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R. Pollack constructed in Pollack (2003) [13] plus/minus p-adic
L-functions for elliptic modular forms, which are p-adically bound-
ed, when the Hecke eigenvalues at p are zero (the most super-
singular case). The goal of this work is to generalize his con-
struction to Hilbert modular forms. We find a suitable condition
for Hilbert modular forms corresponding to the vanishing of p-th
Hecke eigenvalue in elliptic modular form case, which guarantees
the existence of plus/minus p-adic L-functions which are p-adically
bounded. As an application, we construct cyclotomic plus/minus
p-adic L-functions for modular elliptic curves over a totally real
field F under the assumption that ap(E) = 0 for each prime p

dividing p. We formulate a cyclotomic plus/minus Iwasawa main
conjecture for such elliptic curves.
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1. Introduction

Analytic cyclotomic p-adic L-functions of modular forms are p-adic continuous functions on a p-adic
rigid analytic space (called the weight space) which interpolate the critical values of modular forms
twisted by powers of the p-adic cyclotomic character at the arithmetic points. (Since we will only
consider cyclotomic p-adic L-functions in this article, we omit the term cyclotomic from now on.)
Mazur and Swinnerton-Dyer [9] constructed the analytic p-adic L-functions L p( f ,α,χ) for a weight
k elliptic modular form f and an allowable root α of the p-Hecke polynomial, where χ is a p-adic
character and α is said to be allowable if ordp(α) < k − 1, using the theory of modular symbols. Then
Manin [8] extended this result to Hilbert modular forms. These p-adic L-functions depend on several
things: a prime p, a choice of appropriate periods, and a root of the Hecke polynomial at p (call it
p-Frobenius root). In particular, a choice of a prime p and a p-Frobenius root influences the behavior
of the p-adic L-functions. For example, if p is an ordinary prime for a modular form, then one can
show that the p-adic L-function for a p-Frobenius root which is a p-adic unit is an Iwasawa function,
i.e. it comes from a p-adic measure. But if p is not an ordinary prime, then the p-adic L-function is
not anymore p-adically bounded, which makes it harder to study. For example, it does have infinitely
many zeros.

For non-ordinary primes p, Višik [15] (and Dabrowski [2] respectively) analyzed the growth con-
ditions for p-adic L-functions of elliptic modular forms (Hilbert modular forms respectively). Then
Pollack [13] realized how to remove certain trivial zeros from the supersingular p-adic L-functions
of elliptic modular forms when its Hecke eigenvalue ap vanishes and consequently constructed the
so-called plus/minus p-adic L-functions which are p-adically bounded at such a supersingular (non-
ordinary) prime p. Soon after, Kobayashi [7] constructed algebraic plus/minus p-adic L-functions for
elliptic curves over Q and formulated the plus/minus Iwasawa main conjecture in the framework of
Iwasawa algebras, which turns out to be equivalent to Kato’s Iwasawa main conjecture at supersingu-
lar primes. In [7], Kobayashi also proved one divisibility of the plus/minus Iwasawa main conjecture,
showing that the algebraic p-adic L-function divides the analytic p-adic L-function.

The goal of this paper is to construct plus/minus p-adic L-functions for Hilbert modular forms for
certain non-ordinary primes p (Theorem 2.7) generalizing Pollack’s work and to study the supersin-
gular (or non-ordinary) p-adic L-functions for CM theta series as explicit such examples. Section 2
is devoted to carrying out such constructions and study their properties after reviewing briefly
Dabrowski’s result in [2]. The main idea, which is not that different from Pollack’s idea, is to ana-
lyze the growth conditions of Dabrowski’s p-adic L-functions for Hilbert modular forms for different
choices of p-Frobenius roots. Then in Section 3, the Iwasawa main conjecture for modular elliptic
curves over a totally real field is formulated (under certain technical conditions) using the analytic
plus/minus p-adic L-functions and the plus/minus p-Selmer groups given in [5] (Conjecture 3.7).
Since the definition of the plus/minus p-Selmer groups for Hilbert modular forms are not known in
general, we limit ourselves to discuss only modular elliptic curves over a totally real field when we
deal with the main conjecture.

2. p-Adic L-functions

Throughout we fix a rational odd prime p and embeddings Q → C and Q → Cp where Cp is the
p-adic completion of Qp . We normalize the valuation valp and the absolute value | · |p on Cp by
assuming valp(p) = 1 and |p|p = p−1.
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2.1. Basic notations for Hilbert modular forms

Let F be a totally real number field of degree d over Q. For notational simplicity, we assume that
F has the strict ideal class number one (hence a Hilbert modular form will be given by only one
holomorphic function on Hd; H being the upper half plane). Let O F be the ring of integers of F . Let
D F be the different ideal of F and D F the absolute discriminant of F . Let J F = {σ1, . . . , σd} be the
set of embeddings of F into R ⊂ C, and let sgnF ⊂ F ×∞ := (F ⊗ R)× � (R×)d be the group of signs
of F , i.e. the group of elements of order 2 in F ×∞ .

Let f be a Hilbert cuspidal newform of weight k = (k1, . . . ,kd) and character ω whose conductor
divides a fixed integral ideal a prime to p. We assume that each ki is a positive integer (i = 1, . . . ,d)

and k1 ≡ k2 ≡ · · · ≡ kd (mod 2). Let k∗ = mini{ki} and k∗ = maxi{ki}. We fix the complex periods
c±(σ , f ), σ ∈ J F , which are explained in [17] and [11] (also see Remark (i) on p. 1027 in [2]). Let
T (n) be the Hecke operator associated to an ideal n of F , so that T (n) f = C( f ,n) f for each n. The
field K f generated over Q by {C( f ,n)}, as n ranges over all integral ideals of O F , is known to be
a number field (i.e., [K f : Q] < ∞) and contains the values ω(n) for any integral ideal n of F . The
complex L-function of f twisted by a Hecke character ψ of finite order is defined to be

L( f ,ψ, s) =
∑

0 
=n⊂F

ψ(n)C( f ,n)

Nns

=
∏
p

(
1 − ψ(p)C( f ,p)Np−s + ψ2(p)ω(p)Npk∗−1−2s)−1

, Re(s) � 0

where the sum (respectively the product) is taken over all nonzero integral (respectively prime) ideals
of O F . Let Λ( f ,ψ, s) = (

∏n
i=1 ΓC(s − k∗−ki

2 )) · L( f ,ψ, s) be the completed L-function of f twisted
by ψ . Let p be a prime ideal of F lying above p. Let

1 − C( f ,p)X + ω(p)Npk∗−1 X2 = (
1 − α(p)X

)(
1 − α′(p)X

) ∈ Cp[X]

where α(p) = α(p, f ),α′(p) = α′(p, f ) are the inverse roots of the Hecke polynomial at p (note that
p is prime to a). We will always assume valp(α(p)) � valp(α′(p)) throughout the article. For given
σ ∈ J F , one can associate the embeddings F → Q, F → Cp and also define a prime divisor p = p(σ )

of p in F .
Let [m∗,m∗] be the critical strip for L( f ,ψ, s), where

m∗ = 1 + max
i

{
k∗ − ki

2

}
, m∗ = −1 + min

i

{
k∗ + ki

2

}
.

Note that m∗ − m∗ + 1 = −1 + k∗+k∗
2 − (1 + k∗−k∗

2 ) + 1 = k∗ − 1.

2.2. Conductors of Hecke characters

We assume that the Leopoldt conjecture holds for F . This conjecture is known to be true for all
abelian totally real number fields (see, for example, [16]).

Let F∞ = F (μp∞) be the field obtained by joining all the p-power roots of unity to F . Let χ :
Gal(F∞/F ) ↪→ Z×

p be the p-adic cyclotomic character (which is injective) and denote the image of
χ by Γ . Then the free part of Γ is topologically generated by 1 + pe for some positive integer
e � 1, i.e. Γ/Tor(Γ ) = 1 + peZp where Tor(Γ ) is the torsion subgroup of Γ . Note that Tor(Γ ) is
isomorphic to a subgroup of (Z/pZ)× . Let Fcyc ⊂ F∞ be the cyclotomic Zp-extension of F so that
Gal(Fcyc/F ) � χ−1(1 + pZp).
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Class field theory provides an isomorphism (cf. Corollary 13.6 in [16])

rec : (O F ⊗ Zp)×/E+
F → Gal

(
F (p,∞)/F (1)

)
where F (p,∞) is the maximal abelian extension of F unramified outside all the primes of F above p

and ∞, where F (1) is the Hilbert class field of F , and where E+
F is the p-adic closure of the totally

positive unit group E+
F = O×,+

F . Note that the strict ideal class number one assumption implies that

rec : (O F ⊗ Zp)×/E+
F � Gal

(
F (p,∞)/F

)
.

One can decompose the Galois group Gal(F (p,∞)/F ) as

Gal
(

F (p,∞)/F
) � Gal(Fcyc/F ) × T

where T is an abelian group. The Leopoldt conjecture for F implies that T is a finite abelian group.
The domain of definition for p-adic L-functions of Hilbert modular forms is the p-adic analytic group

X := Homcts
(
Gal

(
F (p,∞)/F

)
,C×

p

)
.

Each element φ in X can be uniquely written as ψ · ε where ψ ∈ Homcts(Gal(Fcyc/F ),C×
p ) and ε ∈

Homcts(T ,C×
p ). We fix a topological generator γ of Gal(Fcyc/F ). If we fix a character ε of T , then φ

is determined by the image ψ(γ ) which belongs to the open unit disc centered at 1 in C×
p .

Note that φ ∈ X can be thought of as a Hecke character of F . If φ = ψ · ε (as above) is of finite
order, then ψ(γ ) = ζpn for some n � 0, where ζpn is a primitive pn-th root of unity. Viewing φ

as a Hecke character, we want to determine its conductor c(φ) as an ideal of F . Define ψn by the
condition ψn(γ ) := ζpn for n � 0.

Proposition 2.1. If φ has the form ψn · ε ∈ X , then c(ψ0 · ε) = c(ε) and

c(φ) = lcm
(
c(ε), pn+e O F

) = lcm

(
c(ε),

κ∏
i=1

p
ei(e+n)

i

)
, for n � 1,

where c(ε) is the conductor of ε and pO F = ∏κ
i=1 p

ei
i .

Proof. If n = 0, then c(ψn) = O F and c(ψ0 · ε) = c(ε). Now we assume that n � 1. Since ψn(γ ) = ζpn ,
the character ψn factors through a finite cyclic group whose generator has order pn . In fact, we can
regard ψn as a Dirichlet character mod pn+e via the p-adic cyclotomic character χ and the reduction
modulo pn+e map 1+ peZp → (Zp/pn+eZp)× , i.e. the character ψn is the composition of the following
maps:

Gal(Fcyc/F )
χ−→ 1 + peZp

(mod pn+e)−→ 1 + pe · (Z/pnZ
)
↪→ (

Z/pn+eZ
)× −→ C×

p

for n � 1. Therefore c(ψn) is the smallest (in the sense of divisibility) ideal c of F divisible by all the
primes p1, . . . ,pκ such that

(
1 + pe)pn = 1 +

pn∑(
pn

i

)
pei ≡ 1 (mod c).
i=1
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Because valp(
∑pn

i=1

(pn

i

)
pei) = n + e, which follows from valp(

(pn

i

)
) = n − valp(i) for 1 � i � pn , such a

smallest ideal c should be pn+e O F and so c(ψn) = pn+e O F . Since φ = ψn · ε , the result follows. �
Remark 2.2. It is mostly for notational simplicity that we assume the Leopoldt conjecture. Without
the Leopoldt conjecture we just need to use the norm character from Gal(F (p,∞)/F ) to Z×

p instead
of the cyclotomic character above.

2.3. h-Admissibility and growth conditions

For a positive integer M prime to p, we let Z×
p,M = Z×

p × (Z/MZ)× , and write xp : Z×
p,M � Z×

p for

the canonical projection. Let Σ ⊆ Z×
p,M be an open subgroup of finite index. Then Σ/Σtor � 1 + peZp

for some e � 1. For any nonnegative real number h, we shall denote by P h(Σ) the space of Cp-
valued functions on Σ which are locally polynomials in xp of degree � h. A Cp-valued distribution μ

on P h(Σ) is said to be h-admissible if for each integer 0 � i < h,

sup
a∈Z

×
p

∣∣∣∣ ∫
(a+pmZp)∩Σ

(xp − ap)i dμ

∣∣∣∣
p

= O
(∣∣pm

∣∣i−h
p

)
, as m → ∞.

Višik has proved in [15] that every Cp-valued locally analytic function on Σ can be integrated against
such μ, and that for any fixed character ε on (Z/pMZ)× ∩ Σ—viewed of course as a locally analytic
function on Σ—the mapping ψ �→ ∫

Σ
εψ dμ (defined on the group Homcts(1 + peZp,C×

p ) endowed
with the analytic structure of the open unit disc in Cp via the identification ψ �→ u = ψ(1 + pe)) is
p-adic analytic and is O (logp( )h).

We now review the result of Dabrowski in [2], which is a generalization of Višik’s work [15]
(on elliptic modular forms) to Hilbert modular forms. Recall that γ is a topological generator of
Gal(Fcyc/F ). We fix an isomorphism Zp �Gal(Fcyc/F )� � Zp �T � by sending the class of γ to 1 + T . We
will just reformulate Dabrowski’s result in terms of power series in T with certain coefficient ring,
using the fixed isomorphism Zp �Gal(Fcyc/F )� � Zp �T �. More precisely, his p-adic L-function Lε0

(p)

defined on Homcts(Gal(F (p,∞)/F ),C×
p ) and indexed by ε0 ∈ sgnF � {±1}d (see Theorem 1 of [2])

comes from a distribution μ
ε0
f ,α on Gal(F (p,∞)/F ) (where α = {α(p(σ ))}σ∈ J F ) via

Lε0
(p)(φ) =

∫
Gal(F (p,∞)/F )

φ(x)dμ
ε0
f ,α(x), φ ∈ X = Homcts

(
Gal

(
F (p,∞)/F

)
,C×

p

)
.

Note that the integration on the right-hand side makes sense, since Dabrowski proves that μ
ε0
f ,α is

h-admissible for certain h. For the actual value of h, see Theorem 2.3 below.
From now on we fix a finite order character

ε ∈ Homcts
(
T ,C×

p

)
(2.1)

and set α = {α(p(σ ))}σ∈ J F . Then we define

Lp( f ,α,φ) :=
∫

Gal(F (p,∞)/F )

φ(x)dμ
sgn(φ)

f ,α (x)

where φ = ψ · ε (using the previous notation). So L p( f ,α,φ) corresponds to Lsign(ψ ·ε)

(p) (φ), with ε

fixed.
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We now choose a prime of K f above p and let K be the completion of K f at our chosen prime
over p. Let Kε be the field generated by the values of ε over K , and let Oε be its ring of integers (for
a Hecke character ε of finite order). Since L p( f ,α,φ) is p-adic analytic in φ (cf. [15, Theorem 2.3]),
L p( f ,α,φ) can be expanded in a power series in T around ε with identification T = ψ(γ ) − 1,
giving rise to L p( f ,α, ε, T ) ∈ Kε �T �. Finally, let Λε = Oε �T � be the associated Iwasawa algebra. We
summarize Dabrowski’s result [2, Theorem 1]:

Theorem 2.3. Assume valp(α(p)) � valp(α′(p)) for each p|p. Put h = hα := maxi{valp(α(p(σi))) − k∗−ki
2 }

where J F = {σ1, σ2, . . . , σd}. Then for a fixed character ε ∈ Homcts(T ,C×
p ) and α = {α(p(σ ))}σ∈ J F the

p-adic L-function L p( f ,α, ε, T ) ∈ Kε �T � introduced above has the growth O (logh
p(1 + T )) and satisfies the

following properties:

(1) For each m ∈ Z, m∗ � m � m∗ , and for all Hecke characters of finite order φ = ψn · ε ∈ Tor(X ) the
following interpolation property holds

Lp
(

f ,α, ε,
(
1 + pe)m

ζpn − 1
) = Dm

F · (√−1)dm

G(φ)

∏
p|p

Ap( f , φ,m) · Λ( f , φ,m)

Ω(ε0, f )
,

where

Ap( f , φ,m) =
{

(1 − α′(p)Np−m)(1 − α(p)−1Npm−1) if p � c(φ),

(
Npm

α(p)
)valp c(φ) if p | c(φ),

and

Ω(ε0, f ) = (2π i)−dm∗ · D
1
2
F ·

∏
σ∈ J F

cε0,σ (σ , f ),

ε0 = {ε0,σ }σ := sgn
(
ε · ψn · (xp �→ χ(xp)m)) ∈ sgnF ,

and where G(φ) is the Gauss sum of φ .
(2) If h � m∗ − m∗ = k∗ − 2, then L p( f ,α, ε, T ) is uniquely determined by the interpolation property of (1)

and the growth condition O (logh
p(1 + T )).

(3) If h = 0, then the function L p( f ,α, ε, T ) is p-adically bounded on X , i.e. L p( f ,α, ε, T ) ∈ Oε �T � ⊗ Kε .

2.4. Infinitude of zeros of non-ordinary p-adic L-functions

We keep the notation from the previous section. The following proposition follows directly from
Proposition 2.1 and the interpolation property (1) of Theorem 2.3:

Proposition 2.4. Let {p j: j = 1,2, . . . , κ} be the set of distinct prime ideals of F lying above p. Write pO F =∏κ
j=1 p

e j

j and c(ε) = c
∏

j p
r j

j for an ideal c relatively prime to p, where e j � 1, r j � 0 for j = 1,2, . . . , κ .
Then we have

Lp
(

f ,α, ε,
(
1 + pe)m

ζpn − 1
) = cn∏

j α(p j)
max(r j ,e j(e+n))

, n � 1 and m∗ � m � m∗,

for some constant cn independent of α = {α(p(σ ))}σ∈ J F (but obviously depending on n, m and ε).
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Suppose that k∗ − 2 � h = hα > 0. Let S p := {p(σ ): p(σ ) | p, σ ∈ J F } be the set of prime ideals of
F over p indexed by J F (note that the cardinality of S p is same as the one of J F ) and let S = {p ∈ S p :
α′(p) = −α(p)}. For an arbitrary subset R ⊆ S , put

α′
R = {

α′(p): p ∈ R
} ∪ {

α(p): p ∈ S p \ R
}
. (2.2)

Then, for a fixed character ε on T with c(ε) = c
∏

j p
r j

j , we can consider Dabrowski’s p-adic L-function
L p( f ,α′

R , ε, ·), where R varies over subsets of S , because each root α ∈ α′
R satisfies the assumption

valp(α) � valp(α′) of Theorem 2.3. To simplify the notation, from now on we assume

r j � e j(e + 1), j = 1, . . . , κ, (2.3)

and remark that the case r j > e j(e + 1) can be easily dealt with by slightly modifying the plus/minus
log functions below.

Proposition 2.5. Let R0 be a nonempty subset of S such that (−1)
∑

pi∈R0
ei = −1. Then for any subset R ⊂ S

which is disjoint from R0 , one of Lε0
p ( f ,α′

R , ε, ·) and Lε0
p ( f ,α′

R∪R0
, ε, ·) has infinitely many zeros in the open

unit disc centered at 0.

Proof. Let

G+
ε (R, R0, T ) := Lp( f ,α′

R , ε, T ) + Lp( f ,α′
R∪R0

, ε, T )

2

and

G−
ε (R, R0, T ) := Lp( f ,α′

R , ε, T ) − Lp( f ,α′
R∪R0

, ε, T )

2
∏

p∈S p
α(p)

.

Then we have

Lp
(

f ,α′
R , ε, T

) = G+
ε (R, R0, T ) +

∏
p∈S p

α(p) · G−
ε (R, R0, T ),

Lp
(

f ,α′
R∪R0

, ε, T
) = G+

ε (R, R0, T ) −
∏

p∈S p

α(p) · G−
ε (R, R0, T ).

By Proposition 2.4 we have

Lp
(

f ,α′
R , ε, ζpn − 1

) = cn

(−1)
∑

pi∈R max(ri ,ei(e+n))∏
j α(p j)

max(r j ,e j(e+n))
(2.4)

and therefore

G+
ε (R, R0, ζpn − 1) = 0

for n � 1 such that
∑

pi∈R0
max(ri, ei(e + n)) = ∑

pi∈R0
ei(e + n) is odd. Since the condition

(−1)
∑

pi∈R0
ei = −1 implies that e + n is odd, there are infinitely many such integers n. In the same

way we see
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G−
ε (R, R0, ζpn − 1) = 0

when n � 1 satisfies that
∑

pi∈R0
max(ri, ei(e +n)) = ∑

pi∈R0
ei(e +n) is even. There are also infinitely

many such n’s.
Assume now that both L p( f ,α′

R , ε, T ) and L p( f ,α′
R∪R0

, ε, T ) have finitely many zeros. Then
Lemma 3.2 in [13] would guarantee that both of these p-adic L-functions would have bounded coeffi-
cients. Hence G+

ε (R, R0, T ) and G−
ε (R, R0, T ) also would have bounded coefficients. But G±

ε (R, R0, T )

have infinitely many zeros, which is a contradiction. �
2.5. Bounded p-adic L-functions at supersingular primes

Let Φk(T ) be the k-th cyclotomic polynomial. For any positive integer m, we define

log+
p,m(F , T ) := 1

p
·

∞∏
n=1

e+n: odd

(
Φpn ((1 + pe)−m(1 + T ))

p

)
,

and

log−
p,m(F , T ) := 1

p
·

∞∏
n=1

e+n: even

(
Φpn ((1 + pe)−m(1 + T ))

p

)
.

Then Lemma 4.1 in [13] says that log+
p,m(F , T ) (respectively log−

p,m(F , T )) defines a power series in
Qp �T � which is convergent on the open unit disc centered at 0, and that the zeros of log+

p,m(F , T )

(respectively log−
p,m(F , T )) are precisely (1 + pe)m · ζpn − 1 such that e + n is even (respectively odd)

for n � 1. Now we define

log+
p (F , T ) :=

m∗∏
m=m∗

log+
p,m(F , T ),

and

log−
p (F , T ) :=

m∗∏
m=m∗

log−
p,m(F , T ).

Then Corollary 4.2 in [13] implies that log+
p (F , T ) (respectively log−

p (F , T )) defines a power series
in Qp �T � (depending on k = (k1, . . . ,kd) and our chosen generator 1 + pe) which is convergent on
the open unit disc centered at 0, and that the only zeros of log+

p (F , T ) (respectively log−
p (F , T )) are

simple zeros at (1 + pe)m · ζpn − 1 such that e + n is even (respectively odd) for m∗ � m � m∗ and
n � 1. Pollack has also proved (note that m∗ − m∗ + 1 = k∗ − 1) that

Lemma 2.6. (See Lemma 4.5, [13].) We have log+
p (F , T ) ∼ log−

p (F , T ) ∼ (logp(1 + T ))
k∗−1

2 .

Let us recall that K is the completion of K f at our chosen prime over p, that Kε is the field
generated by the values of ε over K , and that Oε is the ring of integers of Kε . The main result of this
paper is the following:
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Theorem 2.7. Let f be a Hilbert cuspidal newform (over F with strict class number one satisfying the Leopoldt
conjecture) of weight k = (k1, . . . ,kd) and character ω whose conductor divides a fixed integral ideal a prime

to an odd p. Let R0 be a nonempty subset of S = {p ∈ S p: α′(p) = −α(p)} such that (−1)
∑

pi∈R0
ei = −1.

Assume h = hα = k∗−1
2 (note that hα = hα′

R
= hα′

R0∪R
). Then for any subset R ⊂ S which is disjoint from R0 ,

we have

Lp
(

f ,α′
R , ε, T

) = L+
p ( f , R, R0, ε, T ) · log+

p (F , T ) +
∏

p∈S p

α(p) · L−
p ( f , R, R0, ε, T ) · log−

p (F , T )

where L±
p ( f , R, R0, ε, T ) ∈ Oε �T � ⊗ Kε . Let R̃0 be another nonempty subset of S satisfying (−1)

∑
pi∈R̃0

ei =
−1 and let R̃ be any subset of S disjoint from R̃0 . Then L±

p ( f , R, R0, ε, T ) = L±
p ( f , R̃, R̃0, ε, T ) if and only if

L p( f ,α′
R , ε, T ) = L p( f ,α ′̃

R
, ε, T ).

Proof. We can write

Lp
(

f ,α′
R , ε, T

) = G+
ε (R, R0, T ) +

∏
p∈S p

α(p) · G−
ε (R, R0, T ).

The interpolation property of Theorem 2.3 forces that

G+
ε

(
R, R0,

(
1 + pe)m

ζpn − 1
) = 0,

for m∗ � m � m∗ and n � 1 such that e + n is odd, and also that

G−
ε

(
R, R0,

(
1 + pe)m

ζpn − 1
) = 0,

for m∗ � m � m∗ and n � 1 such that e + n is even. Since all the zeros of log+
p (F , T ) (respectively

log−
p (F , T )) are also zeros of G+

ε (R, R0, T ) (respectively G−
ε (R, R0, T )), we have (by (4.8) in [10]) that

log+
p (F , T ) divides G+

ε (R, R0, T ) and log−
p (F , T ) divides G−

ε (R, R0, T )

in Kε �T �. Let

L+
p ( f , R, R0, ε, T ) := G+

ε (R, R0, T )

log+
p (F , T )

and L−
p ( f , R, R0, ε, T ) := G−

ε (R, R0, T )

log−
p (F , T )

.

By Theorem 2.3 and the assumption h = k∗−1
2 , we get G±

ε (R, R0, T ) ∼ logp(1+ T )
k∗−1

2 . Lemma 2.6 says

that log+
p (F , T ) ∼ log−

p (F , T ) ∼ (logp(1 + T ))
k∗−1

2 . Therefore both L+
p ( f , R, R0, ε, T ) and L−

p ( f , R, R0,

ε, T ) are O (1) (i.e. bounded). Finally Lemma 5.2 in [13] guarantees that

L±
p ( f , R, R0, ε, T ) ∈ Oε �T � ⊗ Kε .

The second statement follows easily from the definition of L±
p ( f , R, R0, ε, T ) by considering its

interpolation properties. �
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Remark 2.8. 1. The case of elliptic modular form in [13] corresponds to the case R0 = {p} and R = ∅.
2. Though there are many choices of R0 and R , there are essentially unique plus/minus p-adic

L-functions. More precisely, there are unique plus/minus p-adic L-functions up to ±1, since L p( f ,α′
R ,

ε, T ) = ±L p( f ,α ′̃
R
, ε, T ) due to the running assumption valp(α(p)) � valp(α′(p)).

3. The assumption that F has strict class number one and satisfies the Leopoldt conjecture can be
removed without difficulty. But hα = k∗−1

2 is a crucial condition for getting the p-adic boundedness
for the plus/minus p-adic L-functions.

2.6. Example: CM theta series

In this section we provide the examples of Hilbert modular forms which have the plus/minus
p-adic L-functions. Let K be a totally imaginary quadratic extension of F . Let AK be the group of
adeles. Let θ : A×

K /K × → C∗
p denote a Hecke character whose infinite component is θ∞(x1, . . . , xd) =∏d

i=1 xki−1
i x̄−ki+2

i . By the Weil–Jacquet–Langlands theorem (see [8, p. 44]) there exists a cuspidal
Hilbert modular form fθ of weight (k1, . . . ,kd) such that

L( fθ , s) = L(K , θ, s),

where L(K , θ, s) = ∑
A⊂K

θ(A)
N(A)s (A varies over nonzero integral ideals of K ). Moreover, the explicit

form of the roots α(p) = α(p, fθ ), α′(p) = α(p, fθ ) are given by the following: if p ⊂ F remains prime

P in the CM field K , then α(p) = θ(P)
1
2 and α′(p) = −θ(P)

1
2 . But if pO K = PP̃ splits in K , then

α(p) = θ(P) and α′(p) = θ(P̃). Therefore S := {p ∈ S p: α′(p) = −α(p)} = {p ∈ S p: p is inert in K }.
Let c( fθ ) be the level of fθ and let ω fθ be the nebentypus character of fθ . Note that α(p) · α′(p) =
ω fθ (p)Npk∗−1.

Fix a finite order character ε ∈ Homcts(T ,C×
p ) whose conductor is c(ε) = c( fθ )

∏
j p

r j

j , where

r j � 0 for j = 1,2, . . . , κ . Let R0 be a subset of S such that (−1)
∑

pi∈R0
ei = −1. If hα :=

maxi{valp(α(p(σi))) − k∗−ki
2 }, where J F = {σ1, σ2, . . . , σd}, is equal to k∗−1

2 , then for any subset R ⊂ S
which is disjoint from R0 we can construct the plus/minus p-adic L-functions L±

p ( fθ , R, R0, ε, T ). For

example, the condition hα = k∗−1
2 is satisfied when k1 = · · · = kd , p splits completely in F and S 
= ∅.

3. Elliptic curves over totally real fields

In [5], Iovita and Pollack attached the plus/minus p-Selmer group to an elliptic curve E/F with
certain condition following Kobayashi’s work for E/Q. If E/F is modular, then we can define the
plus/minus p-adic L-functions to E/F from what we did in the previous sections. Therefore it is
natural to formulate the plus/minus Iwasawa main conjecture between these two objects.

3.1. p-Adic L-function of elliptic curves

Let F be a totally real field. Let E be an elliptic curve over F with conductor c prime to p. If there
is a modularity result, then we can apply our construction to E/F . If E is a semistable elliptic curve
over F with some technical condition (for example, see Theorem 7.6 of Skinner and Wiles in [3]),
then one can associate a Hilbert newform f E of parallel weight 2 to E . Recently, Kisin proved more
stronger modularity theorems over totally real fields (see [6]) and [1] (and the references therein) is
a good place to read for the recent progresses on modularity of elliptic curves over totally real fields
(more generally Galois representations of the absolute Galois groups of totally real fields). Now we
assume that S := {p ∈ S p: α′(p, f E) = −α(p, f E )} is not empty for the plus/minus theory of p-adic L-
functions and the Selmer groups of E/F . For example, if E/F comes from an elliptic curve E/Q with
supersingular reduction at a prime p > 3, then ap(E) := 1 + p − Ẽ(Fp) (where Ẽ is the reduction of
E/Q mod p) is 0 and so f E satisfies that S 
= ∅. Note that the condition hα := maxi{valp(α(p(σi))) −
k∗−ki

2 } = k∗−1
2 in Theorem 2.7 translates into hα = 1

2 .
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Proposition 3.1. The condition hα = 1
2 holds if p splits completely in F and S 
= ∅.

Proof. Since every prime p ∈ S has residue degree 1, we have N(p) = p. Then it follows that
hα := maxp∈S{valp(α(p))} = 1

2 from that α(p)α′(p) = N(p) = p for every p ∈ S p and the assumption
valp(α(p)) � valp(α′(p)) by noting that S 
= ∅. �

By the above proposition we can construct the plus/minus p-adic L-functions of a modular elliptic
curve E/F when p splits completely in F . Now we assume this, i.e. pO F = ∏d

i=1 pi . We choose a
nonzero subset R0 ⊂ S such that

∑
pi∈R0

1 = #R0 is odd and R ⊂ S disjoint from R0.

Definition 3.2. We define

Lp(E/F , T ) := Lp
(

f E ,α′
∅,1, T

)
and L±

p (E/F , T ) := L±
p ( f E ,∅, R0,1, T ).

The interpolation property (2.4) gives

Lp
(

f E ,α′
R ,1, ζpn − 1

) = cn

(−1)
∑

pi∈R e+n∏
j α(p j)

e+n

for n � 1. From above we see that

Lp
(

f E ,α′
∅,1, T

) = ±Lp
(

f E ,α′
R ,1, T

)
and L±

p ( f E ,∅, R0,1, T ) = ±L±
p ( f E , R, R0,1, T ),

where the sign depends on the parity of #R; the sign is 1 if the parity is even, and the sign is −1 if
the parity is odd. Therefore L p(E/F , T ) = ±L p( f E ,α′

R ,1, T ) and it is independent of R up to ±1. Note
that L±

p ( f E ,∅, R0,1, T ) does not depend on R0 which justifies why we omitted R0 from the notation
L±

p (E/F , T ).
Then Theorem 2.7 gives the following corollary:

Corollary 3.3. Let F be a totally real field with strict class number one satisfying the Leopoldt conjecture, in
which p splits completely. Let E be an elliptic curve over F with conductor prime to p. Let Fp be the completion
of F at p ∈ S p and let O Fp

be its ring of integers. We have

Lp(E/F , T ) = L+
p (E/F , T ) · log+

p (F , T ) +
∏

p∈S p

α(p) · L−
p (E/F , T ) · log−

p (F , T )

with L±
p (E/F , T ) ∈ O Fp

�T � ⊗ Fp .

3.2. Plus/minus Selmer groups

In this section we briefly review the definition of the algebraic plus/minus Selmer group following
[5] and [7]. Kobayashi defined the plus/minus Selmer groups for elliptic curves over Q and Iovita
and Pollack defined them for elliptic curves over general number fields in which p splits completely.
For such a plus/minus theory we will need to assume S := {p ∈ S p: α′(p, f E ) = −α(p, f E )} = S p . Let
Fcyc ⊂ F∞ be the cyclotomic Zp-extension of F and Fn , for n � 0, be the unique subextension of Fcyc

such that Gal(Fn/F ) � Z/pnZ. We assume that p splits completely in F , say S p = {p1,p2, . . . ,pd},
and that each pi is totally ramified in Fcyc which is the key condition in [5] in order to study the
plus/minus Selmer groups. Recall that we fixed an isomorphism Λ := Zp �Gal(Fcyc/F )� � Zp �T �.

Let v = vi and v(n) = vi(n) be the unique primes of Fcyc and Fn respectively over the prime p = pi
of F (i = 1, . . . ,d) such that v|v(n + 1)|v(n) for all n � 0. Let Fp be the p-adic completion of F , and
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let Fn,v be the v(n)-adic completion of Fn . Denote by Fcyc,v the union of all Fn,v (for n � 0). We have
local Kummer maps

κv : E(Fcyc,v) ⊗ Qp/Zp → H1(Fcyc,v , E
[

p∞])
,

where E[p∞] = E[p∞](F p). The p-primary Selmer group of E over Fcyc is defined by

Selp(E/Fcyc) := ker

(
H1(Fcyc, E

[
p∞]) →

∏
w

H1(Fcyc,w , E[p∞])
κw(E(Fcyc,w) ⊗ Qp/Zp)

)

where w varies over all prime ideals of Fcyc . One can define Selp(E/Fn) in the same manner and
clearly we have Selp(E/Fcyc) = limn→∞ Selp(E/Fn).

Since Λ naturally acts on H1(Fcyc, E[p∞]) and the Λ-action preserves Selp(E/Fcyc), it follows that
Selp(E/Fcyc) is a Λ-module. Then Selp(E/Fcyc) is known to be co-finitely generated over Λ for any
prime p, with no restriction on the reduction type of E . The theorem of Kato and Rohrlich says
that Selp(E/Fcyc) is a co-torsion Λ-module if E is defined over Q, E has good, ordinary reduction
or multiplicative reduction at p and F/Q is abelian. It is conjectured that Selp(E/Fcyc) is co-torsion
over Λ if E has good, ordinary reduction at every p ∈ S p . But if there is a prime p ∈ S p which is
supersingular prime for E , then Selp(E/Fcyc) is not any more co-torsion over Λ. In this case, it is
not clear how to define the characteristic ideal for Selp(E/Fcyc). Kobayashi and Iovita–Pollack’s work
gives a recipe to naturally define two Selmer groups, called the plus/minus Selmer groups, which are
co-finitely generated co-torsion over Λ, if S = S p and a certain condition holds (which always holds
conjecturally, see Conjecture 3.6). When F = Q this certain condition is true and so the plus/minus
Selmer groups are Λ-co-torsion.

We define the plus/minus subgroups

E+(Fcyc,vi ) := lim
n→∞

{
x ∈ E(Fn,vi ): Trn/m(x) ∈ E(Fm−1,v) for 0 < m � n, m: odd

}
,

E−(Fcyc,vi ) := lim
n→∞

{
x ∈ E(Fn,vi ): Trn/m(x) ∈ E(Fm−1,v) for 0 < m � n, m: even

}
,

for i = 1, . . . ,d

Definition 3.4 (Kobayashi and Iovita–Pollack). We assume that S = S p , i.e. ap = 0 for each prime p|p.
Then we define

Sel±p (E/Fcyc) := ker

(
Sel(E/Fcyc) →

d∏
i=1

H1(Fcyc,vi , E[p∞])
κvi (E±(Fcyc,vi ) ⊗ Qp/Zp)

)
.

The following theorem of Iovita and Pollack (Corollary 7.7 in [5]) gives a criterion when
Sel±p (E/Fcyc) is co-torsion over Λ.

Theorem 3.5 (Iovita–Pollack). The plus/minus Selmer groups Sel+p (E/Fcyc) and Sel−p (E/Fcyc) are co-torsion
Λ-modules if and only if the Zp-corank of Selp(E/Fn) is bounded as n → ∞.

The above theorem is also valid for arbitrary Zp-extensions of F (not necessarily for the cyclotomic
Zp-extension).

Conjecture 3.6. The Zp-corank of Selp(E/Fn) is bounded as n → ∞.
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See Conjecture 1.8 of [4] for more details regarding this conjecture. Therefore conjecturally we
have

Homcts
(
Sel±p (E/Fcyc),Qp/Zp

)
is pseudo-isomorphic to Λ/

(
f±E

)
.

for some f±E ∈ Λ. We define the algebraic plus/minus p-adic L-functions:

L±,alg
p (E/F , T ) = f±E ,

which are well defined up to units in Λ. Now we state the plus/minus Iwasawa main conjecture
for E/F .

Conjecture 3.7 (Plus/minus Iwasawa main conjecture). Let F be a totally real field with strictly class number
one in which p splits completely. Let E/F be a modular elliptic curve defined over F whose conductor is prime
to p. Assume that S = S p and the Zp-corank of Selp(E/Fn) is bounded. Then

(
L±,alg

p (E/F , T )
) = (

L±
p (E/F , T )

)
as ideals in O Fp

�T � ⊗ Fp .

When F = Q, then one divisibility of this conjecture, namely L±,alg
p (E/F , T ) divides L±

p (E/F , T ),

was proven by Kobayashi in [7] using Kato’s Euler system. The other divisibility is not known. If F 
= Q,
then neither divisibility of this conjecture is known. If F = Q and E/Q has complex multiplication,
then the above conjecture was proven in [14].

3.3. Elliptic curves with complex multiplication

In Section 2.6, we explained how to construct the plus/minus p-adic L-functions for the CM theta
series. Here we give more details in the special case of CM elliptic curves over F . If E/F has CM, one
knows how to construct explicitly a Hilbert modular newform of parallel weight 2. Let E be an elliptic
curve over F with complex multiplication by the maximal order of an imaginary quadratic field K0,
i.e. EndC(E) � O K0 . We consider the composite field K of K0 and F , which is a CM field, i.e. a totally
imaginary quadratic extension of F . We assume that the conductor Cond(E/F ) is prime to pO F , so
that E/F has good reduction at every prime of F above p. We also keep all the assumptions about
F we made so far (e.g. d = [F : Q], pO F = ∏d

i=1 pi , F has strict class number one, and the Leopoldt
conjecture holds for F ).

By the main theorem of complex multiplication (cf. Theorem 10.5(b), Chapter II of [12]), there is
an algebraic Hecke character Ψ = ΨE K : A×

K /K × → K ×
0 of K such that

L(E/F , s) = L(K ,Ψ, s). (3.1)

Then the infinite part of Ψ satisfies Ψ∞(x1, . . . , xd) = ∏d
j=1 x j . By the Weil–Jacquet–Langlands theo-

rem there exists a CM Hilbert newform fΨ of parallel weight 2 such that

L(K ,Ψ, s) = L( fΨ , s). (3.2)

Now suppose p|p is a prime of F . If pO K = PP̃ splits in K , then α(p, fΨ ) = Ψ (P) and α′(p, fΨ ) =
Ψ (P̃), assuming valp(Ψ (P)) � valp(Ψ (P̃)). And if pO K = P is inert in K , then α(p, fΨ ) = Ψ (P)

1
2

and α′(p, fΨ ) = −Ψ (P)
1
2 . In fact, local Euler factor at p of the L-series of E/F is given by the follow-

ing (Exercise 2.32, Chapter II of [12]):
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Lp(E/F , T ) =
⎧⎨⎩

(1 − Ψ (P)T )(1 − Ψ (P̃)T ) if pO K = PP̃,

1 − Ψ (P)T if pO K = P,

1 if pO K = P2.

As we saw in Section 2.6 on the CM theta series, S = {p ⊂ O F : p divides p and is inert in K }. If
S 
= ∅, p splits completely in F (which implies p � D F ), and there exists R0 ⊂ S such that the cardi-
nality of R0 is odd, then we can define L p(E/F , T ) and L±

p (E/F , T ) as in Definition 3.2. Depending on
the factorization of the rational prime p in the field K0, we have two possibilities: Either p splits or
it is inert in K0 (note that the condition c = Cond(E/F ) being prime to pO F rules out the ramified
case). If p splits in K0, then all the primes pi |p of F should split in K , i.e. for i = 1, . . . ,d, one has
pi O K = PiP̃i where Pi, P̃i are two distinct prime ideals of K above pi . If p is inert in K0, then all
the primes pi |p of F should be inert K , i.e. for i = 1, . . . ,d, one has pi O K = Pi where Pi is a prime
of K .

If we let ap = N F/Q (p)+ 1 − #Ẽ(Fp) where Fp is the residue field of F at p and Ẽ is the reduction
of E modulo p (we are assuming that p is a good prime for E/F ), then α(p) + α′(p) = ap . One can
show that the former case (split case) corresponds to the p-ordinary situation in the sense that Ẽ for
each p|p is ordinary and the latter one (inert case) matches with the most p-supersingular situation
in the sense that Ẽ for each p|p is supersingular and ap = 0 (see the Exercises 2.30 and 2.31, [12] for
details).

If we are in the p-ordinary situation, then a theorem of Manin [8] (see also Dabrowski [2]
whose result was quoted above) says that the p-adic L-function L p( fΨ ,α, ε, T ) is already p-adically
bounded, where α = {α(pi) | i = 1, . . . ,d} (see (1) and (3) of Theorem 2.3 for its existence and p-
adic boundedness respectively). Therefore our main interest in this paper is to construct, using the
results of the preceding sections, plus/minus p-adic L-functions for E/F at the most p-supersingular
case which are p-adically bounded. For that matter we assume that p is inert in K0. Then hα = 1

2 by
Proposition 3.1 and hence the plus/minus p-adic L-functions L±

p (E/F , T ) exist.
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