

Available online at www.sciencedirect.com

ScienceDirect

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 12 (2015) 180-185

www.elsevier.com/locate/akcej

The gracefulness of the join of graphs (II)

K.M. Koh*, L.Y. Phoon, K.W. Soh

Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260, Singapore

Received 22 December 2014; accepted 3 September 2015 Available online 23 December 2015

Abstract

In this paper, we present some new families of graceful join of graphs and propose a few unsolved problems in this area. © 2015 Production and Hosting by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Graceful graph; Join of graphs; Eulerian graph; Broken path

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). We call G an (n, m)-graph if it is of order n (i.e., |V(G)| = n) and size m (i.e., |E(G)| = m). Assume that $1 \le n - 1 \le m$. A graceful valuation of G is an injection $\theta : V(G) \to \{0, 1, ..., m\}$ such that the induced mapping π , defined by $\pi(uv) = |\theta(u) - \theta(v)|$ for each edge uv in G, is a bijection between E(G) and $\{1, 2, ..., m\}$. We call G a graceful graph if it admits a graceful valuation. For a general survey on graceful graph, see [1].

Let G and H be two given graphs. The *join* of G and H, denoted by G + H, is the graph obtained from the disjoint union of G and H by joining each vertex in G to each vertex in H.

In [3], we present a brief survey on some major results about the gracefulness of G + H. In this paper, we shall establish some new families of graceful join of graphs and propose a few unsolved problems in this area.

As usual, K_n , O_n , P_n and C_n denote, respectively, the complete graph, empty graph, path and cycle of order n; K(p,q), which can also be written as $O_p + O_q$, denotes the complete bipartite graph with p and q vertices in the respective partite sets, where $1 \le p \le q$.

2. Some major existing results

For ease of reference, we first state three earliest basic results on graceful graphs.

Theorem 1 ([2]). The graph K_n is graceful if and only if $2 \le n \le 4$.

* Corresponding author.

E-mail addresses: matkohkm@nus.edu.sg (K.M. Koh), phoon_lai_yong@moe.edu.sg (L.Y. Phoon), soh_kian_wee@moe.edu.sg (K.W. Soh).

http://dx.doi.org/10.1016/j.akcej.2015.11.013

Peer review under responsibility of Kalasalingam University.

^{0972-8600/© 2015} Production and Hosting by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Graph of P(7, 3). $V_1 \quad V_2 \quad V_3 \quad V_p \quad + \quad V_{p+1} \quad V_{p+2} \quad V_{p+3} \quad V_{p+t+1} \quad V_{p+t+2} \quad V_{p+n}$ Fig. 2. Graph of $O_p + P(n, t)$.

Theorem 2 ([4]). The graph K(p,q) is graceful for all $1 \le p \le q$.

Theorem 3 ([4]). Let G be an Eulerian graph of size m. If $m \equiv 1$ or 2 (mod 4), then G is not a graceful graph.

Recall in [3] that for $n \ge t + 2$ and $t \ge 1$, we denote P(n, t) to be the graph of order *n* consisting of a path of length *t* and n - (t + 1) isolated vertices, that is, the disjoint union of P_{t+1} and O_{n-t-1} . We call P(n, t) a broken path. The graph of P(7, 3) is shown in Fig. 1. Also, for any $r \ge 1$ and any graph *H*, we denote *rH* to be the disjoint union of *r* copies of *H*.

The gracefulness of the following types of the join of graphs is discussed in [3].

(1) G + H, where G be a graceful tree and H is one of the following:

(i) O_p , (ii) P(r, 1), (iii) K(1, q);

(2) $K_n + O_p$;

(3) $G_f + O_p$, where G_f be the full augmentation of a graceful graph G;

- (4) $C_n + O_p$;
- (5) $rK_2 + O_p$;
- (6) the complete *n*-partite graphs;
- (7) $C_m + P(n, t)$.

3. The join $o_p + P(n, t)$

In this section, we prove the following first result:

Theorem 4. The join $O_p + P(n, t)$ is graceful for all $p \ge 1$, $n \ge t + 2$ and $t \ge 1$.

Proof. Let V be the vertex set of the graph $O_p + P(n, t)$ with size np + t. Label the vertices in V as shown in Fig. 2. We define a valuation $f: V \to \{0, 1, ..., np + t\}$ as follows:

$$f(v_i) = \begin{cases} in+t & \text{if } 1 \le i \le p \\ \lfloor \frac{t}{2} \rfloor + (-1)^{i+t-p-1} \lfloor \frac{i-p}{2} \rfloor & \text{if } p+1 \le i \le p+t+1 \\ i-p-1 & \text{if } p+t+2 \le i \le p+n. \end{cases}$$

Clearly f is injective, since $f(v_i) \in \{n+t, 2n+t, 3n+t, \dots, pn+t\}$ if $1 \le i \le p$, and $f(v_i) \in \{0, 1, 2, \dots, n-1\}$ if $p+1 \le i \le p+n$. Also, we observe that

1. $|f(v_a) - f(v_b)| \in \{1, 2, 3, ..., t\}$ if $v_a, v_b \in V(P(n, t))$ such that $v_a v_b$ is an edge of P(n, t), and

2. $|f(v_a) - f(v_b)| \in \{t + 1, t + 2, t + 3, \dots, pn + t\}$ if $v_a \in V(O_p)$ and $v_b \in V(P(n, t))$.

Since all the edges of $O_p + P(n, t)$ receive distinct labels, f is a graceful valuation. \Box

As an example, the graceful valuation of $O_4 + P(7, 3)$ shown in the proof for Theorem 4 is given in Fig. 3.

4. The join $o_p + I(n, t)$

For $t \ge 1$ and $n \ge 2t + 1$, we denote I(n, t) to be the disjoint union of tK_2 and O_{n-2t} . The graph I(10, 4) is shown in Fig. 4.

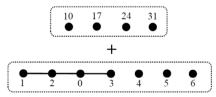
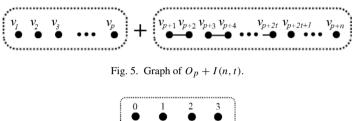


Fig. 3. A graceful valuation of $O_4 + P(7, 3)$.

Fig. 4. Graph of *I*(10, 4).



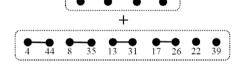


Fig. 6. A graceful valuation of $O_4 + I(10, 4)$.

For graphs of the form $tK_2 + O_p$, where $p \ge 1$, it is shown that not all are graceful (see, for instance, [1] and [3]). The following result says that the situation is different if we add at least one isolated vertex to tK_2 .

Theorem 5. The graph $O_p + I(n, t)$ is graceful for all $p \ge 1$, $n \ge 2t + 1$ and $t \ge 1$.

Proof. Observe that when t = 1, $O_p + I(n, 1) = O_p + P(n, 1)$. Therefore by Theorem 4, result holds. For $t \ge 2$, let V be the vertex set of the graph $O_p + I(n, t)$ with size np + t. Label the vertices in V as shown in Fig. 5.

We define a valuation $f: V \rightarrow \{0, 1, \dots, np + t\}$ as follows:

$$f(v_i) = \begin{cases} i-1 & \text{if } 1 \le i \le p+1 \\ np+t & \text{if } i = p+2 \\ p + \frac{1}{2} \left(1 + (-1)^{i-p-2}\right) (2p+1)t \\ + (-1)^{i-p-3} \left(\left\lfloor \frac{i-p-1}{2} \right\rfloor p + \left\lfloor \frac{i-p}{4} \right\rfloor\right) & \text{if } p+3 \le i \le p+2t+1 \\ (i-p-1)p + (t-1) & \text{if } p+2t+2 \le i \le p+n. \end{cases}$$

The following observations imply that f is injective.

- 1. If $1 \le i \le p+1$, then $f(v_i) \in \{0, 1, 2, \dots, p\}$.
- 2. If i = p + 2k + 1 for some $k \in \{1, 2, 3, ..., t\}$, then $f(v_i) \in \{2p, 3p + 1, 4p + 1, ..., (t+1)p + \lfloor \frac{t}{2} \rfloor\}$.
- 3. If i = p + 2k + 2 for some $k \in \{1, 2, 3, ..., t 1\}$, then $f(v_i) \in \{2tp + t 1, (2t 1)p + t 1, (2t 2)p + t 2, ..., (t + 2)p + t \lfloor \frac{t}{2} \rfloor\}$.
- 4. If $p + 2t + 2 \le i \le p + n$, then $f(v_i) \in \{(2t+1)p + t 1, (2t+2)p + t 1, \dots, (n-1)p + t 1\}$.
- 5. If i = p + 2, then $f(v_i) = np + t$.

Furthermore, it can be shown that all the edges receive distinct labels. It follows that f is a graceful valuation.

As an illustration, the above graceful valuation of $O_4 + I(10, 4)$ is given in Fig. 6.

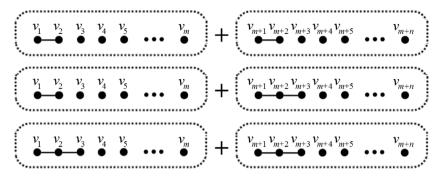


Fig. 7. P(m, s) + P(n, t) when s = t = 1 (top), s = 1 and t = 2 (middle), and s = t = 2 (bottom).

5. The join p(m, s) + p(n, t)

In this section, we prove the following:

Theorem 6. If $s, t \in \{1, 2\}$, then P(m, s) + P(n, t) is graceful for all $m \ge s + 2$ and $n \ge t + 2$.

Proof. Let V be the vertex set of the graph P(m, s) + P(n, t) with size mn + s + t. Label the vertices in V as shown in Fig. 7. We define a valuation $f: V \to \{0, 1, ..., mn + s + t\}$ as follows:

For P(m, 1) + P(n, 1) with $n \ge m \ge 3$:

For P(m, 1) + P(n, 2) with $m \ge 3$ and $n \ge 4$:

For P(m, 2) + P(n, 2) with $n \ge m \ge 4$:

It can be shown directly that f is a graceful valuation for each case. \Box

Other than the graceful valuation, f, that is defined in the proof for Theorem 6, we remark that there is an alternative graceful valuation of P(m, 2) + P(n, 2). We present the alternative graceful valuation $g: V \rightarrow \{0, 1, ..., mn + 4\}$ in a tabular form as follows:

i	1	2		$3 \le i \le m$
$g(v_i)$	2	(m-1)n - (+4 (m	(-i+1)n+3
i	m+1	m+2	<i>m</i> + 3	$m+4 \le i \le m+n$
$g(v_i)$	0	<i>mn</i> + 4	1	(n+1)m - i + 7

Fig. 8 shows two graceful valuations of P(5, 2) + P(6, 2).

6. The join $c_5 + P(n, 1)$

It is proved in [3] that the join $C_3 + P(n, t)$ is graceful for all $n \ge t + 2$, where $1 \le t \le 3$. In this section, we prove the following:

Theorem 7. The join $C_5 + P(n, 1)$ is graceful for all $n \ge 3$.

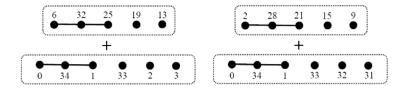


Fig. 8. Two graceful valuations of P(5, 2) + P(6, 2): f as defined in the proof for Theorem 6 (left) and g (right).

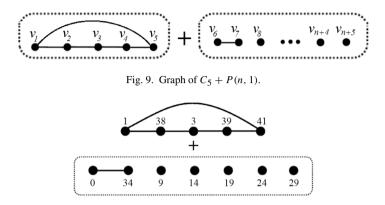


Fig. 10. A graceful valuation of $C_5 + P(7, 1)$.

Proof. Let V be the vertex set of the graph $C_5 + P(n, 1)$ with size 5n + 6. Label the vertices in V as shown in Fig. 9. We define a valuation $f: V \to \{0, 1, \dots, 5n + 6\}$ as follows:

It can be shown directly that f is a graceful valuation. \Box

A graceful valuation for n = 7 is shown in Fig. 10.

7. Some unsolved problems

In this final section, we propose some problems for further study.

Problem 1. Is the join P(m, s) + P(n, t) always graceful for all $m \ge s + 2$ and $n \ge t + 2$, where $s \ge 3$ or $t \ge 3$?

Problem 2. As shown in [3], the join $C_3 + P(n, t)$ is always graceful for all $n \ge t + 2$, where $1 \le t \le 3$. How about the case when $t \ge 4$?

Problem 3. As shown in Theorem 7, the join $C_5 + P(n, 1)$ is graceful for all $n \ge 3$. Is the join $C_5 + P(n, t)$ graceful, where $n \ge t + 2$ and $t \ge 2$?

As mentioned in [3], (i) the graph $K_n + O_p$ is graceful for each $n \le 3$ and $p \ge 1$, and (ii) the graphs $K_n + O_1$, $K_n + O_2$ and $K_n + O_3$ are not graceful for all $n \ge 4$. By Theorem 3, it can be checked that for $r \ge 0$, the Eulerian graphs $K_4 + O_{2r+1}$ and $K_6 + O_{2r+1}$ are also not graceful.

Problem 4. Consider the graph $K_n + O_p$.

- (i) For n = 4, 5 or 6, is the join $K_n + O_4$ graceful?
- (ii) Does there exist a positive integer p such that $K_4 + O_p$ is graceful? If the answer is 'yes', find the least value of p.
- (iii) Given that $n \ge 5$, can $K_n + O_p$ be graceful if p is sufficiently large?

Problem 5. By Theorem 2, the graph K(p, q) is graceful for all $1 \le p \le q$. Study the gracefulness of K(p, p) - M, where $p \ge 3$ and M is a perfect matching in K(p, p).

Let G = K(p, p) - M. In Problem 5, we note that if p = 4r + 3, where $r \ge 0$, then G is an Eulerian graph of size (4r + 3)(4r + 2), which is not graceful by Theorem 3.

Problem 6. Study the gracefulness of each of the following families of graphs:

- (1) $P_m + P_n$, where $m \ge n \ge 2$;
- (2) $C_m + P_n$, where $m \ge 3$ and $n \ge 3$;
- (3) $C_m + C_n$, where $m \ge n \ge 3$;
- (4) I(m, s) + I(n, t), where $m \ge 2s + 1$ and $n \ge 2t + 1$;
- (5) P(m, s) + I(n, t), where $m \ge s + 2$ and $n \ge 2t + 1$;
- (6) K(1, p) + I(n, t), where $p \ge 3, n \ge 2t + 1$ and $t \ge 1$;
- (7) K(1, p) + P(n, t), where $p \ge 3, n \ge t + 2$ and $t \ge 1$;
- (8) More generally, G + P(n, t), where G is a graceful tree and $t \ge 2$.

References

- [1] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2013) #DS6.
- [2] S.W. Golomb, How to number a graph, in: R.C. Read (Ed.), Graph Theory and Computing, Academic Press, New York, 1972, pp. 23–37.
- [3] K.M. Koh, L.Y. Phoon, K.W. Soh, The gracefulness of the join of graphs, Electron. Notes Discrete Math. (2015) in press.
- [4] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, 1967, pp. 349–355.