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We construct two examples the first of which is a Lindeliif, separable and strongly zero- 

dimensional space the increment of which in any compactification is collectionwise normal, 

countably paracompact and infinite dimensional. The second example is a Lindeliif, separable, 

non-semicompact space that has a compactification with discrete increment. 
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1. Introduction 

To put the examples described in the abstract in perspective, we recall some 

definitions and results. 

A space is called semicompact (rimcompact or peripherally compact) if it has a 

base consisting of open sets with compact boundary. 

Theorem 1. A space X satisfying the bicompact axiom of countability has a compac- 

tijcation Y with dim( Y-X) s 0 i#X is semicompact [7, 8, 12, 141. 

A space X satisfies the bicompact axiom of countability if every compact subset 

of X is contained in another compact subset of X possessing a countable base of 

neighbourhoods. This is in fact a necessary and sufficient condition for the increment 

Y-X to be Lindelof for every compactification Y of X [ 141. 

Theorem 2. Every semicompact space X has a compactiJication Y with ind( Y - X) < 0 

[7,91. 

Example 1. There is a non-semicompact space X with ind(PX - Y) = 0 (but 

dim(PX - X) # 0) [ 131. 
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Example 2. There is a non-semicompact space X having a compactilkation Y with 

dim( Y - X) = 0 [9]. 

Example 3. There is a semicompact space X such that for every compactification 

Y of X, Y-X is normal and dim(Y-X)=oo [2]. 

Icd X (resp. cmp X) is defined inductively as follows. Icd X = -1 (resp. cmp X = 

-1) iff X is Tech-complete (resp. X is compact). For n = 0, 1,2, . . ., Icd X =S n (resp. 

cmp X s n) if whenever F is a closed (resp. singleton) set and G an open set of X 

with F c G, then there is an open set U of X with F c U c G and Icd B( U) s n - 1 

(resp. cmp B(U) s n -l), where B(U) denotes the boundary of U. Of course, 

Icd X = n (resp. cmp X = n) if Icd X s n and Icd X 6 n - 1 (resp. cmp X s n and 

cmpXSn--1) and IcdX=co (resp. cmpX=oo) if IcdXPn (resp. cmpXSn) 

for each positive integer n. 

De Groot’s conjecture.’ If X is separable metrisable, cmp X s n iff X has a compac- 

tiJication Y with dim( Y-X) =S n [8]. 

Note that if this conjecture is true, it generalises Theorem 1 for X metric separable 

as cmp X C 0 iff X is semicompact. 

Theorem 3. For a metrisable space X, Icd X s n if X has a completion Y with the 

dim(Y-X)Sn [l]. 

Example 4. There is a LindelSf, separable space X of weight w,, such that every 

two disjoint closed sets of X can be separated by a locally compact closed subset 

of X and if Y is a tech-complete extension of X, then dim( Y-X) = ind( Y - X) = co 

[lOI. 

The space X of Example 4 satisfies Icd X = 0 and so shows that Theorem 3 is 

not valid outside metrisable spaces. As cmp X = 1, it also shows that de Groot’s 

conjecture is certainly false outside metrisable spaces. Our first example demonstrates 

these two points more dramatically as we show that the constructed space X satisfies 

dim( Y - X) = 00 for every kech-complete extension Y of X in addition to the 

properties announced in the abstract. 

Eric Van Douwen is reported in [lo] to be of the opinion that Example 1 can be 

modified to produce a space Y with cmp Y = ~0 and dim@ Y - Y) = 0. The space 

X of our second example is LindelSf, separable and has a compactification with 

discrete increment. Moreover, dim(PX - X) = 0 while cmp X = ~0. X can be used 

to construct a space 2 with cmp 2 = 03 and /?Z -Z discrete, but this last property 

disqualifies Z from being Lindeliif. 

’ The referee has kindly informed the author that this conjecture has now been answered in the 

negative by R. Pol in his paper “On de Groot’s conjecture cmp = def’, Bull. Acad. Pol. Sci., 30 (1982) 

461-464. 
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Our method of construction, which bears no relation to those employed in the 

examples listed above, is that of producing new topologies from standard ones by 

assigning limit points to certain sequences so as to induce the required results [cf, 

4, 11, 31. 

In this paper, all spaces are at least Tychonoff, 1x1 denotes the cardinality of X, 

/3X the Stone-Tech compactification of X, c the cardinality of the continuum, w(c) 

the first ordinal of cardinality c and w, the first uncountable ordinal. N denotes 

the set of positive integers and Z the unit interval with their usual topologies. The 

product of countably infinite copies of Z is denoted by Z”, its usual topology by T 

and its usual metric by d. 

For standard results in General Topology or Dimension Theory we refer to [5,6]. 

2. The first example 

Let {S, = (&,, &, . . ): a <w(c)} be an enumeration of the collection of all 

sequences of countable subsets of IN with In:=, Sail = c such that for each LY < w(c), 

there is a limit ordinal p and a non-limit ordinal y with LY < p < y < w(c) and 

S, = S, = S,. Let P be a dense countable subset of IN and 4 a well-ordering on 

IN of the same type as o(c) and such that x < y if x E P and y & Z? For each 

(Y < OJ( c), we choose a point x, in ny=, S,, and a sequence {x,,} converging to x, 

so that 

(1) Each {xun} contains infinitely many points from P and from each Sai, i E N. 

(2) xQ x, if x =x,, orxEPorx=xp andp<a. 

Let A = {xa : a a limit ordinal in o(c)} u P and B = {xa : a a non-limit ordinal in 

o(c)}. We note that A, B are Bernstein sets of IN i.e. if F is an uncountable closed 

subset of ZN then IA n FI = [B n FI = c. For then IFI = c and if S is a countable 

dense subset of F then (S, S, . . . ) = S, and hence x, E F for continuum many (Y’S 

that are limit ordinals and continuum many (Y’S that are non-limit ordinals. 

We now define a new topology u on Au B, finer than r, by using transfinite 

induction with respect to 4 to define ‘basic’ neighbourhoods according to the 

following specifications. 

(3) If XE P, then {x} is a basic neighbourhood of x. 

(4) For (Y < w(c), a basic neighbourhood of x, consists of x, together with basic 

neighbourhoods of x,, of d-diameter s l/n for all but finitely many n’s. 

Transfinite induction readily shows that all basic neighbourhoods are countable, 

T-closed and compact. Hence (T is zero-dimensional Tynchonoff, locally compact 

and locally countable. Furthermore, {x,,} converges to x, with respect to (T and 

hence, in view of (l), P is dense in u so that u is separable. 

We implicitly assume henceforth that subsets of A u B carry the subspace topology 

with respect to u. 

Let Z = {CO} u Au B be the one-point compactification of Au B. Then X = Z - B 

is our first example. Clearly X is separable and Z is a compactification of X. In 
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the sequel, Y denotes an arbitrary compactification of X, g : pX + Z and f: /3X + Y 

the canonical extensions of the identity map X + X. 

Claim 1. X is Lindeliif with dim X = 0. 

Proof. The fact that each point of Au B has a countable neighbourhood implies 

that a compact subset of Au B is countable. Hence X is Lindelof. For if G is an 

open neighbourhood of co, then X - G is countable. Furthermore, X - G is con- 

tained in an open countable set U of Au B and since X is normal on account of 

the fact that it is Lindelof, there is an open set V of X with X - G c Vc vc U. 

Now as U is countable, dim Us 0, and hence there is a clopen set H of U with 

X - G c H c V. It is readily seen that H is clopen in X and hence X - H is a clopen 

neighbourhood of 00 inside G. Since the basic neighbourhoods of each point of 

Au B are clopen, we deduce that ind X < 0 and since X is Lindeliif and non-empty, 

dimX=O. 0 

Claim 2. Zf B,, B2, . . . are closed subsets of Y-X with ny=, B, = 0, then 

nT=, gf’( B,)’ is countable. 

Proof. Suppose this is false and let Si be a countable r-dense subset of gf’(Bi). 

Then In:=, ST1 = c and (S,, Sz, . . . ) = S, for uncountably many limit ordinals (Y < 

w(c). For each such (Y, in view of (1) and (4), x, belongs to nT=, gf’(B,) n A 

which is therefore uncountable. Let S be a countable r-dense subset of 

n;, gf’( Bi) n A. Then for some non-limit ordinal /3 < w(c), (S, S, . . . ) = S,. If y 

is a limit point of {x,,}n S in g-*(x0), it is readily seen that y is in nyC,f’(Bi), 

which implies n:=, Bi f 0. 0 

Claim 3. Y - X is countably paracompact and collectionwise normal. 

Proof. As f: /3X - X + Y - X is perfect and countable paracompactness and collec- 

tionwise normality are invariant under perfect mappings, it suffices to prove that 

PX -X has these properties. Let E, F be disjoint closed sets of PX -X. Then by 
Claim 2, g(E)‘ng(F)’ is countable and hence, as in the proof of Claim 1, it is 

contained in a countable clopen set H of Au B. Since metrisable and Lindeliif 

spaces are normal, there exist disjoint T-open sets U, , U, of Au B - H and disjoint 

open sets V,, V, of the o-compact and hence Lindelof space g-‘(H) such that 

g(E)‘-Hc U,, g(F)‘-Hc U,, Eng-‘(H)c V, and Fng-‘(H)c V,. Then 

g-‘( U,) u V, and g-‘( U,) u V, are disjoint open sets of /3X containing E and F, 

respectively. Hence /3X -X is normal. 

Let B,, BZ,. . . be a decreasing sequence of closed sets of pX - X with n:= 1 Bi = 

0. Then d%L g(&), . . . is a decreasing sequence of closed sets of Z-X = B. 

Furthermore, for each x E B, g-‘(x) is compact and hence g-‘(x) n Bi = 0 for some 
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i E N since nz, Bi = 0. Hence nz, gB, = 0. By Claim 2, we may let nz, g(B,)’ = 

{x1,x2,...}. Let 

Gi={x~B:d(x,g(Bi))<l/i}-({x,,x, ,..., xi}-g(Bi)), iEN. 

Clearly, n;!“=, Gi = 0 so that g-‘( Gi) is an open set of /3X -X containing Bi with 

n;=, g-‘( Gi) = 0. S’ mce PX -X is normal, this proves that it is also countably 

paracompact [5, Corollary 5.2.21. 

Collectionwise normality of the normal space /3X -X will follow if we prove 

that a discrete subset D of it is countable. Now since g : /3X -X + 2 -X is perfect, 

then g(D) is discrete in 2 - X = B. But if g(D) is uncountable and S is a r-dense 

countable dense subset of it, then (S, S, . . . ) = S, for some non-limit ordinal a < 

w(c), which implies that x, is an accumulation point of g(D) in B. We conclude 

that g(D) is countable and since for each x in B, g-‘(x) is compact and so g-‘(x) n D 

is finite, then B is countable and PX -X is collectionwise normal. Cl 

Claim 4. If E, F are disjoint closed sets of Au B, there is a countable subset H of B 

such that 

fg-‘(E-H)nfgpl(F-H)=0. 

Proof. Otherwise E* = {x E E: fg-‘(x) nfg-‘(F) # 0) is uncountable and if S is a 

T-dense countable subset of it, then (S, S, . . .) = S, for some limit ordinal LY < w(c). 

Then any neighbourhood of the point x, of X in Y contains fg-‘( V) for some 

open neighbourhood V of x, in 2. Since V contains points of the subset S of E*, 

then fg-‘( V) contains points of fg-‘(E) nfg-l(F). This implies that the point x, 

of X belongs to the closed set fg-‘(E) nfg-‘(F) of Y -{CO}, which is impossible 

since E n F = 0 and JI g extend the identity X + X. q 

Remark 1. We digress to recall some facts about IN. Let Ai, Biy i E N, be the ith 

pair of opposite faces of IN and let Ei, F, be disjoint closed subsets of IN whose 

interiors contain Ai, Bi, respectively. It is well known that if for each i in N, 2, is 

a partition in IN between Ai and B,, then n;, 2, # 0 and hence In:=, Zil = c. The 

same conclusion remains valid if 2; is a partition in some Berstein subset J of IN 

between Ei n J and Fi n J. To see this, let Li be a partition in IN between Ai, Bi 

with Jn Li c Z, [6, Lemma 1.2.91. Then n;=, Li and hence J n n:=, L, and n;, 2, 

have cardinality c. 

Claim 5. Zf W is the increment of X in a GA-set W u X of Y, then dim W = ~0. 

Proof. Let H be a countable subset of the locally countable space Au B containing 

the a-compact subset sf’( Y -X u W) of B. In view of Claim 4, we can also 

suppose that for each i in N, fg-‘( Ei - H) n fg-‘( F, - H) =@. Evidently we can 

further suppose that H is open in Z. Now fg-‘(B - I-f) is a closed subset not only 
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of W but also of the normal Y-X. It follows that every bounded real valued 

continuous function on fg-‘( B - H) extends to W and so p W contains pfg-‘( B - 

H). Hence dimfg-‘(B - H) < dim W, for dim X = dim PX for all Tychonoff spaces 

X; in fact, if X is non-normal, dim X = dim PX by definition. Thus, let us suppose 

that dim W < CO. Then there is a partition Zi in fg-‘( B - H) between fg-‘( Ei - H) 

and fg-‘( Fi - H), i = 2,3, . . . , such that n:=*=, 2, = 0. Write Zi = Xi n Yi, where Xi, 

yi are closed sets of fg-‘( B - H) disjoint from fg-‘( Ei - H), fg-‘(6 - H), respec- 

tively, with Xiu Yi =fg-‘(B-H). Now, in view of Claim 2, there is a countable 
subset G of Au B containing H such that, if J = B - G and i = 2,3,. . . , then 

gf-‘(Xi)T n gf’( Y,), n J is a partition in J between Ei n J and Fin J with 

nz”=, gf-'(X)'ngf-'(yi)' n J = 0. This contradicts Remark 1 since J is a Bernstein 
subset of IN as a cocountable subset of a Bernstein subset of 1”. We conclude that 
dim W=OO. 

Remark 2. The W of Claim 5 is not always normal. This is a consequence of the 

fact that there exists a non-normal space containing a copy of N as a dense subset 

and hence there exists some compactification of N which is not hereditarily normal 

so that some open subset of this compactification is not normal. To see this, consider 

a non-standard topology on the set of real numbers R such that each point of Q, 

the set rationals, is isolated and every neighbourhood of a point x in R - Q contains 

all but finitely many members of some fixed sequence of rationals converging to x 

with respect to the standard topology on R. With this new topology, R is not normal 

because, since it is separable, the set of all continuous, bounded real valued functions 

on R has cardinality c while the corresponding set for its discrete closed subspace 

R - Q has cardinlity 2”. 

3. The second example 

Partition IN into three disjoint Berstein set A, B, C, and let {S, = (S,, , So,): (Y < 

w(c)} be an enumeration of the collection of all pairs of sequences of A with 

IS,, n se21 = c such that for each (Y < w(c), there is a limit ordinal /3 and a non-limit 

ordinal y with (Y < p < y < w(c) and S, = S, = S,. Let P be a countable dense subset 

of A and 4 a well-ordering on Au B of the same type as w(c) and such tht xQy 

if XEP and y&P For each (Y<w(c), we choose a point x, in &,n% and a 

sequence {x,,} converging to x, so that 

(1) {x,,} consists of infinitely many points from P and from each Soi, i = 1,2. 

(2) x, E A if (Y is a limit ordinal. 

(3) x, E B if (Y is not a limit ordinal. 

(4) x 4 x, for x =x,, or x E P or x =x0 with p < LY. 

Finally, if x is a point of 

AuB-{x,: a<w(c)}uP 

we fix a sequence {x,} in P converging to x. 
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Now we use transfinite induction with respect 4 to define ‘basic’ neighbourhoods 

of some topology u on IN as follows. 

(5) If x E P, {x} is a basic neighbourhood of x. 

(6) A basic neighbourhood of a point x of Au B consists of x together with 

basic neighbourhoods of x, of d-diameter cl/n for all but finitely many n’s. 

(7) Basic neighbourhoods of a point of C are all its r-neighbourhoods. 

It is readily seen that (T is a finer topology than T and is locally compact and 

locally countable at each point of Au B. Regularity is easily verified using addi- 

tionally (7). The fact that C is a Berstein set of IN ensures that every a-neighbour- 

hood of C is co-countable in IN and hence that v is Lindeliif and therefore 

Tychonoff on any subset of IN containing C. 

In the sequel, 2 denotes IN with topology u and Y the Stone-Tech compac- 

tification of Z. 

Our second example is X = Y - B. Evidently, for each x in Au B, {x,,} converges 

to x and hence, in view of the fact that {x,} contains infinitely many points of P, P 

is dense in Z, Y and X, which are therefore separable. 

Claim 1. Y is a compactijication of X with Y-X discrete. 

Proof. It suffices to observe that for each LY < w(c), {x,,} consists of points of A 

and transfinite induction establishes that x, has a basic neighbourhood consisting 

entirely of points of A apart from x, itself. q 

Claim 2. X is LindeliiJ: 

Proof. Since each point of B has a compact neighbourhood in Z, then Y-Z 

contains no points of B. Hence X = Y-Z u (Z - B) and is therefore Lindelof as 

the union of two Lindeliif spaces. 0 

Claim 3. cmp X = 00. 

Proof. First observe that ind C = dim C = cc as can be seen from Remark 1 of 

Section 2. Hence there is a point x of C and a neighbourhood G of x in X such 

that for all partitions E of X between x and X - G, ind(E n C) = 03. 

Now suppose that cmp X = n <co and let E, be a closed subset of X separating 

between x and X - G with cmp E, c n - 1. Then there are disjoint open sets U,, 

V, of X such that XE U,, X-Gc V, and E,=X- U,u V,. We may of course 

assume that E, = 0, n v,. Now if S, = U, n P, T, = V, n P, then 3, n T, = E, and 

$nTTnC=E,nC. 

Fix a countable r-dense subset P, of E, n A and let W, H be open neighbourhoods 

in X of a point of E, n C with n c W and H n E, n C uncountable. Then for some 

limit ordinal (Y < w(c), (H n S,, H n Tl) = S, so that x, is a point of fi n E, n A 

and hence W n P, # 0. Noting also that E, n C contains only countably many points 
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with countable neighbourhoods, because ind E, n C = co, we see that F, = I’, is a 

closed subset of E, with ind F, n C = cc and cmp F, s n - 1. 

The above process can be repeated to obtain for each i = 2,3,. . . , n + 1, closed 

sets Ei, Fi of X with Fi c Ei c F,_, , ind Fi n C = CD, cmp Ei G n - i, a countable subset 

Pi of A such that F, = pi and subsets Si, T of Pi_l with Ei = si n z. Now E,+1 = s.+, n 

%+I is a compact subset of X with ind(E,,+, n C) = a. Hence E,,, n C = s’,+, n 

Tz+, n C is uncountable and for some non-limit ordinal LY <w(c), S, = (S,,+r, T,,,,) 

so that the point x, of B is a limit point of E,,, contradicting the fact that E,+, is 

a compact subset of X. We must conclude that cmp X = CO. 0 

Claim 4. dim@X - X) = 0. 

Proof. Each point x of B = Y-X has a countable closed neighbourhood H in Y. 

If g: pX+ Y is the canonical extension of the identity X+X, then g-‘(x) is a 

closed subset of P(H -{x}) and hence dim g-‘(x) = 0. The result then follows from 

the fact that g-‘(x) is clopen in /?X -X. 0 

Remark 1. Consider W = [0, ml] x Y - {w,} x B. Iff: W + I is continuous, it follows 

from the fact that the countable set P is dense in Y that there is some cy < w, such 

that f is constant on [(Y, w,] x {p} for each p in P. Hence f extends to [0, w,] x Y, 

pW=[O,w,]x Y,pW- W={w,}xB d is iscrete while W is not semicompact, infact, 

cmp W = cmp({wl} X X) = cmp X = Co. 

We note, however, that if a space S is Lindelijf and non-compact, then PS - S is 

not discrete. For in such a case, S is not sequentially compact and contains an 

infinite sequence with no accumulation point in S. Hence, since S is normal, PS - S 

contains a copy of PN - N, which is not discrete. 

The same argument shows that W is not normal because {w,}x X contains a 

discrete infinite sequence converging to a single point of {wl} x B. 

Remark 2. The following question presents itself. If S is a countable space, is it 

true that dim /3S - S< O? If this fails, does S have a compactification T with 

dim T - Ss O? Note that Theorem 1 does not apply as S need not satisfy the 

bicompact axiom of countability. For example, let S = {co} u Ur=, S,, where each 

S, is a copy of N and a neighbourhood of CO is cofinite in each S,. 
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