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Let Si(N, $) denote the subspace generated by newforms in the space of 
cuspforms of weight k and character $ on T,(N). In this paper we study decom- 
positions of Sz(N, I/I) into direct sums of twists (by Dirichlet characters) of other 
spaces of newforms. Applied to individual newforms, these results immediately yield 
information on the behavior of newforms under character twists. Most of the results 

follow from applications of the Eichler Selberg formula for the traces of the Hecke 
operators. A version of this formula is given in the paper. A sample result is: Let 
p be a prime and let M be a positive integer prime to p. Let w be a character 
mod p” with e=ord, f(w)> v/2 and let q5 be a character mod M. Then 
S”,( p’M, ~4) = 0, S”,( ppM, ox2()” where the sum ax is over all primitive 
characters x modulo p’-’ and where SE(N, $)x denotes the twist of St(N, II/) 
by x. (<I 1990 Academic Press, Inc. 

INTRODUCTION 

Let SO,(N, II/) denote the space of newforms of weight k and character $ 
on T,,(N). If F(t) is a newform in Sz(N, +) and x is a Dirichlet character, 
then it is well known that F,(z), the twist of F(t) by x, is a cuspform of 
weight k and character 1,5x’ on T,(W) for some N’. Furthermore, if f(x), 
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the conductor of x, is relatively prime to N, then (see [ll, 19]), F,(r) is 
again a newform. Iff(x) is not relatively prime to N, the situation is more 
complicated and has been studied by Atkin and Li in [2]. In this paper we 
study this and related questions. However, our point of view, methods, and 
results are quite different from those of [2]. Rather than study how a par- 
ticular newform F(r) behaves under character twists, we seek to decompose 
an entire space Sz(N, Ic/) of newforms into a direct sum of twists of other 
spaces of newforms. Of course, any such decomposition immediately yields 
information on the behavior of newforms under character twists. 

Our motivation in studying the decomposition of spaces of newforms 
was to develop results which would help us in solving the so-called 
“Basis Problem” (see Eichler [4, p. 771). Roughly speaking, this problem 
is to construct an explicit basis for Si(N, +) from theta series attached to 
positive definite rational quaternion algebras. The problem is solved (in so 
far as is possible) in [9]. A major ingredient in the solution is to reduce 
the consideration of a space of newforms Si(N, II/) to spaces $(N’, II/‘) 
with f($‘) “small.” Thus many of the results in this paper express a given 
space Si(N, $) as a direct sum of twists of other spaces SE(N’, I,V) with N’ 
and/or f( I,V) smaller than N and/or f( Ic/ ). 

1. PRELIMINARIES 

In this section we introduce notation and basic results that will be used 
throughout the paper. 

Let N be a positive integer and denote by J’,(N) the congruence sub- 
group 

f,(N) = ESL(2,Z)Ic=O(mod N) 

For a positive integer k >/ 2 and a Dirichlet character @ on Z modulo N, 
let S,(N, Ic/) denote the space of all cuspforms of weight k and character I,$ 
on T,,(N) (see, e.g., [ 161 or [ 111). In particular for (z 2) E f,(N) and 
F(z) E S,(N, I)) we have 

F 
( 1 

Sd = (cf. + d)k l&i) F(z). (1.1) 

Note that Sk(N, $) # 0 only if rl/( - l)( - l)k = 1. 
Let $ be a Dirichlet character modulo N (a “character mod N” for 

short). The natural isomorphism Z/NZr @ ,,,., Z/l”“‘Z where the sum is 
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over all primes I dividing N and o(l) = ord,(N) gives a decomposition 
$ = nllN $, where for each prime El N, $, is a character mod la(‘). We 
denote by f($) the conductor of $. If o is a character modulo a power of 
prime p, we define the exponential conductor e(o) of o by f(o) = peCw’. We 
say the conductor of the trivial character 1 is 1 so that e( 1) = 0. 

If F(z) E S,(N, JI), we let x = eZair and denote the Fourier series expan- 
sion of F(7) at ico, i.e., F(7) = C,“= 1 u(n) e2ni”r, by F(7) = C,“= 1 u(n) A?. If 
(as is usually the case) the indices in a Fourier series expansion run from 
1 to co, we often drop the limits and write F(r)=C u(n) x” to mean 
F(7) = C,“= 1 a(n) x’. 

The Hecke operators T,(m) for (m, N) = 1 act on S,(N, $) as follows: If 
F(7) = 1 u(n) x” E S,(N, tj), then Fl r,(m) = C b(n) xn where 

b(n) = C $(c) ck- ‘u(nm/c’). 
rl(n.m) 

(1.2) 

See [S, Nos. 35 and 361 or [16, p. 803. 
Let F(7) E S,(N, tj) be a common eigenform for all the Hecke operators 

T,(n) with (n, N) = 1. F( 7 is called a newform of weight k, level N, and ) 
character $ if there are no other linearly independent eigenforms in 
S,(N, $) having the same eigenvalues as F(7) for every T,(n) with 
(n, N) = 1 (see [ 1, 12, 111). In this paper we assume all newforms are 
“normalized,” i.e., their first Fourier coefficient is 1 (see [ 1, Lemma 19 ; 11, 
p. 2941). Denote by SE(N, 41/) the subspace of S,(N, $) generated by 
newforms. 

For a cuspform F(7) = C u(n) xn and a primitive character x mod M, the 
twist of F by x, denoted by F,, is defined by 

F,(7) = f u(n) x(n) Y. 
II=1 

PROPOSITION 1.1. Let FE S,(N, II/) and let x be a primitive character 
mod M. Then I;, E S,(N’, $x2) where N’ is the least common multiple of N, 
AI*, undf($)M. 

Proof See Proposition 3.64 of [ 161 or Proposition 3.1 of [2]. m 

If $ and x are as in Proposition 1.1, we denote by Sz(N, I++)” the space 
{F, 1 FE St(N, II/)}. Note that by Proposition 1.1 we have 

%N, $1’ C S,(N’, $X2). (1.3) 

In regard to a space S,(N, $) or SE(N, I,$) we denote by H the Hecke 
Algebra generated by all Hecke operators T,(n), (n, N) = 1 acting on 
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S,(N, $). If there are several spaces under consideration, H will denote the 
algebra generated by T,(n) with n prime to the least common multiple of 
the levels of the various spaces. The T,(n) with (n, N) = I are a commuting 
family of “+-Hermitian” (see [13, pp. IV-14, IV-241) operators on 
S,(N, $) and hence H is a commutative semi-simple algebra. SE(N, Ic/)” is 
an H-submodule of S,(N’, $x2) (see, e.g., Proposition 3.2 of [2]) where the 
notation is as in (1.3). All isomorphisms between spaces of cuspforms in 
this paper will be H-module isomorphisms. Thus, for example, when we 
write in Theorem 3.2 below that 

we mean that they are isomorphic as H-submodules of S,(N’, 04) where 
N’ = p2”M and where H is generated by all T,(n) with (n, PM) = 1. 

As H is a semi-simple algebra, to show two H-modules A and B are 
isomorphic, we need only show that the trace of T,(n) on A equals the 
trace of T,(n) on B for all 7’,(n)~ H-see, e.g., 118, p. 1743. This is our 
main tool (and has in fact been one of the main tools in the theory of 
modular forms since the discovery of the Eichler-Selberg Trace formula for 
T,(n) in the early fifties). 

An important result from the theory of newforms is the decomposition 

where Of~lL~lalN means the direct sum over all positive integers a with 
f($) 1 a and (I) N. Here 6(s) denotes the number of positive integers dividing 
s and 2A = A @A, etc. In particular if N = p”M with p a prime, p 1 M and 
II/ = u4 with o a character mod p” and 4 a character mod M, then (1.4) 
becomes 

S,(p”M, (4) z & (v - i+ 1) 0 &M/a) S;(p’u, old). (1.5) 
i=e(o) /(OblM 

The decomposition (1.4) follows from Lemma 15 and Theorem 5 of [ 11 in 
the case $ = 1. For the general case see Section 2 of [ 121 or Section 2 of 
[l l] (and also Theorem B of [lo]). 

We need the following 

LEMMA 1.2. Let the notation be as in (1.3). Thenfor (n, N’) = 1 the trace 
of T,(n) on Sz(N, +)” considered as a submodule of Si(N’, Ii/x’) is equal to 
x(n) times the trace of T,(n) on SE(N, 1(1). 
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Proof: See Lemma 8.1 of [ 143. fl 

We say that cuspforms F and G in Sk(N, $) are equivalent and we write 
F- G if they are both eigenforms for all T,(n) with (n, N) = 1 with the 
same eigenvalues. If F and G belong to SJN, 3/) with G a newform in 
Sf(N, $ ), then F N G implies F= aG for some a E @ (see Theorem 5 of [ 11, 
the introduction to [ 111, and also [ 121). We will often need this result and 
we usually indicate the places we are using it by saying that our result 
“follows from the theory of newforms” (see, e.g., the proof of Corollary 3.4 
below). 

2. THE TRACE FORMULA FOR HECKE OPERATORS 

In this section we state the formula for the trace of the Hecke operator 
T,(n). Denote by tr,,,$ T,(n) the trace of T,(n) acting on the space 
SAN, $1. 

LEMMA 2.1. Let p be a prime and let co be a character modulo some 
power of p. Let e = e(w) be the exponential conductor of CO. If ~7 and z are 
non-negative integers with ts + 5 3 e and 27 > e and u is a unit mod p, then 

Proof. We can assume e > t since the result is clear otherwise. Let 
G = { 1 + zp’\ z E Z/p”Z}. Then G is well defined subgroup of (Z/p’Z) x. 
Since e > z, there exist tll and cc2 E (Z/P’Z)~ with ~1~ z az (mod p’) and 
o(c(i) # o(ctz). Thus o restricted to G is non-trivial and we have 
LZ,p,T W(U+ZP7)=O(U)~:REGO(g)=0. I 

Hijikata in [6] computed the traces of the Hecke operators in a quite 
general setting-see the Theorem on p. 57 of [6]. We copy here (with a few 
changes) the case of this theorem which we require. 

THEOREM 2.2 (Hijikata). Let k be an integer 32. Let $ be a character 
mod N and assume ( -l)k I& -l)= 1. Write $ =nrrn, tir where for each 
prime I dividing N, I/I, is a character mod I”, v = ord,(N). Then for (n, N) = 1 
we have 

trN,@ T,(n) = - 1 a(s) c b(s, f) n c$,f, I) + d(G) deg T,(n) 
s / IIN 
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if k = 2 and $ is trivial 

otherwise 

i 

21” if e>p+l 

par(l)= lp+lp-’ tf e<pandviseven 

2lP if e<pandvisodd. 

Here for fixed 11 N, v = ord[(N), p = [v/2], and e = e(#,). 
The meaning of s, a(s), b(s, f), and c$(s, f, I) are given as follows. 
Let s run over all integers such that s2 - 4n is negative or a positive square. 

Hence by some positive integer t and squarefree negative integer m, s2 - 4n 
has one of the following forms which we classtfy into the cases (h) or (e) as 
folio ws : 

i 

t2 (h) 
s2-4n= t2m, O>mz 1 (mod4) (4 

t24m, O>mr2,3 (mod4) (e). 

Let @(X) = @,(A’) = X2 -sX+ n and let x and y be the roots in @ of 
cP(X) = 0. Corresponding to the classification of s put 

(Min(l.4, l~l}~-‘Ix- yl-‘~gn(x)~ 
a(s)= l/qxk-‘- yk-l)/(X- y) i 

(h) 

(4. 

For each fixed s let f run over all positive divisors of t and let 

l/2& (s2 - 4n)“‘/f) (h) 
h((s’-4n)/f2)/co((s2-4n)/f2) (e), 

where 4 is Euler’s function and h(d) (resp. w(d)) denotes the class number 
of locally principal ideals (resp. 112 the cardinality of the unit group) of the 
order of Q(Jd) with discriminant d. 

For a pair (s, f) fixed and a prime divisor 1 of N, let v = ord/(N), 
b=ord,(f), and put d=(x~Z~@(x)rO(modl’+~~), 2xrs(modP)) 
and B=(x~AJ@(x)r0 (modl’+2b+‘)}. Let A=A(s,f,I) (resp. B= 
B(s, f; 1)) be a complete set of representatives of A” (resp. 8) mod lv+b and 
let B’=B’(s,f, I)= {s-zIzEB}. Then 

cgs, f, 1) = 
cx tiI(X) if (s2 - 4n)/f 2 f 0 (mod 1) 

cx tiI(X) + c, tidy) if (s2 - 4n)/f2 = 0 (mod I), 
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where x runs over all elements of A(s, f, 1) and y runs over all elements oj 

B’b, .L 1). 

Proof. The trace formula established in the Theorem on p. 57 of [6] is 
essentially the formula given in Theorem 2.2. To obtain the exact formula 
in Theorem 2.2 we first have to translate the formula in [6] to our setting 
and then we also have to explicitly evaluate the contribution of the parabolic 
terms which occur when n is perfect square. A translation is necessary for 
two reasons. First our space S,(N, $) is denoted by S,(T,(N), k, I,G) in [6] 
(compare (1.1) above with Section 5.5 of [7] and also (S2) on p. 60 of 
[6]). Our notation S,(N, 9) is consistent with that used’by Shimura (see 
[ 16, p. 791) and Atkin and Li [2]. Also it is a natural choice from the 
point of view of theta series-see [8,9]. On the other hand, the notation 
used in [6] is consistent with that used by Eichler (see [3, p. 771). 
Secondly the definition of the Hecke operators differs in the present paper 
from that used in [6]. Our present definition agrees with that used by 
Shimura, Atkin and Li, and Eichler while the definition used in [6] agrees 
with that used by Shimizu (see [ 171). Specifically, fixing k and N and 
following [16] let 

A.={y=(; 3 E Mat(2, Z) ( (a, N) = 1, c = 0 (mod N), det(y) > 0 

and for y = (r “,) E A’ let a(y) = a, d(y) = d, and 

flc,,,(z)=(det(y))k'2 (c~+Wkfb(~)h 

where fe S,(N, $) (see [ 16, p. 281). Now fix a positive integer n prime 
to N. Define 

s(n)= (yEA’Jdet(y)=n} 

and let E(n) = lJy T,(N) tl, be some disjoint decomposition of Z(n) into 
right cosets. Then for f E S,(N, $) we have 

f I T,(n) =nki2-l C W(~c,))f lcl,lk. (2.1) 

This follows from (3.5.5) on p. 79 of [16] and the definition of T’(n) on 
p. 70 of [163. Note that what we call 7’,(n) Shimura calls T’(n)&. From 
(2.1) one easily obtains (see [ 16, pp. 79-801) the action of T,(n) on 
Fourier coefficients (see (3.5.12) of [16] and (1.2) above) which we have 
used in our definition of 7’,(n). On the other hand the Hecke operators in 
[6] are defined using left cosets. In [6] the Hecke operators are denoted 
by T(n) but we will denote them here by Tk(n). They are defined as follows 
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(see (1) on p. 61 of [6]): let E(n) = uy P”I’,,(N) be some disjoint decom- 
position of z(n) into left COSCZS. Then for f E S,(N, 5) (which is the space 
&d~dN), k, ti) of E61) we have 

Tkwf=C wumfl[~;‘lk~ (2.2) 

We claim that for f c S,(N, $) 

nk"- 'Tk(n)f= I(/(n)fl r,(n). (2.3) 

To show this first note that s”(n) is left invariant by the involution 
(T 2) H ( 2, ;“) of Mat(2, Z). Hence 

E(n)= (ny-LJyES(n)) =nB-l(n) (say). 

Thus if E(n) = Uy T,(N) CI,, then E-‘(n) = Uy a;‘TO(N) and E(n) = 
nZ-‘(n) = Uy (na; ‘) T,(N). Letting BY = ncr,’ we have 

= c $(4&))fl [c+lk 

= C 4W4av)-‘) fl hlk since ~(a,) d(aV) = n (mod N) 

= W) C Il;(4av)) fl c~,I~ 

= t,!!(n) niek’2f\ T,(n) 

which establishes (2.3). Let y = (i -A) and let fl E=fl cv,k. Then it is well 
known and not difficult to check (see, e.g., Propositions 1.1 and 1.2 of [2]) 
that f~fl E is a linear isomorphism of sk(N, @) onto S,(N, 6) and that 
for fE sk(N? $1 

fiTkb)i E= Hn)flEl rk(n)e (2.4) 

By (2.4) the trace of T,(n) on S,(N, $) equals $(n) times the trace of T,(n) 
on sk(N, $) which by (2.3) equals nk12-’ times the trace of Tk(n) on 
sk(N, 4) which equals n k’2 ~ ’ times the trace of T(n) on S,(fO(N), k, $) in 
the notation of [6 3. Thus after multiplying by #k/2-1 the formula in the 
Theorem on p. 57 of [6] (with M= N and S? = (Z/NZ) x ) gives the trace 
Of T/c(n) On &(N, +)A 

All that remains to do is to explicitly evaluate the contribution of the 
parabolic terms to the trace formula in [6]. This goes as follows. Fix s with 
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s’ = 4n. The corresponding contribution to the trace formula (see [6, 
pp. 57-581) is 

(2.5) 

where c$,(s, L 1) = c.Y $,(x) + CY \1/,( 4~) where x (resp. .Y) runs over 
elements of ~(s, f, 1) (resp. B’(s, f, 1)). Fix 1) N temporarily and let 
v=ord,(N). If v is odd, say v=2p+l, then A(s,f,I)=B’(s,f,1)= 
js/2+zpP+h+1 JzcsZ/pPZj and if v is even, say v=2p, then A(s,f,l)= 
{s/2+zpP+bIZEZ/pPZ) and B’(s,f, I)= (s/Z+Z~~+~~‘~ZEZ/~~‘Z}. Let 
e = e($ [). Then by Lemma 2.1 we find that for v = 2p + 1 

cl,(s,f, [)= 
i 

2~p1c/,w) if e<p+h+l 
o 

if e>p+6+2 
(2.61 

and for v = 2p 

(IP + I” - ‘) $,(s/2) if e<p+b 

cgs, f, 1) = lP-‘$,(s/2) if e=p+h+l (2.7 I 
0 if e>p+b+L 

Thus fixing s and 1, cb(s, J 1) depends oniy on b = ord,(f) so we let 
~“(3, b, 1) = cb(s, ,f, 1). Further since e d v, c”(s, b, 1) = c”(s, v, 1) if b > v. 
Now let N = 1 ;I . . .I :’ with vi > 0 and li distinct primes. For each i, 1 < i d r, 
let b,EZ with O<b,dv,. Then the number of 5 1 <fG N, with 
ord,(f)= 6, if 6, <vi or ord,,(f)b bi if b, = vi for all i= 1, . . . . r, is 
l-J:=, (l~-hJ-f”Ph~-l) where we use the convention that l;‘=O. Hence 

x h /;“I 5 (/;I-” - I:“-“- ‘) c”(.y, b, li) . 
i=l b=O i 

If v = 2p + 1, from (2.6) we see that 

/-” i (f”-b-/“~b~l)cn(S,b,z)= 2WhP) if e<p 

b=O 21”-5/!,(s/2) if e>p+l 
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while if v = 2p, from (2.7) we see that 

1 --y i (Pb- l’-b-1) cys, p, 1) 
b=O 

if e$p 

if e>p+l. 

Noting that we must consider both s = 2& and s = -2$ and also that 
(-l)k$(-l)=l, we obtain a total contribution of 

We will require a few technical lemmas. Let K be an imaginary quadratic 
number field. For any order D of K, denote by h(o) the ideal class number 
of locally principal o-ideals, i.e., h(o) = [JK: S(U) K”] where JK is the 
idele group of K and ‘Z&(O) = (5 = (aI) E JK) (I, E U(O,) for all I < co > where 
U(O,) denotes the unit group of oI. Further let O(O) = $1 U(O)[. Then we 
have 

LEMMA 2.3. Let the notation be as above. Let u be an order of K of 
discriminant A and let o1 be the suborder of 0 of index f. Then 

where 

ifZ2)AandZ-2AzOor 1 (mod4) 
the Kronecker symbol, otherwise. 

Proof: This is well known and easy. See, e.g., Lemma 4.16 of [14]. 1 

LEMMA 2.4. Let the notation be as in Theorem 2.2. In particular set 

t= (h) 
s2 - 4n = t2m, O>m= 1 (mod4) (e) 

t24m, 0 > m s 2,3 (mod 4) (e). 

Let I be a prime dividing N and put t = Iat0 with (1, to) = 1. Let f I t and put 
f = IbfO with (I, fo)= 1. Then 



TWISTS OF NEWFORMS 297 

O,f) = 

(I”-b-la-b-‘)b(s, l”f,) 

if s2 - 4n = 1 2ad2, d a unit of 2, 

(ZU-b+lY-b-l)b(s,ZClfo) 

I if s2 - 4n = 1 2ud where d is a unit of Z, 

with (d/l)= -1 ( i.e., d= 5 (mod 8) ifl=2) 

I”- bb(s, I’&) 

if 1#2ands’-4n=I 2esLd,daunitofZIor 

ifl=2and?-4n=I 2”‘2d,d=200r3(mod4). 

Here if b = a, we use the convention that l”- b-- ’ = 0. 

Proof: If s2 - 4n = t2, then b(s, f) = @(t/f) and the result is clear. 
If s* - 4n is not a perfect square, the result follows directly from Lem- 
ma 2.3. 1 

Since we will be employing the trace formula in Theorem 2.2 many times, 
it will simplify the exposition to explicitly calculate the sets A(s, A 1) and 
B’(s, 5 f ). 

LEMMA 2.5. Let A(s, f, 1) and B’(s, f, 1) be the sets appearing in 
Theorem 2.2. For fixed N, n, s, and 1, A(s, S, I) and B’(s, f, I) depend only on 
ord,(f) and we will write A, = A(s, f, 1) and Bb = B’(s, -& I) where 
b = ord,(f ). Let v = ord,(N). Then the sets A, and B6 are given as.fol1ow.s. 

Case A. sz - 4n = 12”d2, 1 odd, d a unit of 2,. 

If v is odd, v = 2p + 1 we have 

s+l”d 
Ab= = + zl 

2 
2p+2b-a+ 1 zEz//u-bz) 

Sb= 
s+l”d 
------If1 . 

2 

Here&=difb=a 

ifa-b>p+l 

A,=&,= 
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If v is even, v = 2p we have 

ifa-b<p-1 

A,= 

B;= 2p+2b-u+l zEZpa-b-lZ 

HereBb=bifb=a 

ifa-b=p 

ifa-b>p+l 

Case B. s2 - 4n = 12%, I odd, u a non-square unit of Z,. 

If v is odd, v = 2p + 1 we have 

ifa-bdp Ab=Bb=d 

ifa-bap+l 

1ZEZ,l’Z}. 

If v is even, v = 2p we have 

ifa-b<p-1 Ab=Bb=4 

ifa-b=p 
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ifa-b>p+l 

299 

Case C. s2 - 4n = 12u+‘d, 1 odd, d a unit of Z,. 

If v is odd, v = 2p + 1 we have 

ifa-bbp- 1 A,,=Bb=d 

ifa-h=p 

Ab=j~+zl”t’(ztZ’l~z~ 

B;=$ 

ifa-b>p+ 1 

If v is even, v = 2p we have 

ifa-b<p-1 A,=B’,=$ 

ifa-b>,p 

Case D. s2 - 4n = 22”d2, 1= 2, d a unit of Z,. 

If v is odd, v=2p+l we have 

ifa-b<p 

A, and Bb are as in Case A with I = 2 

ifa-b=p+l 

A,= B;= 

ifa-b>p+2 

A,, and Bb are as in Case A with 1= 2. 
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If v is even, v = 2p we have 

ifa-b<p-1 

Ab and Bb are as in Case A with 1 = 2 

ifa-b=p 

A b= 

Bb= 
sf2”d L--+zy+’ 

2 
zEZ/2P-‘Z 

ifa-b=p-tl 

ifa-b>p+2 

A6 and Bj, are as in Case A with I= 2. 

Case E. ~~-4n=2~“u, 1~2, ueZ2, uEj(mod8). 

If v is odd, v=2p+i we have 

ifa-b<p A,=Bk=& 

ifa-b>,p+l 

Ab and Bb are as in Case D with d = 1 

If v is even, v = 2p we have 

ifa-b<p-1 A,=&=4 

ifa-b=p 

B;=b 

ifa-bap+l 

A,andBkareasinCaseDwithd=l. 
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Case F. s* - 4n = 2’“4w, I = 2, w  E Z2, w  E 3 (mod 4). 

If v is odd, v=2p+l we have 
ifa-bQp-1 Ab=Bb=# 

ifa-b=p 

B;=$ 

ifa-b>p+l 

Ab=B;= ;+Z2P+b+1 
i 

IrtZi2”Z). 

If v is even, v = 2p we have 

ifa-b<p- 1 A,=Bb=$ 

ifa-b=p 

B;= 
s+2O’l 
---+z2”+t 

2 
zEZ/2P-1Z 

ifa-b>p+-1 

B;= ;+z2”+‘+l ZEZ/~P-‘Z . 

Case G. s2-4n=2’“4c, 1=2, CEZ*, cr2(mod4). 

Ifvisodd,v=2p+l wehave 

ifa-b<p-1 Ab=Bb=# 

ifa-b=p 

L&={;+z2a+1~~~ZIZnZj 

B;=q5 

ifa-b>p+l 

A6 and Bb are as in Case F. 
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If v is even, v = 2p we have 

ifa-b,<p--1 Ab=Bb=d 

ifa-b=p 

ifa-b>p+l 

Ab and Bb are as in Case F. 

Proof This follows directly from the definition of A, and Bb by easy 
but tedious calculations. We leave them to the reader. 1 

3. TWISTING NEWFORMS 

In this section we begin our study of the behavior of newforms under 
character twists. We are interested in finding isomorphisms between the 
twists of various spaces of newforms and also decompositions of spaces of 
newforms as direct sums of twists of other spaces of newforms. 

LEMMA 3.1. Let p be a prime and M a positive integer prime to p. 
Assume o is a character mod py and q4 is a character mod M. Then 

o(n) trpYM,Gd Tdn) = tr,vM,,4 T,(n) 

for all n with (n, PM) = 1. 

(3.1) 

Proof We will employ the trace formula (Theorem 2.2) and will use the 
notation given there. Since there is nothing to prove if o is trivial, we 
assume o is non-trivial. Hence there are no degree terms, deg T,(n). 
Consider the “mass terms,” i.e., those with S(&)((k- 1)/12). These occur 
only if n is a perfect square. Their contribution to the L.H.S. (left hand 
side) of (3.1) is 

Their contribution to the R.H.S. (right hand side) of (3.1) is 
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which equals the contribution to the L.H.S. of (3.1). Next consider the 
parabolic terms, i.e., those with -6(&)(&2). They also occur only if n 
is a perfect square. They contribute 

-o(n) n J;; k’2-13&) d(4) 7j- par(p) n par(l) 
/IM 

to the L.H.S. of (3.1). This equals their contribution to the R.H.S. of (3.1) 
since e = e(o) = e(G) and par(p) depends only on p, v, and e while par(I) 
for 1) A4 depends only on A4 and 4. 

Now consider the remaining terms, those classified into the hyper- 
bolic (h) and elliptic (e) cases in Theorem 2.2. Note that the formulas for 
tr pYM,c5) T,(n) and trpvM,,++ T,(n) involve summations over the same index 
set. We will show that equality in (3.1) holds term by term, i.e., for each 
fixed element (s, f) of the index set. Note that for fixed s and f, a(s) and 
b(s, f) are independent of which side of (3.1) they occur in. Further since 
cl(s, .f, I) depends only on x,, c&&r, f, I) = &(s, f, 1) for all 11 M. Thus for 
fixed s and f, to show the corresponding contributions to the L.H.S. and 
R.H.S. of (3.1) are equal, we need only show that 

o(n) cZ,(s, .L P) = c&, “t P). 

For a character tj mod p” let 

(3.2) 

CX%.L P;ti)=pw and 4h.L PW=pKY), 
‘i .I 

where x runs over all elements of A(s, f; p) and y runs over all elements of 
B’(s, ,f; p) where the notation is as in Theorem 2.2. Hence 

c;(%s, P)=c4(~,f;P;~)+c’,(&.L Pill/), (3.3) 

where we take B’(s, f, p) = 121 if s2 - 4n/f 2 f O(mod p). From Lemmas 2.1 
and 2.5 we find that 

p”($((S+ P”W) + $((s - P”d)/2)) (1) 

4(s,f, p; $)= 

1 

PV (42) (2) 
-2’3$(s/2) (3) 
0 (4) 

and that 

(P”(W~ + P”W) + Icl((s - P”d)/2)) (5) 

(6) 

(7) 
(8), 



304 HIJIKATA, PIZER, AND SHEMANSKE 

where the cases and the constants ci depend only on p, v, n, s, f, and e(e). 
For example, assume s2 - 4n = p2”d2 with p odd and d a unit of Z, and let 
b = ord,(f). If v is odd, v=2p+l, and a-b<p, then by CaseA of 
Lemma 2.5, A(s, f, p) = ((s f pad)/2 + zp2P+26--a+ ’ Iz E Z/p’-“Z}. Then 
Lemma 2.1 shows that cl,@, J p; tj) equals either puMb(t,Q(s + p”d)/2) + 

$((s- p”W2)) ( case (1)) or 0 (case (4)) depending on whether 
e(tj) <2p + 2b - a + 1 or e($) > 2p + 26 -a + 1. Further (see Lemma 2.5) 
cases (1) and (5) occur only if sz - 4n =p2”d2 for some d of Z,. In these 
cases we have n = ((s + p”d)/2)((s - p”d)/2) and 

Cases (3) and (7) occur only if p = 2 (for example, when p = 2, v = 2p + 1, 
s2 - 4n = t2d2 (d a unit of Z,), a = ordz(t) = p + 1 + ord,(j”), and e(yP) = a 
in which case we find that cl,(s, f, 2; $) = 29(s/2 + 2’(@‘- ‘) = -29(s/2)). 
Also in cases (2), (3), (6), and (7) we always have (~/2)~ z n (mod p’($)) 
so that $(n) @(s/2)= $(5/2) (for p # 2, s2 -4n -0 (mod p”) in these 
cases while for p = 2 we sometimes need use the fact that e(e)> 2). 
Since e(o) = e(o), it follows that w(n) c>(s, f, p; 0) = c>(s, f, p; w) and 
w(n) &(s, f, p; ti) = c~(s, f, p; o) in all cases. This establishes (3.2) and 
completes the proof of the lemma. 8 

THEOREM 3.2. Let p be a prime and M a positive integer prime to p. 
Assume o is a character mod p’ and q5 is a character mod M. Then 

S;( pyM, 64)” z S;( p’M, 04). (3.4) 

Proof: Let N= p’M and put f=f(wb) =f(Gd). From (1.4) it follows 
that the R.H.S. of (3.1) equals the trace of T,(n) acting on 
aIlalN 6(N/a) ,!$‘(a, e$) while by Lemma 1.2 and (1.4) the L.H.S. of (3.1) 
equals the trace of T,(n) acting on BrlnlN @N/a) SE(u, c$)~. As H is a 
commutative semi-simple ring, we see that (see, e.g., [18, p. 1743) Eq. (3.1) 
implies that 

@ d(N/a) Situ, wd) z @ 6(N/a) Situ, ~$6)~. (3.5) 
/MN fl4N 

The theorem now follows directly from (3.5) by induction on N/J 1 

COROLLARY 3.3. Let the hypotheses be as in Theorem 3.2. Assume o1 
and o2 are characters mod p’. Then 
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Proof. Let o = o1 0, in Theorem 3.2. Then 

and the corollary follows from Lemma 1.2. 1 

COROLLARY 3.4. Let the hypotheses he as in Theorem 3.2. If e(w) < 1’. 
then 

If e(o) = v and F(z) is a (normalized) newform in Si(p’M, tid), then 

F<v(t)=G(t)-ao(~) G(PT) f or some (normalized) newform G(T) in 
Sz(p’M, a$) where at,(p) is the pth Fourier coefficient of G(z). 

ProoJ: Let F(z) be a newform in $Jp”M, ~54). If e(o) < v, then by 
Proposition 3.6 of [a], F,,(t) E S,( p”M, wd,). However, by Theorem 3.2, 
F,(t) is equivalent to some newform in Si( p”M, ~4) and thus it follows 
from the theory of newforms that F,(z) is a newform in S$ p”M, w$) (see 
the last paragraph of Section 1 above). Since newforms form a basis of 
SE( p”M, ti$), we see that St(p’M, EM$)“~ = S’$ P”M, ~4). If e(o) = v, again 
by Proposition 3.6 of [2], F,(z) E Sk(py + ‘M, ~4) and by Theorem 3.2, 
F,,(s) is equivalent to some newform G(r) in S’$ p’M, ~4). By [ 1 l] (see, 
e.g. , [2, p. 231]), F,(r) = aG(r) + bG( ps). Comparing the first Fourier 
coefficients shows that a = 1 and then comparing the pth Fourier coef- 
ficients shows that b= -at(p). a 

Remark 3.5. In the case e(w) = v, ac( p) is never zero by Theorem 3 of 
[ 11) so that F,,>(r) is never a newform in this case. 

LEMMA 3.6. Let p be a prime and let M be a positive integer prime to p. 
Assume CO and x are characters mod p” with e(x) d v/2 and e(w) < v/2 and 
let q5 be a character mod M. Then 

(3.6) 

Proof. Assume x is non-trivial as there is nothing to prove otherwise. In 
particular we assume v > 2 if p # 2 and v 3 4 if p = 2. As in the proof of 
Lemma 3.1 we show that the trace identity (3.6) holds term by term. 
Hence, again as in the proof of Lemma 3.1, it suffices to restrict to the case 
A4 = 1 (hence 4 = 1) which we do. The degree terms, if they occur, 
contribute 0 to both sides of (3.6). If n is a perfect square, the mass terms 
contribute 

641,35:3-b 
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x(n) n k/2- lo(&) !!i$ (1 + l/P)(P” - p”-‘) 

to both sides of (3.6) while the contribution of the parabolic terms to both 
sides of (3.6) is 

-x(n) n k:2-1~(&);(pp-Pp-~X 

where p = [v/2]. This follows from Theorem 2.2 since par”(p) - par”- r(p) 
= pp - pp -r when e 6 v/2 (where e = e(w) or e(cq2)). Here par,(p) 
refers to the term par(p) which occurs in Theorem 2.2 when ord,(N) = Q. 
Now we consider the elliptic and hyperbolic terms. We use the notation 
introduced in the proof of Lemma 3.1. As in the proof of Lemma 3.1 it 
suffices to show that 

CL&, f, P), - CA&s, f, PL 1 = x(n)(c:(s, f, P), - Gh, f, PL 1). (3.7) 

Here c$(s, S, p), refers to the term c;(s, f, p) which occurs in Theorem 2.2 
when ord,(N)=o. As in (3.3) we write 

d&J p>,= cAs,f, Pi $L+ 43(s,f, Pi +I,. (3.8) 

We will show that (3.7) holds by considering all the possible cases which 
are given in Lemma 2.5. Assume II/ is a character (such as w  or wx*) 
modulo a power of p with e(tj) 6 v/2. Consider Cases A and D when 
a-b<v/2-1. We have 

c~(s,,,;,,,=Pa-b(*(s~)+*(s~)) 

cls(s,f, Pi *I,= Po-b-’ ( (!y!)+(y3)) $ 

for G = v or v - 1. Hence by (3.8) both sides of (3.7) are zero in this case. 
Consider Case D when a - b = [v/2]. If v = 2p + 1, then 



TWISTS OF NEWFORMS 307 

Hence 

We claim that 

(3.10) 

First e(~‘)<e(~)-l<p-l<a-1 so that X’((s-2”d)/2)=X2(s/2). 
Second, s2/4 = n (mod 22a - ’ ) and 2a-2>2p-2ap>e(X) since p>2 as 
P= 2. Thus x(n)= x(s*/4). Now (3.9) and (3.10) establish equality in (3.7). 
If v = 2p then we find that 

But e(J/) < p < a so that t,Q(s + 2”d)/2) = +((s - 2”d)/2) and as above we 
see that ox’((s - 2”d)/2) = x(n) o((s - 2”d)/2) which gives equality in (3.7). 
Consider Case E when a-b = [v/2]. If v = 2p + 1, then c>(s,f, 2; $),= 
~)B(s,~,~;~),=c~(s,S,~;~),-~=O and c~(~,.f,2;~),-~=2~ll/((s+2~)/2). 
Thus cb(s, J; 2), - ck(s, f; 2)“- L = -2++b((s + 2”)/2). Again as above 
wx’((s + 2”)/2) = x(n) o((s + 2”)/2) which establishes equality in (3.7). If 
v = 2p then 

Hence both sides of (3.7) are zero in this case. Consider Case F 
when v=2p and a-b=p-1. Then cl(s,f,2;11/),=cIs(s,f,2;Ic/),,= 
c~(~,f,2;$),--~=0 and c~(~,fl2;~),_~=2~-‘~((~+2”‘+‘)/2). Then 
&(s, f, 2)” - c$(s, f, 2),-I = -2p- *flr((s + 2”+ ‘)/2) and equality in (3.7) 
follows as above. Finally in all other cases we have 

and 

wx2b/2) = x(n) W2) 



308 HIJIKATA, PIZER, AND SHEMANSKE 

for D = A or B and CJ = v or v- 1 which by (3.8) establishes equality in 
(3.7). This completes the proof of Lemma 3.6. 1 

THEOREM 3.7. Let p be a prime and let M be a positive integer prime 
to p. Assume w and x are characters mod py with e(w) ,< v/2 and e(x) < v/2 
and let q4 be a character mod M. Then 

& S;( piM, 04)” z & S,o(p’M, ox’&, 
i=e(wl i = c(wx2) 

Proof Let f=f(~$). By (1.5) the R.H.S. of (3.6) equals the trace of 
TM on 

(3.11) 

while by (1.5) and Lemma 1.2 the L.H.S. of (3.6) equals the trace of T,(n) 
on 

@ @ 6(M/a) SE(p’a, ~4)“. 
i=c(o) f/alM 

(3.12) 

Hence (3.11) and (3.12) are isomorphic as H-modules and the theorem 
follows by induction on Mlf: 1 

LEMMA 3.8. Let p be a prime and M be a positive integer prime to p, 
Assume w is a character mod p’ with v/2 -C e(w) < v and let 4 be a character 
mod M. Then 

c trpe(o)M,wX24 Tk(l 1 e(,y)=v-e(w) 
= trpYM, o4 WU-2 tr,v-lM.w9Tk(l) 

if e(w)<v- 1 

if e(w)=v-1, 
(3.13) 

where the sum &., = y - +,) is over all primitive characters x modulo p’- eCwJ. 

Proof Note that our assumptions imply that v > 3 and that v 2 5 if 
e(w) < v - 1. As in the proofs of Lemmas 3.1 and 3.6 we show that the trace 
identity (3.13) holds term by term. Hence, as in the proof of Lemma 3.6, it 
suffkes to restrict to the case M= 1 which we do. Since w  is non-trivial, 
there are no degree terms. The contribution of the mass terms to the R.H.S. 
of (3.13) is 
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where we have used the convention that for an expression q 

{d={; if e(w)<v-1 
if e(o)==v-1. 

We will continue to use this convention for the remainder of the proof. 
The contribution of the mass terms to the L.H.S. of (3.13) is 
((k - 1)/12)( 1 + l/p) p’(“)tl where a equals the number of primitive charac- 
ters modulo p” Pp(w). But the number of primitive characters modulo p’ is 
(p~-~~~-‘)-(ps-‘-p~-2)=p~-2p~-1+p’~1 if ~32 and is equal to 
p-2 if s=l. Hence pe’W)a=pv-2pvm ‘+ (p”-“} and the mass terms 
contribute the same amount to the L.H.S. and R.H.S. of (3.13). Since 
e(o~*) = e(o), the parabolic terms contribute (p\‘~ ‘(“’ - 2~’ me”“) ’ + 
W 

““,‘~‘})(-(1,2).2p”‘“‘~““‘)= -PP~e(wl+2PY~ec~u,~~I_ {pv-c~cw--2) 

to the L.H.S. of (3.13). On the other hand since e(o) > v/2, they contribute 
(-1/2)2p’ ,(“‘+(1/2)4p’~‘~““‘-(1/2){2p”- ‘- ‘~(*“) to the R.H.S. of 
(3.13). 

Now we consider the remaining terms. Since n = 1, s takes only the 
values 0 and + 1 and ,f = 1 in all cases. As in Lemmas 3.1 and 3.6 it suffices 
to show that 

c c:& 1, PLcw,) 
P(W) = Y e(w) 

= c:,(s, 1, P)” - 2&(& 1, PI,. -. 1 + :c:,h? 17 PI,, 217 (3.14) 

where the notation is as in (3.7). First consider the case s = 0, i.e., 
s2-4t2= -4. If p is odd and (-l/p)= -1 then c>(O, 1, p; $)U= 
ck(O, I, p; $), =0 for all (T and $ by Case B of Lemma 2.5 as a = b = 0. 
Hence the L.H.S. and R.H.S. of (3.14) are both zero in this case. If p = 2 
the same is true by Case F of Lemma 2.5 (since e(o)> 2 and v- 22 3 if 
e(o) < v - 1). If p is odd and (-l/p) = 1, letting d2 = -4 with d E Z,, we 
see by Case A of Lemma 2.5 that c>(O, 1, p; $), = ll/(d/2) + $( -d/2) and 
cb(O, 1, p; +), =0 for all 0 and $ as A,= {d/2, -d/2} and Bb= 4 in all 
cases. Thus cb(O, 1, p; $), = $(d/2) + \I/( -d/2) in all cases. Hence the 
R.H.S. of (3.14) equals 0 if e(w)<v- 1 and equals -(o(d/2)+w( -d/2)) 
if e(o) = v - 1. On the other hand the L.H.S. of (3.14) equals 

(442)+4-d/2)) 
( 

)3A-~)-~xz(-l) 3 
Xl 72 > 

where C,, is over all characters x1 on the group G, = (Z/p”- ““‘Z) x 
and C, is over all characters x1 on the group G2 = (Z/pv-ec”‘P’Z)X. 
If e(o) < v - 1, both G, and G, are non-trivial so C,, x,( - 1) = 
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&xz(--l)=O while if e(o)=v- 1, then ‘&, x,( - l)=O and &xz(-l)= 
id(-I)= 1. Now assume s= +l, i.e., s2-4n= -3. Ifp=2 or 3 or p>3 
and(-3/p)=-lthenbyCasesE,C,orBofLemma2.5,~6(+1,1,p;ICI), 
= ci( + 1, 1, p; $)0=0 for all c and $ so that both sides of (3.14) are 
zero in these cases. So assume p > 3 and d2 = -3 for some de Z,. Then 
by CaseA of Lemma2.5, c>(s, 1, p;$),=$((s+d)/2)+cl/((s-d)/2) and 
ck(s, 1, p; ti)a =0 for all $ and e where s= &l. Thus the R.H.S. of (3.14) 
equals zero if e(w)<v- 1 and equals -$((s+d)/2)-$((s-d)/2) if 
e(o) = v - 1. But then just as in the case when s = 0, this equals the L.H.S. 
of (3.14) since ((s+d )/2) f 1 (mod p) and ((~-d)/2)~ f 1 (mod p). This 
completes the proof of Lemma 3.8. 1 

Theorem 3.9 below relates to several theorems in Atkin and Li [a]. Let 
F(r) be a newform in S’$p”“‘M, ~4) with E a character mod p”“) and 4 a 
character mod M. If I++ is a character mod a power of p with e(lC/) < e(s), 
then letting o = a$’ and v = e(s) + e($) in Theorem 3.9, we see that F+(r) 
is a newform in Si(p”M, .s$*d). This is Theorem 4.2 of [a]. If F(z) is a 
newform in $!(p”M, 04) with e(w) > v/2, then by Theorem 3.9 there is a 
character 2 with e(x) = v-e(w) and a newform G(r) in SE(pe(@)M, cof2q5) 
such that F(t) = G,(r). This is Theorem 4.3 of [2]. Finally, Theorem 3.1 of 
[Z] provides information on the exact level of twists of newforms. Assume 
o and x are characters mod powers of p with e(u) = a > 0 and e(x) = /3 k 1. 
According to Theorem 3.1 of [2], if F(r) is a newform in Sz(p”M, o.$), the 
exact level of I;;(r) is p”‘M where v’ = max{v, c1 +/I, 2fi) provided that 
(a)a+P<v and 2/3<v if v’=v or (b)e(oX)=max{a,/?} if v’>v. In 
case (b) assume that a > fi. Note that this implies CY > v/2. By Theorem 3.9, 
F(r)=Gs(r) form some newform G(r) in Si(p”M, w$‘#) and some 
primitive character $ mod p” - ‘. Since v’ = a + p > v, e($x) = fi and as 
above F,(r) = G$,(r) is a newform in Si(p”‘M, wx’#) so in particular 
F,(t) has exact level pY’M in agreement with Theorem 3.1 of [2]. 

Part (a) of Theorem 3.1 of [2] follows from Theorem 3.12 below. For 
the remaining case in part (b) of Theorem 3.1 of [2], see Section 4 
(especially Remark 4.11) below. 

THEOREM 3.9. Let p be a prime and let M be a positive integer prime 
to p. Let w be a character mod py with e(o) > v/2 and let 4 be a character 
mod M. Then 

S:(p’M Q$)= 0 S;( p+“)M, ox’@, 
e(y)=v--e(u) 

where the sum QeCXj=v-eCoj is over all primitive characters x modulo 
v-e(o) P . 
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Proof: If e(w) = v there is nothing to prove so assume e(u) < v. By 
Theorem 4.3 of [2] and Theorem 3 of [ 1 l] we have 

where the C on the right is not necessarily a direct sum. To complete the 
proof we show that 

dim Sz( p”A4, 04) = c dim Sf( p”“‘M, wx’d)“. (3.15) 
P(X)=‘-e(ol,) 

Let.f’=f(d). BY (1.5) 

where 

Hence the R.H.S. of (3.13) equals 

c @M/a) dim Si( p”a, 04). (3.16) 
flal M 

On the other hand e(o) > v/2 and e(x) = v-e(o) imply e(o~*) = e(w) so 
that by (1.5) 

S,( p”“‘M, co&) “= @ 6(44/a) S”,( p”“‘U, cq’qq. 
fblM 

Now dim Slj(p”“’ a, WX’~) = dim Si(p”“‘u, OX*C$)” (for example, by 
Lemma 1.2) so that the L.H.S. of (3.13) equals 

c c 6(M/u) dim Sz( ~““‘a, WX’#)~. (3.17) 
E(W)=Y--r(w) flolM 

Lemma 3.8 shows the equality of (3.16) and (3.17). Using induction on M/f 
then establishes (3.15) and completes the proof of the theorem. [ 

Remark 3.10. One can give an alternate proof of Theorem 3.9 which is 
independent of [2] and [ 111 by proving the trace identity (3.13) of 
Lemma 3.8 holds for all T,(n) with (n, p&f) = 1, not just for the identity 
operator Tk( 1). In fact this is how we originally proved Theorem 3.9. 
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However, proving that the trace identity (3.13) holds for general T,(n) is 
much more complicated than for the case Tk(l) of Lemma 3.8. Also one 
should note that as in Corollary 4.5 of [2], Theorem 3.9 implies that 
Si(2’M, 04) = 0 if v B 3 and e(w) = v - 1. 

COROLLARY 3.11. Let N be a positive integer, $ a character mod N, and 
k 2 2 an integer satisfying $( - 1) = (- l)k. Assume e($,) > 4 ord,(N)for all 
primes 1 dividing N. Then 

Here the sum is over all primitive characters x mod N/f ($). Recall that f(x) 
denotes the conductor of x and note that f($x’) = f($) for all x. 

Proof: This follows immediately from Theorem 3.9. 1 

THEOREM 3.12. Let p be a prime and let M be a positive integer prime 
to p, Assume o and x are characters mod p” with e(x) < v/2 and 
e(x) + e(w) < v. Then 

Si(p’M, uq5)” = s;(p”M, 0x2&. 

ProoJ: First assume that e(w) < v/2. It then follows immediately from 
Theorem 3.7 that SE(p’M, 04)~ z Sz(p”M, wx’b). By Proposition 1.2, 
SE( p”M, 04)~ G S,( p’M, WI’+). The theory of newforms then implies that 
Sf(p’M, ~4)~ = Si(p’M, OX’~). Next assume e(o) = v/2. By Theorem 3.7 
we have 

& SZ( p’M, 04)X z & Si( p’M, 0x+4) 
i=v/2 i= v/2 

since e(w) = e(wx’) = v/2. Now by Theorem 3.9, 

(3.18) 

v-1 v-1 

@ Slj(p’M, cqh)X = @ @ $(p”‘2M, o&j)“” 
i= v/2 i = v/2 e( $ ) = i - v/2 

= @ S;(P”‘~M, otj2q5)““, 
,EG 

where G is the character group of (Z/P”‘~- ‘Z) x. On the other hand, again 
by Theorem 3.9, 

v-l 
@I S:(p’M, ox’+) = @ S;( p”“M, WX~IC/~~~)” 

i=v/2 lLEG 

= ,CBG S”,( p”12M, w,G~~)“~ 
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since e(f) = e(x) < v/2 and v even implies that j E G. Thus from (3.18) we 
conclude that S”,( p”M, ~4)~ z S”,( p”M, OX’~) and equality follows as 
above. Finally we assume that e(o) > v/2. Then by Theorem 3.9, 

s:c p”M, ogly = @ s ;( p”““M, o$2$)G” 
e(l//I=v-e(w) 

and 

S3P”M wf’4) = 0 SE( pe(W’M, ox2$‘q# 
e($)=V-dCO) 

Now since e(i) = e(x) < v - e(o), as $ runs over all characters mod p” with 
e($) = v-e(o), so does $j and the theorem follows. m 

THEOREM 3.13. Let M be a positive integer prime to 2. Let v be even, 
v = 2p and assume that CO and x are characters mod 2” with e(o) =p and 
e(x) < p. Let Q be a character mod M. Then 

S32’M, wq5)” = S;(2”M, CO&). 

Proof. Note that if e(x) < p, Theorem 3.13 is a special case of 
Theorem 3.12 so we assume e(x) = p. Let x’= xo so that e(x’) < p. 
Then SE(2”M, 04)~ = S32”M, o#)~X’Z Sf(2’M, 04)X’ (by Theorem 3.2) z 
S32”M, Q”d) (by Theorem 3.12) = S32”M, ox’q3). Since SE(2’M, w#)~ 
c Sk(2”M, wx’d) by Proposition 1.1, the theorem follows from the theory 
of newforms. 1 

THEOREM 3.14 (Shemanske [ 151 if WC$ = 1). Let M be a positive integer 
prime to 2. Let v > 4 be even, v = 2p and assume o and x are characters 
mod 2” with e(w) <p - 1 and e(x) = p. Let q3 be a character mod M. Then 

v-1 

S;(2”M, 04) = @ S32’M, WX*&~. 
i=e(u$) 

Proof: Theorem 4.4iii of [2] implies 

I’- 1 

S32”M, o.14) E 1 Sa,(2’M, oq2~)“. (3.19) 
i=e(w& 

On the other hand if F(t) is an element of Si(2’M, w,y’#) for some i, 
e(wx2) < i< v - 1, then by Theorems 3.1 and 3.2 and Corollary 3.1 of [2], 
we see that F,(z) is a newform of level 2”M. Hence we have equality in 
(3.19). Now the multiplicity one theorem (see, e.g., Theorem 5 of [ 11 J) 
shows that the sum on the right hand side of (3.19) is a direct sum which 
establishes the theorem. 1 
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Remark 3.15. Theorem 3.14 is a rather far reaching generalization of 
results stated (implicitly) by Atkin and Lehner in Theorem 7 of [l J for the 
cases Si!24M, 1) and Sz(26M, 1). Note that for these cases 04 and ax24 
are trivial. In particular on p. 158 of [1] it is stated that, “It is interesting 
to note that all newforms on r,(16M) and r,(64M) [with trivial charac- 
ter] can be inferred from a knowledge of the oldforms.” Theorem 3.14 
shows that in essence this statement remains true for S’jJ(22pM, 04) if p > 2 
and e(w) <p - 1. In particular there are no “2-primitive” (see L-2, p. 2361) 
forms in these cases. Theorem 3.14 can be proved independently of [23 and 
[ 111 by establishing the trace identity 

In fact Theorem 3.14 was first proved (in the case od, = 1) by Shemanske 
in Theorem 7.7 of [IS] by proving such a trace identity. 

Our next theorem explains the vanishing of pth Fourier coefficients of 
newforms where p is a prime dividing the level. 

THEOREM 3.16. Let F(T) be a newform in Si(N, $) with F(z)= 
Ca(n) x”. Let p be a prime dividing N. Then the following are equivalent: 

(i) a(p)=0 

(ii) p2 1 N and e(ll/,) < ord,(N) 

(iii) F = G, for some newform G in Si(N’, $j’) for some N’ and some 
character 1( moduio a power of p where N’ difsers from N by a power of p. 

Further, assuming (i), N’ in (iii) can be chosen so that N’ 6 N ifp # 2 or 
zfp = 2 and ord,(N) k 4. If p = 2 and ord,(N) = 2 (resp. 3), then N’ can be 
chosen to equal 4N (resp. 2N). 

Proof: Let N = p’M with p j M. (i) + (ii) follows from Theorem 3 of 
Cl] and Theorem 3 of [l 11. Now assume (ii) holds. If e = e(tj,) > v/2, then 
by Theorem 3.9, F= G, for some newform G in Sz( p’M, $jj2) where x is 
a primitive character modulo p’-‘. Thus we assume e= e($,) < v/2. Let 
x = ( /p), the Legendre symbol if p # 2 and let x(n) = ( - 1 )‘“- i)/* for odd n 
if p = 2. Thus e(x) = 1 (2 if p = 2). By Theorem 3.7 if p is odd or if p = 2 and 
v>4 we have 

& s:(p’M, rc/) 2 & SE(p’M, $)X. 
i=e i=e 

Thus F-G, where G is some newform in SE(p’M, +) for some i, e ,< i,< v. 
But by Proposition 1.1, G, E S,(N, $) so that from the theory of nexforms 
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we see that G, = F. Finally assume p = 2 and v < 3. Then since e($?) d v/2 
we have Ic/2 = 1. By Theorem 3.15 we have 

@ Sk(2’M, I)) z S;( 16M, I))“. 
i=O 

If FES#~M, II/), then F-G, for some newform G in Sf(16M, $). By 
Proposition 1.1, G, E S,( 16M, II/) so that G,= aF(z) +hF(2z) for some 
a, h E @. As shown above the 2nd and hence all even Fourier coefficients of 
G are zero so that G= (G,),=aF(z), +bF(2~), = aF(z),. But all even 
Fourier coefficients of F are zero so that aF= G,. Comparing the first 
Fourier coefficients gives a = 1, If FE Si(4M, Ic/), the proof is the same 
except that G, = aF(z) + bF(2r) + cF(4z). The fact that (iii) -+ (i) is clear. 
Also the conditions on N’ are clear from the proof of (ii) -+ (iii). 1 

Remark 3.17. If e($,) > v/2, then F is the twist of some G = C a(n) X” 
with a(p) # 0. This is not true in general as the example S”,( p3, 1 ), p odd 
demonstrates. One can give an easy alternate proof of the fact that 
(ii) -+ (iii) by using Theorem 3.2 of [2]. However, in doing so one does not 
obtain the information about N’. 

4. DECOMPOSITIONS INVOLVING THETA SERIES 

If F(z) is a newform in Si(M, #) and 2 is a primitive character mod p’ 
with p a prime not dividing M, it is well known (see [2, p. 2281) that F,(r) 
is a newform in Sz(p2’M, x24). More generally, if F(z) is a newform in 
S i( p”M, ~4) and x is a character mod a power of p with r =.e(X) ‘large” 
(e.g., r> v/2 and r > e(u)) we also expect F,(z) to be a newform in 
S”,( p2’M, x’od). Thus we are led to investigate spaces of newforms of the 
general type Sz( p2’M, 04) where e(o) = r if p is odd and e(o) = r - 1 if 
p = 2. Decompositions of these and similar spaces involve both twists of 
newforms and theta series. This is the topic of this section. The relevant 
material on theta series is contained in [S] and especially [9]. With the 
exception of the proofs of Lemmas 4.1 and 4.2 (which are given in [9]), 
this section can be read independently of [9]. 

We begin by stating two results from [9]. Let p be a prime and let M 
be a positive integer prime to p. Let s be a positive integer, o a character 
mod p”, 4 a character mod M, and set II/ = 04. Let k be an integer 22 
satisfying @( - 1) = ( - 1)“. Assume e(o) 6 s/2 and let L(p) be a quadratic 
field extension of Qp. Then for any positive integer n we can define the 
Brandt matrix B(n) = B, _ ,(n; M; L(p), S; 5). The Brandt matrix B(n) 
gives an explicit matrix representation of the action of the Hecke operator 
T(n) acting on a space of theta series. These theta series are modular 
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forms of weight k and character $ on r,(p”M). The precise definition of 
the Brandt matrices can be found in [S, Sect. 7.31. The definition is 
complicated and will not be needed for this paper. 

LEMMA 4.1. Let p be an odd prime and M a positive integer prime to p. 
Let r be a positive integer, o a character mod p’, 4 a character mod M, and 
set $ = uq5. Let k be an integer 22 satisfying $(- 1) = (- l)k. Assume 
e(w) <r - 1 and let L(p) denote either of the ramzj?ed quadratic extensions 
of Qp. Then 

2(tr,2rM,ti T,(n) - 2 trp2,-lM,+ T,(n) + frp2r-2M,ti T,(n)) 

=trB,-,(n;M;L(p),2r;$)-trB,-,(n;M;L(p),2r-l;$) 

+ c f(n) frprM2ti T,(n) 

_ *(nip) deg G(n) 

i 

if r = 1, and k = 2, and I,!I is trivial 

0 otherwise (4.1) 

for all n with (n, PM) = 1. Here the sum C, is over all the 
[;;ff- ’ + pr- 2 if r 3 2 and p - 2 ij’ r = 1) primitive characters x of 

Proof: If r = 1 and $ = 1, Lemma 4.1 reduces to Theorem 7.1 of [ 141. 
In the general case Lemma 4.1 is the same as Lemma 6.5 of [9]. 1 

LEMMA 4.2. Let the notation and hypotheses be as in Lemma 4.1 except 
that we now assume r = 1 and w is a character of (Z/pZ) x. Then 

2 tr p2~,~Tk(n)-33r,,,~Tk(n)=trB,-,(n;M;L(~), 2;$) 

+ c x(n) trpM,X2ti T,(n) 

( 0) 1+ % deg G(n) 5(n) ifk = 2,d is trivial, and w = r2 
- where 5 is a character of (Z/pZ) x (4.2) 

0 otherwise 

for all n with (n, PM) = 1 where the sum is over all the p - 2 primitive 
characters of (Z/pZ) x. 

Proof. This is the same as Lemma 6.7 of [9]. 1 

THEOREM 4.3. Let p be an odd prime and M a positive integer prime top. 
Let r be a positive integer, w a character mod p’, 4 a character mod &f, and 
set II/ = 04. Let k be an integer 22 satisfying $( - 1) = ( - l)k. Assume 
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e(o) 6 r - 1. Then there exist spaces 0’ and 0” qf theta series such that the 
following isomorphisms hold. Zf r = 1 we have 

2S3pzM, 4) E O’@S:(p, M, 4)’ 

(4.3’) 

as H-modules where y = ( jp) and the sum ox,- is over all the i( p - 3) 
classes of primitive characters mod p excepting y module the equivalence 
x - j. Zf r >, 2, we have 

2So,( p2’M, $) z 0” @I @ 2So,( p’M, x2$)” 
I, - 

(4.3” ) 

as H-modules where the sum ox,- is over all the $ (p’ - 2~‘~ ’ + prP 2, 
classes of primitive characters mod p” module the equivalence x N m. 

Remark 4.4. Note that if x1 =x0, then SE(p’M, x211/)” cz Sz( p’M, x&Q)“’ 
by Corollary 3.3. Also, if w  is either the trivial character or an odd 
character mod p, it is shown in Theorem 7.16 of [9] that 0’ and 0” are 
the subspace of “newforms” 0’ in a space of theta series. 0’ is defined in 
an manner exactly analogous to the definition of the space of newforms 
Si(N, rl/) as a subspace of S,(N, $)-see [9, Sect. 7.11. In our more general 
case it is almost certain that 0’ and 0” can also be identified with a space 
of “newforms.” 

Proof of Theorem 4.3. By Proposition 5.1 of [9], the Brandt matrix 
Bk--,(n; M; L(p), v; 3) gives the action of the Hecke operator T,(n) on a 
space J&(&, 5) of theta series (see [9, Sect. 51). Since J&J&,, 5)~ 
J4r(4,, Sk 

is the trace of T,(n) acting on the orthogonal complement of J&J&- r, 6) 
in J&(@~~, 5) which we denote by J&“. If r = 1, k = 2, and $ is trivial then 
by Theorem 5.6 of [9], we see that (n/p) deg T,(n) is the trace of T,(n) on 
the “Eisenstein series part” of 4’. Otherwise by Propositions 5.2 and 5.3 
and Theorem 5.6 of [9], the “Eisenstein series part” of &Z’ is trivial. Hence 
letting 0’ denote the orthogonal complement of the Eisenstein series part 
in Al, we see that (4.1) yields 

2(tr p2rM,IL T,(n) - 2 trp2’ -I~,~ T,(n) + trp?rm2M.ti T,(n)) 

= frBl T,(n) +I Z(n) tr,rM,X2i T&z) (4.4) 



318 HIJIKATA, PIZER, AND SHEMANSKE 

for all n with (n, PM) = 1. Here trel T,(n) denotes the trace of 7’,(n) acting 
on the space 0’ and the sum C, is over all the (p’- 2~‘~ ’ + prP2 if r 3 2 
and p - 2 if r = 1) primitive characters x of (Z/p’Z) ‘. 

By (1.5) the left hand side of (4.4) equals the trace of T,(n) on 

0 2&M/m) S3p2’m, *I. (4.5) 
.f(b) I’m M 

Now we consider the right hand side of (4.4). Let x be a primitive 
character mod pr and consider S,( p’M, x’t,b) = S,(p’M, x’o~). If r = 1, 
then o = 1 and e(x”) = 1 except when x = y. If r 3 2, then e(X2m) = r for 
all x. Hence by (1.5) 

SAPS y211/)r 0 ‘WWm) %b, $10 0 Wflm) SEtpm, ti) 
/I(B) A4 f(Ol”4~ 

and for r>2 or r= 1 and ~fy, 

S,(P’M x2+) z 0 6(Wm) %(p’m, x2+). 
f(Olml .+f 

Then by Lemma 1.2 if r = 1 the right hand side of (4.4) equals the trace of 
U4 on 

0’0 0 2&M/m) SE(m, 1)‘O Q d(M/m) SE(pm, 4)’ 
./‘(d)l”lM f(Olml M 

0 0 0 &Wm) %(pm, x24)“, (4.6’) 
x .f(0l’4~ 

where the sum 0, is over all the p- 3 primitive characters mod p 
excepting y. If r 3 2, then the right hand side of (4.4) equals the trace of 
L(n) on 

0’ @ Q Q &M/m) Sj( p’m, x2$)“, (4.6”) 
x f(Ol’4M 

where the sum 0, is over all the primitive characters mod pr. 
From (4.4), (4.5), (4.6’), and (4.6”) we find if r= 1, then 

0 2&Wm) Si(p2’m, 4) 
f(d)imlM 

z 0’ 0 Q 2&M/m) Si(m, #)‘&I 0 &M/m) SE(pm, 4)’ 
/O)l’n M .f-(9)l4M 

0 0 0 Wflm) S!(pm, x2$)“, (4.7’) 
x f(4)l~l~ 
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where the sum 0, is over all the p - 3 primitive characters mod p 
excepting y ; and if r 3 2, then 

(4.7”) 

where the sum 0, is over all the primitive characters mod pr. 
If F(7) is any newform in any space Sz( pYmr 4) where p is a prime not 

dividing m and < is a character mod p”m and x is any character mod a 
power of p, then by Theorem 3.2 of [2] there is a newform G(7) in some 
space SO,(p”‘m, x25) such that F,(7) N G(7). The important thing for us is 
that m, the part of the level prime to p, is the same for F(7) and G(7). Now 
consider (4.7”). If F(7) is a newform in SE(p’m, x2$) then by (4.7”), F,(7) 

is equivalent to some newform G(7) in some space Si( p*‘m’, t,k). But by the 
above argument, m = m’. Noting that if x, =x0, then Sz(p’M, ~~11/)~r 
SE(p’M, x:$)“’ by Corollary 3.3, we obtain (4.3”) for some subspace 0” of 
0’. The isomorphism (4.3’) is obtained similarly from (4.7’). Note that we 
do not need to use Theorem 3.2 of [2]. We could have used induction on 
M/‘(d) instead. In fact, to identify 0’ as a space of “newforms” in a space 
of theta series, one must use induction. 1 

COROLLARY 4.5. Let the notation and hypotheses he as in Theorem 4.3. 
Then if’r = 1 we have 

where y = ( /p) and the sum @r,- is over all the $( p - 3) classes of primitive 
characters mod p excepting y module the equivalence x m X. If r > 2, we have 

S:(p*‘M, II/) 2 @ SO,(p’M, x’$)“, 
xl - 

(4.8”) 

where the sum @ X,z is over all the i( pr - 2~’ ’ + pr - ‘) classes of primitive 
- 

characters mod pr module the equivalence x N xo. 

Proof: By Proposition 1.1 every newform in the R.H.S. of (4.8’) (resp. 
(4.8”)) is contained in S,(p’M, 4) (resp. SJp”M, J/)); (4.8’) (resp. (4.8”)) 
now follows from (4.3’) (resp. (4.3”)) and the theory of newforms. 1 

We now consider Si(p2M, 04) with e(o) = 1. 

PROPOSITION 4.6. Let the notation and hypotheses he as in Theorem 4.3 
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except that we now assume r = 1 and o is an odd character mod p. Then we 
have 

2$!(p2M, *) z 0’0 @ 2SE(pM, x2$)” 
xl- 

(4.9) 

as H-modules where the sum OX,- is over all the $( p - 3) classes of 
primitive characters mod p excepting 0 module the equivalence x N $5. 

Proof This is Theorem 7.17 of [9] where 0’ = Oi(M; L, 2; 3) is a 
space of “newforms.” For completeness we give a (different) proof here. As 
in the proof of Theorem 4.3 we see that (4.2) yields ’ - 

2 trp2M,$ T,(n) - 3 trpM,$ T,(n) = trel T,(n) + c l(n) trpM,X2$ Th). (4.10) 

Using (1.5) and Lemma 1.2 we obtain from (4.10) 

where the sum ox is over all the p - 2 primitive characters mod p. Note 
that if x = ti, then by Theorem 3.2 we have Sz(pm, x2@)” s Si(pm, +) and 
we obtain 

0 2&Wm) S,O(p*m, $1 
f(Olml M 

z 0’0 Q Q &M/m) SE(pm, x2$)“, (4.11) 
x f(B)lmlM 

where the sum ox is over all the p - 3 primitive characters mod p except- 
ing 0. Now as in the proof of Theorem 4.3 the isomorphism in (4.9) follows 
from (4.11) using Theorem 3.2 of [2] (or induction). # 

If o is an even character mod p we could again use (4.2) together with 
Theorem 3.2 to obtain (4.12) below. However, it is just as simple to 
proceed as follows. 

PROPOSITION 4.7. Let the notation and hypotheses be as in Theorem 4.3 
except that we now assume r = 1 and CO is a non-trivial even character mod p 
with w = I*. Then we have 
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where the sum @ x,- is over all the $( p - 5) classes of primitive characters 
mod p excepting x = y, x = I, and x = X module the equivalence x N j. 

Proof Note that by assumption p > 5. By Theorem 3.7, 

BY (4X), 

(4.14) 

where y = ( /p) and the sum @,,- is over all the &( p - 3) classes of 
primitive characters mod p excepting y modulo the equivalence x m j. The 
summand corresponding to x = ;1 in (4.14) gives the first summand of 
(4.13). Hence we obtain (4.12). m 

COROLLARY 4.8. Let p be an odd prime and A4 a positive integer prime 
to p. Let w he a non-trivial character mod p, 4 a character mod M, and set 
$ = 04. Let k be an integer >,2 sati:fying $( - 1) = (- 1 )k. If 0) is odd we 
have 

(4.15) 

where the sum Q,,- is over all the f (p - 3) classes of primitive characters 
- mod p excepting W module the equivalence x w xo. If o is even then letting 

w = A2 we have 

(4.16) 

where the sum @,,- is over all the f (p - 5) classes of primitive characters 
mod p excepting I= y, x = 1, and x = X modulo the equivalence x N j. 

Proof: By Proposition 1.1 every newform in the R.H.S. of (4.15) or 
(4.16) is contained in S,(p’M, I(/). Equations (4.15) and (4.16) now follow 
from (4.9), (4.12), and the theory of newforms. i 

THEOREM 4.9. Let p be an odd prime and M a positive integer prime to p. 
Let r be a positive integer, o a character mod p’, C$ a character mod M, and 
set (I/ = 04. Let k be an integer 2 2 satisfying $( - 1) = ( - 1 )k. Assume r 2 2, 

641 35,3-7 
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e(w) = r, and let o = &A2 for any character E with e(E) ,< r - 1 and e(A) = r. 
Then 

s ;( pQ4, &A’C+5) 

2r- I 

z wi 0 @ s:(p’M, E&1 @ @ SZ( p’A4, &X2@, (4.17) 
i=cfe) Xl/- 

where the sum @.+ is over all the equivalence classes of primitive charac- 
ters x mod pr such that XA and xb remain primitive mod p’, module the 
equivalence x u F. Here 0” is “half’ of the 0” in (4.3”). 

Proof: By Theorem 3.7 

By (4.3”) 

(4.18) 

(4.19) 

where the sum ox,- is over all the $(~‘-2p’-‘+p’-~) classes of 
primitive characters mod pr modulo the equivalence X-B. Now by 
Theorem 3.9 we can write the L.H.S. of (4.18) as 

Zr- 1 

s:( P”M, E124) @ @ @ s:(P’, E12p2&’ 
i=r ( e(p)=i-r > 

= SZ( p”M, EA+j) 0 @ Si( p’&2p2&P, 
e(p) <’ 

(4.20) 

where @e(p)=i-r denotes the sum over all primitive characters mod pi-r 

and Oec,+ denotes the sum over all characters mod p’- ‘. Each space 
SE(p’, ~A’p*qi)” occurring in (4.20) appears as a summand (when x = kp) 
in the R.H.S. of (4.19). Hence from (4.18), (4.19), and (4.20) we obtain 
(4.17). 1 

COROLLARY 4.10. Let the notation and hypotheses be as in Theorem 4.9. 
Then 

Si( p2’M, &A’d) 

Zr- I 

2 @ s&h%f, E#)% @ s;(p’M, EX2#)xi. 

i= C(E) Xl’ 

(4.21) 
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Proof. By Proposition 1.1 every newform in the R.H.S. of (4.2 1) is 
contained in s,(p”M, eA2q5); (4.21) now follows from (4.17) and the theory 
of newforms. 1 

Remark 4.11. We now explain how Corollary 4.10 relates to Theorems 
3.1 and 4.1 in Atkin and Li [2]. First consider Theorem 3.1 of [Z]. Recall 
(see the paragraph preceding Theorem 3.9 above) that the only case of 
Theorem 3.1 of [2] remaining to be considered is base (b) when a d /?. Let 
F(z) be a newform in Sf(p”M, wq5) and let x be a primitive character 
mod pr. Let a = e(o) and fl= Y. Theorem 3.1 of [2] states that if a 6 r, 
2r > V, and e(Xo) = r, then F,(z) has exact level p”M. Since we are 
considering Corollary 4.10 we make the additional assumptions that p is 
odd and r >, 2. Now if a < r, letting o = E and x = A, F,(T) appears in the 
first summand on the R.H.S. of (4.21), hence is a newform of level p”M, 
and hence has exact level p”M. If a= r, then o=&t2 for some c with 
e(c)<r. Let ,l=x<. Then x= @. Also gX=j and <E,E=xw are primitive 
mod pr. Thus F,(T) appears in the second summand on the R.H.S. of 
(4.21), hence is a newform of level p2’M, and hence has exact level p”M. 
Theorem 4.1 of [2] states that if F(z) is a newform in S:( p’M, 04) and x 
is a character mod a power of p with e(x) = r > v and e(ox) = r, then F,(t) 
is a newform in Si(pzrM, 0x2$). This follows by the same argument as 
above. If p is odd and r = 2, we leave it to the reader to check that 
Theorem 4.1 of [2] and the above case of Theorem 3.1 of [2] follow from 
Corollary 4.8. If p= 2, Theorem 4.1 of [2] and the above case of 
Theorem 3.1 of [2] follow from Theorem 3.14. 
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