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Abstract 

This paper studies four mathematical models of the multiplex PCR method of genome physical 

mapping described in Sorokin et al. (1996). The models are expressed as combinatorial group 

testing problems of finding an unknown Hamiltonian cycle in the complete graph by means 

of queries of different type. For each model, an efficient algorithm is proposed that matches 

asymptotically the information-theoretic lower bound. 0 1998 Elsevier Science B.V. All rights 

reserved. 
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complexity 

1. Introduction 

1. I. Biological motivation 

This paper studies several mathematical models of the multiplex PCR method of 

genome physical mapping described in [ 191. Physical mapping is the central stage in 

genome exploration which consists in creating some landmarks or tags throughout the 

DNA molecule. These landmarks are some specific nucleotide sequences associated 

with their positions on the molecule. They are usually obtained through the process 

of cloning which allows to extract some fragments of the molecule that can be then 

replicated to create multiple copies. These copies are then used to reconstruct the clone 

layout. 

There are different methods of physical mapping [20]. The one we refer to in this 

paper (see [ 191) differs from the others in that the cloned fragments are not supposed 
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Fig. 1. (a) Placement of contigs on a circular genome: (b) placement of points on the circle (contigs are 

assimilated to points); (c) Hamiltonian cycle corresponding to the order of points. 

to cover the whole DNA molecule contiguously but rather occur on it with a fre- 

quency sufficient to bound, with a high probability, the gap between any two adjacent 

clones by some threshold value. Some clones can overlap forming longer continuous 

fragments (conrigs). For example, the physical mapping project described in [19] dealt 

with a 170 kb region of the circular Bacillus subtilis genome cloned in yeast artificial 

chromosomes (YAC) with 500 clones that formed 32 contigs of length from 0.5 to 

15 kb and gaps between them ranging from 6 to 18 kb. Projects of much larger scale 

using this method can be envisaged. 

The aim of such a physical mapping project is to reconstruct a physical map - 

the mutual placement of the contigs, that is their order and the lengths of the gaps 

between them. A tool for doing this is the multiplex LA PCR (Long Accurate Poly- 

merase Chain Reaction) hereafter called simply experiment or reaction. The input to 

an experiment is a set of primers, which are short nucleotide sequences (of length 

about 20 nucleotides in project [ 191) that characterize the ends of the contigs (see 

also [ 171). Whenever the input set contains two primers corresponding to adjacent 

ends of neighboring contigs (like primers A and B in Fig. l(a)), the experiment out- 

puts a PCR product the size of which corresponds to the length of the gap between the 

contigs. An additional condition for the product to come out is that its length should 

be smaller than some threshold distance, which is achieved by choosing a sufficiently 

big number of clones (contigs) at the previous stage of the method. Moreover, an 

experiment can yield several distinct products if the input set contains several corre- 

sponding pairs of primers. Thus, the number of products suggests the number of primer 

pairs corresponding to adjacent ends of two contigs. However, this information has a 

limited value, as in practice only a restricted small number of products can be distin- 

guished and, in addition, distinct products of similar length can be visible as a single 

one. 

The advantage of multiplexing is that many primers can be put into one reaction 

which increases the probability of obtaining at least one positive output, and on the 

other hand, eliminates many order possibilities in case when no output is obtained. 
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On the other hand, no information is available on which pair of primers actually 

produced the output. Therefore, if the number of primers is big, little information is 

given by the output. 

In this paper, we give several mathematical formalizations of the physical mapping 

method described above. For all mathematical models, we address the following com- 

binatorial problem: what is the optimal strategy of conducting experiments in order to 

obtain a physical map using minimal number of them? 

1.2. Muthematicul formulation 

Firstly, we assume that once a primer corresponding to one end of a contig oc- 

curs in the input set, the one corresponding to another end of this contig does too. 

Thus, primers always come in pairs, each pair characterizing two ends of a contig. 

This assumption leads to a more simple and apparently less powerful mathematical 

model. However, from theoretical point of view this assumption is justified. As it will 

be shown in the paper, in most cases, the asymptotic lower bounds can be reached 

under this assumption. In a practical implementation, however, manipulating individual 

primers is useful. 

Secondly, since our purpose is to reconstruct the order of contigs and the distances 

between them, it is clear that the length and the internal structure of contigs are irrel- 

evant. Thus, we assume that contigs have “no length” and hereafter we simply reduce 

contigs to points. 

Thirdly, it is readily seen that between the problems of determining the order 

of points and determining the distances between them, the former one is essential. 

An obvious argument is that given an order of points, the distances between them can 

be determined easily in O(n) experiments. In what follows we focus on the problem 

of order reconstruction. 

Due to the above observations, we can model our physical mapping problem as 

follows: 

Assume that n points { 1,2,. . . , n} are placed on a circle in an unknown order 

(see Fig. l(b)). We are allowed to make queries about adjacency of some points. 

Determine the order of the points by making as few queries as possible. 

Of course, the solution and its efficiency will strongly depend on the type of queries 

we are allowed to ask. Before making this precise, we reformulate the problem in 

terms of graphs. Clearly, an order of n points on the circle can be uniquely asso- 

ciated with a Hamiltonian cycle in the complete undirected graph K,, (we assume 

that the direction on the circle is irrelevant). Fig. l(c) illustrates the Hamiltonian cy- 

cle corresponding to the order of Fig. I(b). Thus, we reformulate the problem as 

follows: 

Consider the complete graph Kc with vertices { 1,2, _ . . , E}. Assume that some 
Hamiltonian cycle HC is fixed in K,, that is not known to us. We are allowed to 



150 V. Grebinski, G. KucherovlDiscrete Applied Mathematics 88 (1998) 147-165 

Model Lower bound Algorithm 

Performance 

Type of algorithm 

Multi-vertex 

Quantitative multi-vertex 

k-vertex 

Quantitative k-vertex 

qn log n) 

n(n) 

1X$) 

V$) 

O(n log n) 

O(n) 

(1 + o(l)); 

(1 + ou$ 

First stage 

Adaptive 

Adaptive 

Non-adaptive 

Non-adaptive 

Second stage 

Non-adaptive 

Adaptive 

Non-adaptive 

Fig. 2. Result summary 

make queries about adjacency of some vertices in 

as few queries as possible. 

HC. Determine HC by making 

In this paper we study four types of queries which lead to four different mathematical 

models. 

Multi-vertex model. For a set of vertices {al,. . . , a,}, ask whether K{,,,,,,,a,) fl HC 

is non-empty, where K{,,V.,,,ml is the complete graph on the set of vertices 

{al,. ..,Gl}. 
Quantitative multi-vertex model. For a set of vertices {al,. . .,a,}, ask what the 

number of edges in K{, ,,___, am) fl HC is. 

k-vertex model. Assume that a constant k is predefined. For a set of vertices 

{a1 , . . . , a,,,}, where m 6 k, ask whether K{, ,,_,_, (Im~ n HC is non-empty. 

Quantitative k-vertex model. For a set of vertices {al,. . . , a,}, where m <k, what is 

the number of edges in K{,,,...,am) n HC? 

In the multi-vertex model we ask whether at least one edge from a given set be- 

longs to the Hamiltonian cycle. However, this set has a special structure - we ask 

about the edges of a complete subgraph. The multi-vertex model is strengthened in the 

quantitative multi-vertex model. Now we are allowed to count the number of edges of 

the Hamiltonian cycle in a complete subgraph. In terms of the biological method, this 

reflects our ability to count the number of neighboring primer pairs in the experiment. 

This is the most powerful model. The k-vertex model and quantitative k-vertex model 

are restrictions of the multi-vertex model and quantitative multi-vertex model respec- 

tively. They are motivated by the important practical constraint that only a limited 

number of primers can be submitted to an experiment. 

1.3. Summary of the results 

In this paper we study the complexity of each of the four models and design asymp- 

totically optimal algorithms for all of them. Note that the complexity is understood 

as worst-case query complexity, that is the number of queries necessary to reconstruct 

the order in most unfavorable circumstances. The complexity bounds are summarized 

in Fig. 2. The last column indicates an important property of the algorithm - its 
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adaptiveness. In adaptive algorithms, a query generally depends on the answers to the 

previous queries. In non-adaptive algorithms, all queries are independent and can be 

made in parallel. Often in practice an algorithm consists of two stages (see [lo] for 

examples in molecular biology applications). For such algorithms, the type of each 

stage is shown. 

We also discuss the multiplicative constants hidden in the O-notation, that are of 

course important for practical applicability of the algorithms. Finally, we describe a pro- 

totype implementation for both k-vertex models that are most close to biological reality. 

2. Multi-vertex model 

There are (n - 1)!/2 Hamiltonian cycles in K,,. Since every query yields one bit of 

information, by the standard information-theoretic argument the lower bound 

log ((n - 1)!/2) = Q(n log n) ’ can be immediately obtained. Note that the same lower 

bound stays for the average complexity since the average length of a branch in a binary 

tree with (n - I)!/2 leaves is R(n log n). 

Let us make now the following observation. Assume that only two vertices and not 

any number of them can be tested at a time. In other words, each query tests whether 

an individual edge belongs or not to the Hamiltonian cycle. It is known (see [ 1, 

Exercise 3.54) that in this case at least n2/4 - n/2 - 1 = 0(n2) queries must be made 

in the worst case. In our model we are able to simultaneously ask about many edges. 

However, this set of edges has a special structure - it is a complete subgraph rather 

than any subgraph. Recall that in case of positive answer, we have no information 

about the vertices in the set that are actually adjacent. Therefore, it is not immediately 

clear if we can benefit from the possibility of testing many edges at once ~ if the 

number of vertices in the set is big, the value of the positive answer is decreased since 

we need further tests to identify the pair(s) which produced this answer. In contrast. 

the value of the negative answer is increased but its probability is little if the number 

of vertices is big. 

In this section we show that the lower bound O(n log n) can be achieved. Below we 

propose an algorithm that matches this bound. 

Let HC be a Hamiltonian cycle and assume we have already discovered some of its 

edges. These edges form a set of disjoint paths that will be our main data structure. 

Definition 1. Let HC be a Hamiltonian cycle in K,. A chain c is a sequence of ver- 

tices (al , . . . , at), t 3 1, such that Vj, 1 <j 6 t - 1, (q, q+l) E HC. Note that degenerate 

one-vertex chains are allowed. For c = (UI , , . . ,a,), define I@(c) = al, right(c) = a,. For 

a set of chains C = {cl,. . ,ch}, define i@(C) = {k&cl), . . . , left(q)} and right(C) = 

{@MCI ), ” > right(ck)}. A set of chains is independent if for every CI,C~ E C, the 

edges (left(cl ), feft(c2)), (left(q ), right(cz)), (right(q ), right(c2)) do not belong to HC. 

’ Throughout the paper the logarithms are binary unless the base is indicated 
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The idea of the algorithm is to process all vertices one-by-one storing them in the 

independent set of chains C. The main observation is that a new vertex may have 

neighbors only in the sets left(C), right(C). Assume we have an independent set of 

chains C. 

The following procedure inserts vertex i into C. 

INSERT-VERTEX(C,i) 

8 

9 

10 

I1 

12 

13 

14 

15 

16 

query left(C) U {i} and right(C) U {i} 
if both answers are no then add one-vertex chain (i) to C 

if left(C) u {i} yields yes and right(C) U {i} yields no 

then find in E&(C) one or two vertices adjacent to i 

if one such vertex was found then append i to the corresponding chain 

if two such vertices a{, a: were found then 
replace chains (a’, , . . . , a:,), (a’,‘, . . . , a:!,) 

by chain (a:,, . . ,.;,&a;, . . . ,a::,) 

if right(C) U {i} yields yes and Iefi(C) U {i} yields IZO 

then proceed symmetrically to the previous case 

if both left(C) U {i} and right(C) U {i} yields yes 

then find in left(C) a vertex a{ adjacent to i 

find in right(C) a vertex cr$ adjacent to i 

if a{ #a:! 

return C 

then replace chains (al,, . . ,a:,), (a:, . . . ,a$) 
by chain (a’,‘, . . . ,a:;,, i,a’,, . . . ,a:,) 

else replace chain (ai) by chain (ai,i) 

The algorithm starts with the set C = { (1)) and iterates INSERT-VERTEX(C, i) for ver- 

tices i = 2,. . . , n. Clearly, when all vertices have been processed, the set C consists 

of the Hamiltonian cycle HC. It is straightforward that INSERT-VERTEX maintains an in- 

dependent set of chains. The if-then-else operator on line 13 checks for a particular 

case when i has a single neighbor in C which is the element of a singleton chain. 

To estimate the total number of queries, we have to estimate the number of queries of 

steps 4, 11 and 12. By simple binary search, step 4 can be done in 12 log n1 queries. 

Similarly, steps 11, 12 can be done in [log n1 each. Thus, INSERT-VERTEX( C, i) makes at 

most [2 + 2 log rrl queries and the whole algorithm RECONSTRUCT-MULTI(II, HC) makes 

at most [2 + 2 log nl n = O(n log n) queries which matches the lower bound. 

3. Quantitative multi-vertex model 

This model extends the multi-vertex model by the possibility of counting pairs of 

adjacent vertices in the query set. The first observation is that this feature reduces 

the information-theoretic lower bound. Since each query has potentially n + 1 distinct 
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answers, at least lognfl (n - 1)!/2 = n(n) q ueries in the worst case must be made by 

any algorithm. In this section we prove that surprisingly enough, this linear bound can 

be achieved and propose an algorithm that matches this bound. 

The algorithm has two main stages: 

RECONSTRUCT-QUANTITATIVE(?J, ffc) 

1. split the set of vertices { I, _ _ _ , n} into three disjoint subsets such that any 

two vertices from the same subset are not adjacent in HC 

2. find all edges between these subsets 

The first stage is easy to accomplish in O(n) queries: 

SPLIT(n, I%) 

I initialize three empty sets S,,&,& 

2 for i : = 1 to n do 
3 if querying Sr U {i} yields no 

4 then add i to Sr 

5 elseif querying S, U {i} yields no 

6 then add i to S, 

7 else add i to Ss 

Step 7 makes use of the fact that if i has a neighbor in both Sr and &, it cannot have 

one in S3. Clearly, SPLIT(R, HC) makes at most 2n = O(n) queries. 

The second stage deals with three bipartite graphs formed by the edges of HC 

between vertices of each of the three subsets. Consider such a graph. This is a bipartite 

graph in which the degrees of vertices have the values {0,1,2}. The problem now is 

to reconstruct the graph by querying its subgraphs, where the output of a query is the 

number of edges in the subgraph. 

Let Cl, Cx be the two independent vertex sets of the bipartite graph, each of size 

at most n. As the first step, consider the problem of determining the degree of each 

vertex in Cr by querying different subsets of Cr together with the whole set Cz. This 

can be trivially done in ICI 1 steps by querying, for each i E Cl, the set {i} U Cz and 

getting immediately the degree of i. However, better is possible. 

The degree reconstruction problem can be reformulated as follows: reconstruct an 

unknown vector (al , . . . , a,,), where aj E (0, 1,2}, by means of querying, for a set of 

positions / = { il, . . . , i,} C { l,..., n}, for the sum CIEIai. 

Let us focus for a moment on the restricted case when ai E (0, l}, and consider the 

following definition. Given n, a k x n (0, I}-matrix d is called a separating matrix for 

all (0, 1}-vectors of length n, if for any two such vectors vl, ~2, dvr # &‘VZ provided 

that til # ~2. In other terms, arithmetic sums of different subsets of columns of .r$ are 

all different. Associating columns to objects and rows to queries, it is easy to see 

that such a matrix provides an algorithm for the vector reconstruction problem with 

a, E (0, I}, that makes k queries. The following result is known. 
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Theorem 1. A separating k x n matrix can be effectively constructed with asymptotic 

number of rows k = 2n/ log n which is also the asymptotically minimal number. 

Theorem 1 has an interesting history. The problem of minimizing the number of 

rows in a separating matrix was first studied by Erdijs and Renyi [6], who proved the 

lower bound of 2nl log n. Several other proofs of this lower bound were obtained later 

with various methods. Probably, the latest one is the elegant proof from [12] using 

the Kolmogorov complexity (other references can be also found in [12]). As for the 

upper bound of 2n/ log n, it was independently proved by Lindstrom [ 131 and Cantor 

and Mills [3]. Later in [15], Lindstriim proposed a tricky construction of separating 

matrix with 2n/ log n rows asymptotically, based on elementary methods. 

It is important to note that the separating matrix provides an algorithm, such that any 

query it makes does not depend on the answers to the previous queries. In other words, 

all queries are independent and can be specified before any answer is known. Such 

algorithms are called non-adaptiue. Although non-adaptive algorithms are obviously 

less powerful in general, they often admit “nicer” mathematical formulations which 

allow to use more powerful mathematical methods. 

Another important remark about the algorithm implied by Theorem 1 is that its 

complexity is twice the information-theoretic lower bound log,+, 2” = n/ log(n + 1). 

Thus, in spite of the restriction of non-adaptiveness, the algorithm reaches, up to a 

constant factor of two, the absolute lower bound. Moreover, no adaptive algorithm 

with a better complexity is known. 

Let us now turn back to our case when ai E (0, 1,2}. The following extension of 

Theorem 1 holds. 

Theorem 2. A separating k xn matrix for the n-vectors with elements {0,1,2} can 

be eflectively constructed with the asymptotic value of k =4n/logn. 

Theorem 2 follows from the general bound k = 2 [log(d + 1 )] n/ log n for the case 

when the elements of the unknown vector take the values (0, 1, . . . , d}. The proof of 

this bound is an extension of Lindstriim’s proof from [ 151 of Theorem 1 and is given 

in Appendix A. 

Let us now return to the bipartite graph problem. As the second step, consider 

the following problem: Given a vertex i E C,, find its two adjacent vertices in C2 by 

querying subsets of Cl. The simplest way to do it (see also Section 2) is to find the 

two vertices in 2 log n queries using binary search. However, binary search is a strongly 

adaptive method, and for the reason that will become clear in a moment, we need a 

non-adaptive algorithm. 

Note that this problem as well as the vector separation problem above is typically 

studied in the area of Combinatorial Group Testing. We refer the reader to [5, l] for 

overviews of the area, and to [9] for a nice account of some results for the case of 

two “defective objects” to be identified. In our case, two “defective objects” among 

n should be identified in a non-adaptive manner and querying a subset outputs the 
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number (0,l or 2) of “defective objects” in it. To define such a non-adaptive algorithm 

amounts to constructing a k x n (0, I}-matrix such that the component-wise sums of 

two different pairs of columns are all different. Let us call such a matrix a 2-sepumting 

k x n matrix. The following result is from [ 141. 

Theorem 3 (Lindstrdm [14). / A 2-sepurating k x n matrix can he &xtively con- 

structed Gth the asymptotic value of k = 2 log n. 

A proof of Theorem 3, more general than the proof of [14], is given in Appendix B. 

Note that although Theorem 3 provides the same bound as the naive binary search 

method, its proof is non-trivial since the non-adaptiveness is a serious restriction here. 

For comparison, the optimal adaptive algorithm for finding two “defective objects” in 

the model with counting was proved to make C log n queries, where 1.26 < C d 1.44 [9]. 

Now we are in position to give an efficient algorithm for the bipartite graph problem 

that combines the two non-adaptive algorithms above. 

Consider the non-adaptive algorithm based on Theorem 3 for finding the two adjacent 

vertices in Cz for a given vertex i E Cl. This algorithm is simply a collection of subsets 

Pl,. . . , Pk C C, such that the numbers of adjacent vertices of i in PI,. . . , Pk identify 

uniquely the two adjacent vertices of i in Cl. Since P,‘s do not depend on i, we will ask 

about each Pj for all i E Cl “at once” by applying the separating matrix of Theorem 2. 

RECONSTRUCT-BIPARTITE (C, , cl) 

I. for ,j : = 1 to k 

2. apply the separating matrix from Theorem 2 to find, for each i E Cl, 

the number of adjacent vertices in Pj 

Clearly, after the whole run of RECONSTRUCT-BIPARTI~E(~~, Cz) the number of adjacent 

vertices of each i E Cl in each <, will be known, and therefore the adjacent vertices 

themselves can be determined. We conclude that RECONSTRUCT-BIPARTITE reconstructs a 

bipartite graph with II vertices in each component asymptotically in (2 logn)(4n/logn) 

= 8n = O(n) queries. 

Returning back to algorithm RECONVRUU-QIJANTII-IVE, solving the initial Hamiltonian 

cycle reconstruction problem, we summarize the complexity in the following final the- 

orem. 

Theorem 4. Reconstructing u Hamiltoniun cycle in the quantitative multi-vertex 

model can be done in O(n) queries. 

Proof. Consider the algorithm RECONSTRUCT-QUANTITIVE. The first step (algorithm SPLIT) 

requires 2n queries. The second step can be done by three applications of algorithm 

RECONSTRUCT-BIPARTITE. Therefore, the overall query complexity can be bounded from 

above by 2n+3.8n=26n=O(n). 0 

In conclusion we note that the quantitative model studied in this section (also called 

the dditive model) presents an interesting theoretical framework for reconstructing 
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graphs of more general classes than Hamiltonian cycles. Results in this direction are 

presented in [7]. 

4. k-vertex and quantitative k-vertex models 

In practical experiments only a limited number of primers can be submitted to one 

reaction. The technology described in [ 191 restricts this number to be smaller than 16. 

Reactions with a bigger number of primers do not give reliable outputs because of 

reaction inhibiting effects. In terms of our mathematical model, the number of vertices 

that can be queried is bounded by some predefined constant. This restriction cannot be 

captured within the methods described in the previous sections as all of them essentially 

require querying an unbounded number of vertices at some stages. This led us to 

consider in this section the k-vertex and quantitative k-vertex models which restrict the 

multi-vertex and quantitative multi-vertex models respectively by that every queried 

complete subgraph of K,, has at most k vertices. 

The first observation is that each experiment with k vertices can be simulated 

by (;) =(k(k - 1)/z) ex eriments with 2 vertices. Since the lower bound for the P 
2-vertex model is asymptotically n(n - 2)/4 (see Section 2) any algorithm that solves 

the problem in the k-vertex model (even in the quantitative one) makes at least 

n(n - 2)/2k(k - 1) queries. Therefore, the focus of this section is to reduce the mul- 

tiplicative constant in the quadratic complexity bound. For both models, we reduce 

this constant to one, that is we propose an algorithm which makes (n(n - l)/k(k - 1)) 

(1 + o( 1)) queries. Note that this is twice the lower bound, but is the best we could 

expect since the lower bound n(n - 2)/4 for the a-point model is not known to be 

tight - actually, no better algorithm than querying all the n(n - 1)/2 edges is known. 

The central idea is to cover the complete graph K,, by subgraphs Gi, . . . , GM, where 

each Gi is a complete graph K,, m < k, such that every edge (i, j) of K, belongs 

to exactly one Gi. Assume that we have constructed such a covering. Querying each 

Gi, we find at most n of them which contain edges of the Hamiltonian cycle HC. In 

each such Gi, we can identify the edges of HC using the techniques developed in the 

previous sections. (Of course, G, n HC does not form a Hamiltonian cycle of Gi, but it 

can be seen that the results of Sections 2 and 3 still apply to such graphs.) Processing 

one Gi then requires O(k log k) queries for the k-point model (Section 2) and O(k) for 

the quantitative k-point model (Section 3) and the overall complexity of the method is 

respectively M + O(nk log k) and M + O(nk). Thus, the main problem is to minimize 

M, that is to cover the graph K,, by a minimal number of graphs K,,,, m d k, such that 

every edge of K,, occurs in only one of them. In the rest of the section we describe 

how it can be done. 

In terms of sets, our problem is to construct a minimal number of subsets of the set 

{ 1,. . , n} such that every subset has at most k elements and every pair i, j, 1 <i, j dn, 
occurs in exactly one subset. The problems of arranging objects of a set into some 

number of (intersecting) subsets of a given size such that each object and each pair 



V. Grebinski, G. Kucheroll I Discrete Applied Mathemutics 88 (1998) 147-165 157 

of objects occur in a specified number of subsets is a well-established area in com- 

binatorics called design theory or block design (see e.g. [8, 2, 41). However, most of 

the results there present conditions for such an arrangement to exist and do not con- 

sider algorithmic aspects of its construction. Furthermore, subsets are usually required 

to have one or several specified cardinalities. This requirements are too strong for our 

purpose, as we allow subgraphs of any size smaller than k and we look for an algorithm 

approximating the minima1 number of subgraphs and not for an exact solution. 

Another link that should be mentioned here is the Theorem of Rod1 [18] that insures 

that there exists a covering family of complete subgraphs Kk the number of which tends 

to (n(n - 1 )/k(k - 1)) for n going to infinity. However, we need stronger properties 
_ the construction should be “efficient” and should guarantee that no edge is covered 

many times. 

We present below a simple and easy-to-implement algorithmic solution to this prob- 

lem. This solution has some relationships with classical design theory results (see the 

methods of u&ze block design in [2]), but we will not discuss them here. Instead, 

we present it in a self-contained way and focus on algorithmic aspects and complexity 

analysis. 

Lemma 1 (Exact Design). Consider the complete graph K,,. Let n >k2 and assume 

that the set of vertices V = { 1,. . . , n} is divided into k disjoint subsets 4,. . . ,& of n/k 

elements euch. If gcd(n/k,(k - l)!)= 1, then (n/k)= subgraphs Kk can be effectively 

constructed such that every edge between Si and S,, i # j, occurs in exactly one of 

the subgruphs. 

Proof. Consider a (k x n/k)-table A0 where the vertices of sj are placed (in any order) 

in row j. We construct a sequence of (k x n/k)-tables A’, A=, . . , Anlk-’ according to the 

following formula: A’(& j) =A’(& j+(i- 1)t modn/k), 1 <t <n/k- 1. Intuitively, at each 

iteration each row i is circularly rotated by (i - 1). We claim that for every two vertices 

x E S;, , y E S,, il # i2, there is exactly one column in A’,A’, . ,A”/k-’ containing both 

x and y. Indeed, assume that two tables A’l,A”, tl # t2, contain a column with X, y. 

Then tl , t2 must be solutions of the equation ji +(il - 1 )t = j2 +(i2 - 1 )t mod n/k, that is 

ji - j2 = (i2 - il )t mod n/k. Value (i2 - il) belongs to the set [-(k - l), - l] U [ 1, k - 11. 

Since n/k is relatively prime to (k - l)!, it is relatively prime to all numbers from 

[-(k - I ), - 11 U [l, k - 11. Therefore, (i2 - il) has an inverse element in ring Z/(n/k)Z, 
and there is only one solution t = (i2 - il )-I( jl - j2) of the equation above in Z/(n/k)Z. 

This shows that if there are two columns containing X, y, they must belong to the same 

table A’. However, in each A’ there is only one column containing x. There are n/k 

tables each containing n/k columns. Associating every column to a complete subgraph, 

the lemma follows. 0 

The proof above gives a simple effective procedure of constructing subgraphs Kk. 

If n/k is not relatively prime to (k - l)!, we extend the set V of vertices by dummy 

vertices V’ such that (1 V I+ 1 V'l )/k verifies the property. Thus, the following corollary 

holds. 
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Corollary 1. Under the conditions of Lemma 1, ifr >nJk and gcd(r, (k- l)!) = 1, then 

r2 subgraphs K,,,, m <k can be eflectively constructed such that every edge between 

Si and 4, i # j, occurs in exactly one of the subgraphs. 

Corollary 1 allows to construct subgraphs that cover all edges connecting vertices of 

distinct subsets of the partition. To cover the whole graph, we apply the construction 

recursively to each subset 4. This leads to the following algorithm, that constructs a 

covering of the set of vertices V, 1 VI = n. 

DESIGN( v, k) 

1 if n d k then output K,, 

2 else find the smallest number q > max(k, [n/k]) such that gcd(q,(k - l)!) = 1 

3 divide the vertices of V together with qk - n dummy vertices into k disjoint 

subsets S,, . . . , Sk 

4 by applying Corollary 1 find q2 subgraphs K,,,, m d k covering each edge 

between distinct subsets Si and S exactly once 

5 for j:=l to k 

6 DESIGN(s$, k) 

To estimate the total number A4 of subgraphs K,, we need an estimate of the small- 

est number q b max(k, [n/k] ) such that gcd(q, (k - l)!) = 1, i.e. q is not divisible by 

any prime number smaller than k. For the purpose of complexity estimation, we as- 

sume that instead of such q we choose p, where p is the smallest prime number 

p 3 max(k, [n/k] ). Obviously, p >q and p is not divisible by any number smaller 

than k. From Number Theory, it is known that the asymptotic bound nextprime 
- n <n11/20 holds (see e.g. [16]), where nextprime = min{p is prime ) pan}. Let 

A4 =f(n, k) be the total number the subgraphs constructed by DEsIGN(n, k). 

Then 

( 

1 if n<k, 

f(n, k) = nextprime( + k if k<n<k2, 

nextprime(n/k)2 + k . f (n/k, k) if n 2k2. 

To estimate the asymptotic behavior of f(n, k) for n + CO, we consider only the last 

case. 

f(n, k) < ‘ff$ k’-’ (s + ($)“‘*O)* 
i=l 

n = k 2 + 2(n11/20 _ 1) (k’l/=O _ ‘)- -1 n’l’o _ 1 

+ k1/10 _ 1 
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Since the overall query complexity of the method is f’(n, k) + O(nk log k) for the 

k-point model and ,f(n,k) + O(nk) for the quantitative k-point model, we obtain the 

final result. 

Theorem 5. Reconstructiny u Hamiltonian cycle in the k-vertex model can be done 

in (n2/k2)(1 + o(1)) queries. 

5. Practical aspects and computer experiments 

In this concluding section we discuss the applicability of our results to real-life 

physical mapping projects, and describe some computer experiments. Since the k-vertex 

model is most close to the reality of biological experiments, we concentrate on this 

model. 

Note that algorithm DESIGN can be implemented very efficiently. Number q at line 

2 can be found by simply testing numbers max(k, [n/k] ),max(k, [n/k] ) + 1,. . . succes- 

sively for the property of being relatively prime to all numbers smaller than k. How 

many numbers do we have to try before we find a good one? An attempt to give a 

rigorous answer would lead to deep issues of number theory. Without undertaking this 

analysis we note that this number of tries is small enough. Even if we look for the 

smallest prime number greater than n/k, the estimation nextprime(n/k)-n/k <(r~/k)“:~’ 

from the proof above is very pessimistic. We will have to try only ln(n/k) numbers 

“on average” as the number of primes smaller than n is asymptotically n/Inn. If we 

look for a number which is possibly not prime but relatively prime to all numbers 

1 , . . . , k - 1, then the number of tries will be even smaller. Considering the set of 

numbers relatively prime to 1,. . . , k - 1, it can be shown, using some number theory 

arguments that we omit, that the average gap between consecutive numbers from this set 

is e7 log k M 1.781 Ink asymptotically when k + 0;) (y = 0.577.. . is Euler’s constant). 

This confirms that the procedure of line 2 takes very reasonable computation time. 

Note also that the case when k <n < k2 can be greatly optimized. The source for 

optimization is that if n is close to k, then only a small part of the (k x q)-table (q >,k) 

will be filled with “real” vertices. Therefore, it might be better to create a table with 

a number of rows smaller than k (e.g. of order J;;) that would be densely filled. This 

optimization improves considerably the performance of the algorithm for small n. 

Algorithm DESIGN has been implemented in C++ and tested on various argument 

values. It appeared that for values of n, k arising in practical situations, DEs&N(n, k) 

runs very fast. The following table summarizes some computations on a SPARC-10 

workstation. 

The ratio of the number of subgraphs constructed to n(n - I)/k(k - 1) indicates the 

quality of the design. As expected, the ratio approaches 1 when the recursive depth of 

the algorithm increases, the latter being equal to log n/log k. Note however that this is 

a somewhat pessimistic characteristic of the design quality since n(n - l)/k(k - 1) is 

the absolute minimum of the number of subgraphs, which is not always achievable. 
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n k Number of subgraphs Ratio to w Time (s) 

500 8 6524 I .464 0.81 

500 16 2113 2.032 0.49 

1000 8 20 055 1.124 3.01 

1000 16 6394 1.536 1.47 

5000 8 465211 1.042 73.54 

5000 16 112689 I .082 33.9 

10000 8 1837 697 1.029 296.5 

10000 16 435 441 1.045 134.34 

Finally, let us discuss the lower order term in the complexity bound of Theorem 5. 

This term is of order nk log k for the k-vertex model and nk for the quantitative 

k-vertex model. For practical data (e.g. IZ N 1000, k N 16) this value may be even 

bigger than the number of subgraphs in the design (see above). Recall that this term 

corresponds to finding actual edges of the Hamiltonian cycle after localizing them 

in at most n complete subgraphs of size at most k. Fortunately, as n is big and k 

small, the expected time for this work is considerably smaller. Actually, as (n/k)2 >> 

n, most of “positive subgraphs” will contain, with high probability, only one edge 

of HC. Such an edge can be found in about 2 log k queries ( [log (!)I + 1 in the 

worst case, see [ 1, 51). Therefore, a good estimation (from above) for this work is 

of order 2n log k queries. (Note that quantitative k-vertex model makes no differ- 

ence here.) Computer simulations show that for n = 1000, k = 16 there are around 

911 positive subgraphs. If we are satisfied with finding only one edge from each 

positive subgraph we need about 12 690 queries (including determination of positive 

subgraphs). 

It must be noted that mathematical formalizations studied in this paper must be con- 

sidered as the first step for modeling real-life physical mapping projects. We did not 

take into account some further biological constraints arising in practice. One such 

constraint is related to errors that are always present in biological experiments. An- 

other complicating feature is implied by the fact that in practice, the contigs which 

yield the positive outcome of the PCR are not those that are just adjacent but rather 

those that are situated within some threshold distance. This leads to a graph which 

is an extension of the Hamiltonian cycle such that a vertex is connected to sev- 

eral vertices in its “neighborhood” and not just to one vertex “on each side”. How- 

ever, we believe that our procedure for design construction is a useful basis that 

can be further refined into mathematical models better adapted to particular practical 

situations. 

To conclude, we note that combinatorial search problems are very common in molec- 

ular biology (see [ 1 l]), screening clone libraries being a typical example. Therefore, 

we believe that the techniques developed here can be successfully applied to other 

biological tasks too. 
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Appendix A 

Recall that a separating matrix & for a class of vectors V is such that doi # &VZ 

for any vl, 02 E V, v1 # 02. Equivalently, given vector b = JZZX for some x E V, vec- 

tor x can be uniquely reconstructed. We will prove the following generalization of 

Theorems 1 and 2. 

Theorem A.l. A separating k x n matrix for the n-vectors with elements (0, 1,. . ,d} 

can be eflectively constructed with the asymptotic value of k = 2 [log(d + 1 )1 n/ log n. 

Since the proof is an extension of the Lindstrijm’s construction for Theorem 1, we 

first sketch the proof of Theorem 1 below. 

The construction is based on the following key lemma. 

Lemma A.2. Let 8 be a collection of sets such that for all B in 9 and A c B 

we have A E 8. Let the function f(A) be defined for all A E .F with ,f (A) = 0 or 

f(A) = 1 and such that for some jixed S E .F 

f(A n S) = f (A) when A E 9. 

[f’ C E 9 and C is not a subset of S, then \ve have (IAl is the number of elements 
in A) 

c f(A)= 1 f(A). 
./I c c. iA) odd A c c, IAl eom 

Proof. Since C g S there is a E C\S. Since a 4 S we have (A U {a}) n S = A f’S and 

by the property of ,f, 

f(A U {a}) = S(A) when A E .p. 

If A c C and a $ A then A U {a} c C, also one of IAl and IA U {a}] is odd and the other 

is even. It follows that the terms in the two sums above are pairwise equal, hence the 

sums are equal too. 0 
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Now we describe how to construct a separating matrix & for the vectors with 

elements (0, 1 }. Take a natural it. The rows of d will be labeled by the subsets of 

{1,2,..., n}. The columns are divided into blocks, one block for each non-empty subset 

{Ql,Q2,. . . ,ai}. Such a block consists of i columns. For each block {al,az,. . .,ai} we 

fill the columns of the matrix as follows: 

l Fix any sequence 16nl cn2-c ... <ni <2’-‘, of natural numbers with the property 

that different subsets of {nl,. . . , a;} sum up to different numbers. We will take 

I’& = 2k-’ for this purpose. 

l For the column corresponding to ak put arbitrarily nk l’s in the rows labeled by 

subsets of {a,, . . . , ai} of odd cardinality. 

l Put O’s to the rows corresponding to the other subsets of {al,. . . , q}. 

l Fill all other entries using the rule that value at the row marked by a subset A is 

the value of the entry at the row labeled by A n {al,. . ,aj}. 

Take any block corresponding to a subset C. Consider a vector resulting from the 

following linear combination of the rows of the matrix: add up all rows labeled by the 

subsets of C of odd cardinality and subtract those labeled by the subsets of C of even 

cardinality. By Lemma A.2, all entries in the columns that correspond to blocks S such 

that C g S will turn to 0. For the current block, the sum will be (2’, . . . , 2i-2, 2’-‘), 

and the equation 

20 .x, + . . . + 2i-2 . xi_, + 2i-1 . xi =b (1) 

has a unique solution since Xk = 0 or XX_ = 1. This leads to the following strategy of 

determining x. Order all blocks S1 , . . . , S& _ 1 such that if Si C 4 then i ,< j. Start from 

S2”-_1. Take the linear combination as explained above, obtain an equation (l), and 

determine all the unknowns corresponding to this block. Then proceed to the previous 

block in the order. At each step, the unknowns corresponding to the bigger blocks 

in the order have been already determined, those corresponding to the smaller blocks 

will have coefficient 0 in the corresponding linear combination, and therefore, those 

corresponding to the current block can be determined uniquely. 

The matrix considered has IZ 2n-1 columns and 2” rows, which proves Theorem 1. 

Now we generalize the construction above to prove Theorem A.1. Note that the 

value of k in Theorem A. 1. matches the theoretic-information lower bound. 

Proof of Theorem A.l. The construction of the matrix is essentially the same as in 

the proof of Theorem 1. The place where this proof fails is the choice of nl, ~22,. . . , ni. 

We cannot generalize this idea directly to the case when xi’s take values other than 

0 or 1. Choosing bigger numbers is impossible since at most 2’-’ l’s can be put to 

a column. To cope with this difficulty, we use the following observation about the 

matrix & above. Assume that some column in that matrix is filled with 0’s. The only 

consequence of this will be that the corresponding coefficient in (1) will turn to 0, 

and the corresponding variable value cannot be recovered. The other properties of the 

matrix are preserved and the other variables can be determined. 
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If now the variables range over (0, 1,. . . , d}, then they can be determined from 

p = [log(d + l)] equations: 

2O ‘Xg + 2”.XP + 22” 'Xzp + ... =/lo, 

2’ ‘Xi $2’“’ .x,+1 +22’j+’ .xQ+i f... =b,, 

. . 

2”-’ ‘XII-i +22p-’ ‘X3-l +23p-’ 'x3p-l f... =h,_,. 

This gives a solution to the problem: we construct a ([log(d + l)j2”) x (n2”-‘)-matrix 

by copying d p times. where the ith column in a block is presented only in the 

(imod p)th copy and replaced by a zero columns in all the others. Each copy allows 

to obtain one equation of the system above. This completes the proof. 0 

Theorem 2 now follows as the particular case of Theorem A. 1 when d = 2. 

Appendix B 

We describe an effective method of constructing a d-separating matrix for any 

fixed d. 

Definition B.1. A (0, 1)-matrix .s?’ of size k x n is called a d-separating matrix iff the 

sum of any up to d columns is unique. (the sum is over CD). 

In our situation, given n, we are looking for a matrix with minimal k. We will 

present such a matrix with k = d log n asymptotically. The construction has two stages: 

First we construct such a matrix over a field Z, for sufficiently large p that depends 

on k and tends to infinity as n does. After this we will code each element of this field 

as a binary vector. 

We need a well known lemma about symmetric polynomials: 

Lemma B.2 (Newton’s formulas). Consider ttvo sets of symmetric polynomials: 

pi=exj (i=l,...,d) 
j=l 

and 

s, = c 'jlXJz...Xj, (i=l,..., d). 
I<jj <j:...<j,$n 

Then there exist polynomials qi E Q(x,, . ,xcI) such that 

~7; = 4i( PI ). . . > Pd 1. 

The standard compactness argument shows that for each d, there exists a prime 

number p such that the set of polynomials q; can be found in $(xi, . . . ,xd). Moreover, 
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this holds for almost all primes p. We define pd to be the smallest prime such that 

for all primes p, p 2 pd implies the existence of the set {qi E Zp(xl,. . . ,&j)}. 

Now, given n and d, we construct matrix d as follows: 

1. 

2. 

3. 

4. 

It 

Fix some prime p, p 3 pd and suppose that n = pm for some m. 

Consider each i E (1. . . n - 1) as an element of G F(pm). Let the ith column of 

d be the vector 

i 

i2 ( 1. . . . 

id 

(Here each entry is interpreted in GlF(p”).) 

Fix any basis 01,. . . , v, of GF(p”). Transform each entry w = al vi +. . + c(~v~, 

txi E .Zpp, of the matrix d into the m-tuple (al,. . . , a,,,). 

Finally, transform each entry w E ZP to the vector (over Z) of its binary repre- 

sentation. 

is easy to estimate the height of the matrix d: 

log n 
d*m* [logpl=d- 

[log Pl 
1% P 

* [logpl =dlogn--- 
log P 

+dlogn when n + co. 

Here we suppose that p + 00 when n + M. 

Lemma B.3. The matrix d is d-separating. 

Proof. Consider Step 2. We will show that the sum of up to d columns defines uniquely 

these columns. Let v,, , vaz,. . . , v,, be a subset of columns al, a2,. . . , ad. Assume that 

WI 

v,, + v,, + . . + VQ = 
w2 

i 1. 

. . . 

wd 

Let pi = (-l)isi(wi, ~2,. . . , wd). It is well known that ai are the roots of the polynomial 

g(x) = @SC;=, Pi+ ) and since the polynomial g cannot have more than deg(g) = d 

roots in the field, they are uniquely defined. If the sum of d’ -cd columns is taken, we 

have 0 as the root of degree d - d’, and the non-zero components are again uniquely 

defined. 

Step 3 cannot change the property of the matrix since addition in GF(pm) can be 

viewed as addition of m-tuples with elements in ZP. 

Step 4 also keeps the matrix d-separating. Indeed let vl, 212,. . . , up, WI, ~2,. . . ,w,p E 

zp and VI, V2,. . . , Vk’, WI, W2,. . . , Wk” be vectors of their binary representation. What 

remains to show is that 

5 vi=5w* (sum in Z r’og JJ~ ) 
i=l i=l 
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implies 

I’ k” 

XII, =Cwi (sum in ZP). 
i-l i=l 

But this is immediate since 

E(1,2,4,...,2) - v (Zp). 

This proves the lemma. 0 

When d = 2, the height of the matrix ~4 is 2 log n which proves Theorem 3. 
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