation between the PK2 stress and the Cauchy stress r is given
by

r ¼ J�1FSFT ¼ 2J�1 @w
@I1

Bþ I2
@w
@I2

I
� �

ð12Þ

where B ¼ FFT is the left Cauchy–Green tensor.
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Table 1
Coefficients in Eq. (3) of the proposed hyperelastic constitutive model for graphene.

i 1 2 3 4 5

ci ðGPaÞ 210.75 �98.72 6.91 – –
di ðGPaÞ 307.87 237.26 – – –
ai ðGPaÞ 30.00 �51.67 833.33 �2000.00 1000.00
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The tangent modulus is related to the second derivative of the
strain energy density with respect to the right Cauchy–Green ten-
sor, i.e.,

CSE ¼ 4
@2w
@C@C

ð13Þ

or in component form

1
4
CSE

ijkl ¼
@2w

@I2
1

dijdkl þ
@2w

@I2
2

I2
2 þ

@w
@I2

I2

 !
C�1
� �

ij
C�1
� �

kl
� 1

2

� @w
@I2

I2 C�1
� �

ik
C�1
� �

jl
þ C�1
� �

il
C�1
� �

jk

� �
ð14Þ

The tangent modules CSE relates PK2 to the Green strain by

dS ¼ CSEdE ð15Þ

The relationship between the stress invariants and the principal
stretch ratios are

I1 ¼ k2
1 þ k2

2 ð16Þ

and

I2 ¼ k2
1k

2
2 ¼ J2 ð17Þ

Under uniaxial tension, the deformation gradient can be written as

F ¼
k1 0
0 k2

� �
ð18Þ
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Our energy criterion is independent of deformation in the sheet
thickness direction. Substituting Eqs. (18) and (3) into Eq. (12) gives
equations for the Cauchy stress components
r1 ¼2J�1
XN1

i¼1

iciðI1�2Þi�1k2
1þ2J�1

XN2

k¼1

kdkðln JÞ2k�1�2J�1
XN1

i¼1

iciðln JÞi�1

þ
X5

l¼1

alfl lnðJ�blÞ½ �3þ3
X5

l¼1

alfl lnðJ�blÞ½ �2 ð19Þ

r2 ¼2J�1
XN1

i¼1

iciðI1�2Þi�1k2
2þ2J�1

XN2

k¼1

kdkðln JÞ2k�1�2J�1
XN1

i¼1

iciðln JÞi�1

þ
X5

l¼1

alfl lnðJ�blÞ½ �3þ3
X5

l¼1

alfl lnðJ�blÞ½ �2 ð20Þ
The fitting procedure is similar to the one described in Oswald et al.
(2007). We first fit the terms with the DFT results for the graphene
unit cell under uniaxial tension along the armchair direction. The
last term in Eq. (20) vanishes because E22 is negative when the
graphene sheet is under uniaxial tension along the armchair
(b)
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Table 2
The elastic constants of graphene and the strain at onset of material softening from
the proposed hyperelastic constitutive law and the literature.

Young’s
Modulus (TPa)

Poisson’s
ratio

Stretch at rmax

Hyperelastic model 1.030 0.221 1.19(zigzag)1.24
(armchair)

DFT by Kudin et al. (2001) 1.015 0.149 –
DFT by Liu et al. (2007) 1.034 0.186 1.19 (zigzag)1.27

(armchair)
Experiment by Lee et al.

(2008)
0.853–1.147 – 1.25

MM by Arroyo and
Belytschko (2004) with
Brenner as given in
Brenner (1990)

0.715 0.397 –

Experiment⁄ by Peng et al.
(2008)

1.057 – 1.12

Tight binding⁄ by Ogata and
Shibutani (2003)

0.972 – 1.20

Coupled MM/CM⁄ by Zhang
et al. (2005)

0.859 – 1.18 (zigzag)
1.30 (armchair)

DFT⁄ by Sanchez-Portal
et al. (1999)

1.800 – 1.19 (zigzag)1.14
(armchair)

Coupled QM/MM⁄⁄ by
Khare et al. (2007)

1.049 — 1.12 (zigzag)

⁄Obtained from the reported stress–strain curves of carbon nanotubes. ⁄⁄Obtained
from the stress–strain curve of graphene with a one-atom vacancy.

−R 0 R
−R

0

R

X (nm)

Y 
(n

m
)

rI

R

I

Fig. 6. A sketch of the finite element mesh of a circular graphene sheet of radius, R.
rI indicates the distance between node I and the center of the membrane.
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direction. A function of only ck can be obtained by subtracting Eq.
(20) from Eq. (19), which gives

r1 � r2 ¼ 2A
XN1

i¼1

iciB
i�1 ð21Þ

where A ¼ J�1ðk2
1 � k2

2Þ, and B ¼ I1 � 2. A least-squares fit with
N1 ¼ 3 was used to determine the coefficients ci.

To fit the PBE/DZP results, a residual, r, was defined as

r ¼
X

j

Pj � Pfit
j

� �2
ð22Þ

where j ranges from 1 to the number of load steps in the PBE/DZP
computations, Pj are the PBE/DZP results for different strains and
Pfit

j are the corresponding values computed from Eq. (21). The fitting
coefficients were obtained by setting the derivatives of r with re-
spect to the fitting coefficients to zero, i.e.,

@r
@ck
¼ 2

X
j

Pj � 2Aj

XN1

i¼1

iciB
i�1
j

 !
AjkBk�1

j ¼ 0 k ¼ 1; . . . ;N1 ð23Þ
After substituting the ck, where k ¼ 1; . . . ;N1, thus obtained into Eq.
(19), dk, where k ¼ 1; . . . ;N2, were found in an analogous way. For
N1 ¼ 3 and N2 ¼ 2, the fitted constitutive equation shows good
agreement with the PBE/DZP results.

The coefficients a1 and a2 were determined from the biaxial
stretching results, and a3 through a5 were calibrated using the dif-
ference in the tensile stresses between the uniaxial tensions along
the zigzag and armchair directions. The fitted strain energy densi-
ties are shown in Fig. 3, and are compared to the energy densities
from the DFT calculations. The resulting stress–strain relations are
shown in Fig. 4, along with the DFT results. Very good agreement
was obtained in all cases. The fitting coefficients are listed in Table 1.

Poisson’s ratios in the armchair and zigzag directions are com-
pared between the DFT results and the proposed constitutive mod-
el in Fig. 5. The ratios were calculated by finding the transverse
strain that made the stress state uniaxial. The curves for the arm-
chair direction are almost identical. The Poisson’s ratio curve for
the zigzag direction from the constitutive equation takes an unre-
alistic bend away and then back toward the DFT results at strains
larger than � 7%. This behavior is due to a limitation of this equa-
tion for predicting this response accurately for these strains. At
very small strains, the DFT results are inaccurate due to the stress
tolerance of 0.1 GPa. For example, an uniaxial engineering strain of
0.3% in the armchair direction generates a tensile stress of 1 GPa,
however the transverse stress generated by this uniaxial strain is
less than 0.1 GPa. Therefore, the resulting Poisson’s ratios from
PBE/DZP calculations are not accurate at very small strains, so we
did not report them in the figure.

The elastic constants of graphene can be calculated using the
coefficients from Table 1; the shear modulus is l ¼ 2c1 ¼ 421:5
GPa, the Lamé constant K ¼ 2d1 ¼ 615:74 GPa, Young’s modulus
is Y ¼ 9Kl

3Kþl ¼ 1:030 TPa, and Poisson’s ratio is m ¼ 3K�2l
2ð3KþlÞ ¼ 0:22.

The elastic constants of graphene and the strain at onset of mate-
rial softening from the proposed constitutive equation are com-
pared to values from the literature in Table 2. Literature-reported
results for carbon nanotubes are also shown. It can be seen that
the mechanical properties from the continuum model match the
various DFT-based results better than those predicted using empir-
ical potentials.
4. Indentation example

To test the effectiveness of this constitutive model, we consider
the nanoindentation experiment of Lee et al. (2008). In their exper-
iment, graphene sheets of radius 500 nm and 750 nm were in-
dented in the center to various indentation depths, d, and the
force–deflection relations were obtained to evaluate the elastic
constants. We simulated the experiments numerically. A simple
in-house total Lagrangian-based nonlinear static finite element
code was used. A sketch of the finite element model is shown in
Fig. 6. The graphene sheet of radius R consists of 1495 nodes and
2864 linear triangular membrane elements. The boundary of a
sheet was fixed (ux ¼ uy ¼ uz ¼ 0 8X;Y 2 fX2 þ Y2 ¼ R2g), and the
center node was displaced by d. Lee et al. showed that the load–
deflection curves are not sensitive to the indenter size, except that
it was easier to break the sheets with smaller indenters.

The simulated load–deflection curves with R ¼ 500 nm and
R ¼ 750 nm are shown in Fig. 7, with the experimental data. Excel-
lent agreement was obtained. The simulation curves terminate
where the numerical computations failed to converge. The termi-
nations may indicate the fracture loads. This will be investigated
in subsequent work, where the importance of bending stiffness
will also be explored. For the R ¼ 500 nm model, the breaking force
was 1567 nN and the maximum deflection was 110 nm. They are
2188 nN and 160 nm for the R ¼ 750 nm sheet. The breaking
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points in the experiments using an indenter with a tip-radius of
16.5 nm are marked with red X’s in the figure. The corresponding
fracture loads are 1905 nN and 1868 nN for the 500 nm and
750 nm graphene sheets, respectively. In the experiment, the
breaking forces were higher with an indenter tip of larger radius.

Pre-tension in the radial direction is considered in the experi-
ments of Lee et al. (2008). Computed results with pre-tension are
also shown in Fig. 7. We considered 0.2 nm pre-stretch in radius,
which corresponds to 0.14 N/m and 0.09 N/m pre-tensions on the
R ¼ 500 nm and R ¼ 750 nm sheets, respectively. The difference
between the load–deflection curves with and without pre-tension
is almost negligible at large deflections. However, its effect is more
important at small deflections. The change in the reaction force at
the center node due to pre-tension is greater than 60% for 20 nm
deflection. The pre-tension effect decreases drastically with the
indentation depth. For 100 nm indentation, the change in reaction
force caused by pre-tension is only 1%.
5. Conclusions

The material response of graphene under uniaxial and equal
biaxial stretching was computed with the DFT method PBE/DZP.
A two-dimensional anisotropic hyperelastic model was developed
from the PBE/DZP results by applying a least-squares fit. The
resulting constitutive law is a function of two principal invariants
of the right Cauchy–Green tensor and two diagonal components of
the Green strain tensor. The law accounts for the anisotropy at
large uniaxial tensile strain. The elastic constants of the presented
model are as accurate as the DFT computations and the model
reproduces the PBE/DZP results very well. Nanoindentation of cir-
cular graphene sheets was simulated using the proposed law, with
and without considering pre-tension. The numerical results show
very good agreement with experimental data. The effect of pre-
tension was shown to be not significant except at very small
strains. This development of an accurate continuum model can
facilitate mechanical behavior studies of graphene sheets.
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