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Abstract

In this paper, we present some new families of graceful join of graphs and propose a few unsolved problems in this area.
c⃝ 2015 Production and Hosting by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We call G an (n, m)-graph if it is of order n
(i.e., |V (G)| = n) and size m (i.e., |E(G)| = m). Assume that 1 ≤ n − 1 ≤ m. A graceful valuation of G is an
injection θ : V (G) → {0, 1, . . . , m} such that the induced mapping π , defined by π(uv) = |θ(u) − θ(v)| for each
edge uv in G, is a bijection between E(G) and {1, 2, . . . , m}. We call G a graceful graph if it admits a graceful
valuation. For a general survey on graceful graphs, see [1].

Let G and H be two given graphs. The join of G and H , denoted by G + H , is the graph obtained from the disjoint
union of G and H by joining each vertex in G to each vertex in H .

In [3], we present a brief survey on some major results about the gracefulness of G + H . In this paper, we shall
establish some new families of graceful join of graphs and propose a few unsolved problems in this area.

As usual, Kn, On, Pn and Cn denote, respectively, the complete graph, empty graph, path and cycle of order n;
K (p, q), which can also be written as Op + Oq , denotes the complete bipartite graph with p and q vertices in the
respective partite sets, where 1 ≤ p ≤ q .

2. Some major existing results

For ease of reference, we first state three earliest basic results on graceful graphs.

Theorem 1 ([2]). The graph Kn is graceful if and only if 2 ≤ n ≤ 4.
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Fig. 1. Graph of P(7, 3).

Fig. 2. Graph of Op + P(n, t).

Theorem 2 ([4]). The graph K (p, q) is graceful for all 1 ≤ p ≤ q.

Theorem 3 ([4]). Let G be an Eulerian graph of size m. If m ≡ 1 or 2 (mod 4), then G is not a graceful graph.

Recall in [3] that for n ≥ t + 2 and t ≥ 1, we denote P(n, t) to be the graph of order n consisting of a path of
length t and n − (t + 1) isolated vertices, that is, the disjoint union of Pt+1 and On−t−1. We call P(n, t) a broken
path. The graph of P(7, 3) is shown in Fig. 1. Also, for any r ≥ 1 and any graph H , we denote r H to be the disjoint
union of r copies of H .

The gracefulness of the following types of the join of graphs is discussed in [3].

(1) G + H , where G be a graceful tree and H is one of the following:
(i) Op, (ii) P(r, 1), (iii) K (1, q);

(2) Kn + Op;
(3) G f + Op, where G f be the full augmentation of a graceful graph G;
(4) Cn + Op;
(5) r K2 + Op;
(6) the complete n-partite graphs;
(7) Cm + P(n, t).

3. The join op + P(n, t)

In this section, we prove the following first result:

Theorem 4. The join Op + P(n, t) is graceful for all p ≥ 1, n ≥ t + 2 and t ≥ 1.

Proof. Let V be the vertex set of the graph Op + P(n, t) with size np + t . Label the vertices in V as shown in Fig. 2.
We define a valuation f : V → {0, 1, . . . , np + t} as follows:

f (vi ) =


in + t if 1 ≤ i ≤ p t

2


+(−1)i+t−p−1 i − p

2


if p + 1 ≤ i ≤ p + t + 1

i − p − 1 if p + t + 2 ≤ i ≤ p + n.

Clearly f is injective, since f (vi ) ∈ {n+t, 2n+t, 3n+t, . . . , pn+t} if 1 ≤ i ≤ p, and f (vi ) ∈ {0, 1, 2, . . . , n−1}

if p + 1 ≤ i ≤ p + n. Also, we observe that

1. | f (va) − f (vb)| ∈ {1, 2, 3, . . . , t} if va, vb ∈ V

P(n, t)


such that vavb is an edge of P(n, t), and

2. | f (va) − f (vb)| ∈ {t + 1, t + 2, t + 3, . . . , pn + t} if va ∈ V (Op) and vb ∈ V

P(n, t)


.

Since all the edges of Op + P(n, t) receive distinct labels, f is a graceful valuation. �

As an example, the graceful valuation of O4 + P(7, 3) shown in the proof for Theorem 4 is given in Fig. 3.

4. The join op + I (n, t)

For t ≥ 1 and n ≥ 2t + 1, we denote I (n, t) to be the disjoint union of t K2 and On−2t . The graph I (10, 4) is
shown in Fig. 4.
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Fig. 3. A graceful valuation of O4 + P(7, 3).

Fig. 4. Graph of I (10, 4).

Fig. 5. Graph of Op + I (n, t).

Fig. 6. A graceful valuation of O4 + I (10, 4).

For graphs of the form t K2 + Op, where p ≥ 1, it is shown that not all are graceful (see, for instance, [1] and [3]).
The following result says that the situation is different if we add at least one isolated vertex to t K2.

Theorem 5. The graph Op + I (n, t) is graceful for all p ≥ 1, n ≥ 2t + 1 and t ≥ 1.

Proof. Observe that when t = 1, Op + I (n, 1) = Op + P(n, 1). Therefore by Theorem 4, result holds. For t ≥ 2, let
V be the vertex set of the graph Op + I (n, t) with size np + t . Label the vertices in V as shown in Fig. 5.

We define a valuation f : V → {0, 1, . . . , np + t} as follows:

f (vi ) =



i − 1 if 1 ≤ i ≤ p + 1
np + t if i = p + 2

p +
1
2


1 + (−1)i−p−2(2p + 1)t

+(−1)i−p−3
 i−p−1

2


p +

 i−p
4


if p + 3 ≤ i ≤ p + 2t + 1

(i − p − 1)p + (t − 1) if p + 2t + 2 ≤ i ≤ p + n.

The following observations imply that f is injective.

1. If 1 ≤ i ≤ p + 1, then f (vi ) ∈ {0, 1, 2, . . . , p}.
2. If i = p + 2k + 1 for some k ∈ {1, 2, 3, . . . , t}, then f (vi ) ∈


2p, 3p + 1, 4p + 1, . . . , (t + 1)p +

 t
2


.

3. If i = p + 2k + 2 for some k ∈ {1, 2, 3, . . . , t − 1}, then f (vi ) ∈

2tp + t − 1, (2t − 1)p + t − 1, (2t − 2)p +

t − 2, . . . , (t + 2)p + t −
 t

2


.

4. If p + 2t + 2 ≤ i ≤ p + n, then f (vi ) ∈ {(2t + 1)p + t − 1, (2t + 2)p + t − 1, . . . , (n − 1)p + t − 1}.
5. If i = p + 2, then f (vi ) = np + t .

Furthermore, it can be shown that all the edges receive distinct labels. It follows that f is a graceful valuation. �

As an illustration, the above graceful valuation of O4 + I (10, 4) is given in Fig. 6.
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Fig. 7. P(m, s) + P(n, t) when s = t = 1 (top), s = 1 and t = 2 (middle), and s = t = 2 (bottom).

5. The join p(m, s) + p(n, t)

In this section, we prove the following:

Theorem 6. If s, t ∈ {1, 2}, then P(m, s) + P(n, t) is graceful for all m ≥ s + 2 and n ≥ t + 2.

Proof. Let V be the vertex set of the graph P(m, s) + P(n, t) with size mn + s + t . Label the vertices in V as shown
in Fig. 7. We define a valuation f : V → {0, 1, . . . , mn + s + t} as follows:

For P(m, 1) + P(n, 1) with n ≥ m ≥ 3:

i 1 2 ≤ i ≤ m m + 1 m + 2 ≤ i ≤ m + n
f (vi ) 0 (m − i + 1)n + 2 1 (i − m + 2) + (m − 1)n

For P(m, 1) + P(n, 2) with m ≥ 3 and n ≥ 4:

i 1 2 ≤ i ≤ m m + 1 m + 2 m + 3 m + 4 ≤ i ≤ m + n
f (vi ) 0 mn + 5 − i m + 2 1 mn − m + 3 (i − m − 2)m + 2

For P(m, 2) + P(n, 2) with n ≥ m ≥ 4:

i 1 2 3 ≤ i ≤ m
f (vi ) n mn + 2 (m − i + 2)n + 1

i m + 1 m + 2 m + 3 m + 4 m + 5 ≤ i ≤ m + n
f (vi ) 0 mn + 4 1 mn + 3 i − m − 3

It can be shown directly that f is a graceful valuation for each case. �

Other than the graceful valuation, f , that is defined in the proof for Theorem 6, we remark that there is an alternative
graceful valuation of P(m, 2) + P(n, 2). We present the alternative graceful valuation g : V → {0, 1, . . . , mn + 4}

in a tabular form as follows:

i 1 2 3 ≤ i ≤ m
g(vi ) 2 (m − 1)n + 4 (m − i + 1)n + 3

i m + 1 m + 2 m + 3 m + 4 ≤ i ≤ m + n
g(vi ) 0 mn + 4 1 (n + 1)m − i + 7

Fig. 8 shows two graceful valuations of P(5, 2) + P(6, 2).

6. The join c5 + P(n, 1)

It is proved in [3] that the join C3 + P(n, t) is graceful for all n ≥ t + 2, where 1 ≤ t ≤ 3. In this section, we prove
the following:

Theorem 7. The join C5 + P(n, 1) is graceful for all n ≥ 3.
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Fig. 8. Two graceful valuations of P(5, 2) + P(6, 2): f as defined in the proof for Theorem 6 (left) and g (right).

Fig. 9. Graph of C5 + P(n, 1).

Fig. 10. A graceful valuation of C5 + P(7, 1).

Proof. Let V be the vertex set of the graph C5 + P(n, 1) with size 5n + 6. Label the vertices in V as shown in Fig. 9.
We define a valuation f : V → {0, 1, . . . , 5n + 6} as follows:

i 1 or 3 2 4 or 5 6 7 8 ≤ i ≤ n + 5
f (vi ) i 5n + 3 5n + 2(i − 2) 0 5n − 1 5(i − 6) − 1

It can be shown directly that f is a graceful valuation. �

A graceful valuation for n = 7 is shown in Fig. 10.

7. Some unsolved problems

In this final section, we propose some problems for further study.

Problem 1. Is the join P(m, s) + P(n, t) always graceful for all m ≥ s + 2 and n ≥ t + 2, where s ≥ 3 or t ≥ 3?

Problem 2. As shown in [3], the join C3 + P(n, t) is always graceful for all n ≥ t + 2, where 1 ≤ t ≤ 3. How about
the case when t ≥ 4?

Problem 3. As shown in Theorem 7, the join C5 + P(n, 1) is graceful for all n ≥ 3. Is the join C5 + P(n, t) graceful,
where n ≥ t + 2 and t ≥ 2?

As mentioned in [3], (i) the graph Kn + Op is graceful for each n ≤ 3 and p ≥ 1, and (ii) the graphs Kn + O1,
Kn + O2 and Kn + O3 are not graceful for all n ≥ 4. By Theorem 3, it can be checked that for r ≥ 0, the Eulerian
graphs K4 + O2r+1 and K6 + O2r+1 are also not graceful.

Problem 4. Consider the graph Kn + Op.

(i) For n = 4, 5 or 6, is the join Kn + O4 graceful?
(ii) Does there exist a positive integer p such that K4 +Op is graceful? If the answer is ‘yes’, find the least value of p.

(iii) Given that n ≥ 5, can Kn + Op be graceful if p is sufficiently large?

Problem 5. By Theorem 2, the graph K (p, q) is graceful for all 1 ≤ p ≤ q. Study the gracefulness of K (p, p) − M ,
where p ≥ 3 and M is a perfect matching in K (p, p).
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Let G = K (p, p)− M . In Problem 5, we note that if p = 4r + 3, where r ≥ 0, then G is an Eulerian graph of size
(4r + 3)(4r + 2), which is not graceful by Theorem 3.

Problem 6. Study the gracefulness of each of the following families of graphs:

(1) Pm + Pn , where m ≥ n ≥ 2;
(2) Cm + Pn , where m ≥ 3 and n ≥ 3;
(3) Cm + Cn , where m ≥ n ≥ 3;
(4) I (m, s) + I (n, t), where m ≥ 2s + 1 and n ≥ 2t + 1;
(5) P(m, s) + I (n, t), where m ≥ s + 2 and n ≥ 2t + 1;
(6) K (1, p) + I (n, t), where p ≥ 3, n ≥ 2t + 1 and t ≥ 1;
(7) K (1, p) + P(n, t), where p ≥ 3, n ≥ t + 2 and t ≥ 1;
(8) More generally, G + P(n, t), where G is a graceful tree and t ≥ 2.
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