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A b s t r a c t - - T h i s  paper discusses the numerical solution of first-order initial value problems and a 
special class of second-order ones (those not containing first derivative). Two classes of methods are 
discussed, super-implicit and Obrechkoff. We will show equivalence of super-implicit and Obrechkoff 
schemes. The advantage of Obrechkoff methods is that they are high-order one-step methods and thus 
will not require additional starting values. On the other hand, they will require higher derivatives of 
the right-hand side. In case the right-hand side is complex, we may prefer super-implicit methods. 
The disadvantage of super-implicit methods is that they, in general, have a larger error constant. To 
get the same error constant we require one or more extra future values. We can use these extra values 
to increase the order of the method instead of decreasing the error constant. One numerical example 
shows that the super-implicit methods are more accurate than the Obrechkoff schemes of the same 
order. (~) 2003 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - O b r e c h k o f f  methods, Super-implicit method, Initial value problems. 

1: I N T R O D U C T I O N  

In  th is  paper ,  we discuss t h e  numer ica l  so lu t ion  of  f i rs t -order  ini t ia l  va lue  p rob l ems  ( IVPs)  

y'(x)  = f ( x ,  y(~)) ,  y(0)  = y0, (1) 

and a specia l  class (for which  yl is miss ing)  of  second-order  I V P s  

y ' ( x )  = f ( z , y ( x ) ) ,  y(O) = Yo, yI(O) = Y~. (2) 

T h e r e  is a vas t  l i t e r a tu re  for t h e  numer ica l  so lu t ion  of  these  p rob l ems  as well  as for t h e  genera l  

second-order  I V P s  

y"(x)  = : ( x ,  y (z ) ,  ~'(~)) ,  y(0)  = y0, ~'(0) = y~. (3) 

See, for example ,  t h e  excel lent  book  by L a m b e r t  [1]. Here,  we are  in te res ted  specif ical ly in two 

classes of  me thods .  T h e  first class, cal led super  impl ic i t ,  was deve loped  recent ly  by the  second 

0898-1221/03/$ - see front matter (~) 2003 Elsevier Science Ltd. All rights reserved. Typeset by ~4~-TEX 
PII: S0898-1221 (02)00344-9 



384 B. NETA AND T. FUKUSHIMA 

author  [2] for the  first-order IVPs  (1) and for the special second-order IVPs  (2). The  general 
form of such methods  for the second-order IVPs  (2) is given by 

k g 

y +l + = h 2 Z # 0 (41 
j = l  3=0 

For m > 0, the methods  are called super implicit because they require the knowledge of functions 
not only at past  and present but  also at future t ime steps. } 'hkushima developed Cowell and 
Adams type super-implicit  methods of arbi t rary degree and auxiliary formulae to be used in the 
s tar t ing procedure. The  first step is evaluating Yl using the initial conditions and some future 
values 

g 
2 (0) Yl = yo + hy~o + h ~ bj fj .  (5) 

j=0  

Next, obtain the additional value Y2,. •. ,  ym-1,  using 

-- - yn_l  + h2 Z b n//j, (6) 
j = 0  

Coefficients b~. n) are given in [2]. In the case of the sixth-order method,  we discussed here 

/ 367 3 47 ~ 7 
Yl = Yo + hY~o + h 2 ~ l - -~ fo  + -~fl - ~4-6f2 + ouu f3 - 4 -~f4  , (7) 

y 2 = 2 y l _ Y o + h 2 ( 1 9  17 7 1 1 ) 
2--~ f0 + ~6 f l  + 1 -~f2  + ~-6f3 - ~-~-~f4 (8) 

Thus, we have to solve a system of nonlinear equations. In order, to make the system smaller, one 
can subdivide the total  interval of integration to subintervals. This will require special formulae 
to obta in  the ending values. Symmetr ic  Cowell type  methods  of order up to 12 are given along 
with s tar t ing and ending formulae. The  integration error grows linearly with respect to t ime as 
in symmetr ic  mult is tep methods.  

The second one is due to Obrechkoff 1, see [3]. These methods for the solution of first-order 
IVPs (1) are given by (see, e.g., [1, pp. 199-204; 4-6]) 

k g k 

j=0  i=1 j = 0  

According to [6], the error constant  decreases more rapidly with increasing g rather  than  the 
step k. I t  is difficult to satisfy the zero stability for large k. The  weak stabili ty interval appears  
to be small. The  advantage of Obrechkoff methods is the fact tha t  these are one-step high-order 
methods and as such do not require additional s tar t ing values. A list of Obrechkoff methods for 
g = 1 , 2 , . . . , 5 -  k, k = 1, 2, 3,4 is given in [6]. For example, for k = 1 and g = 2, we get an 
implicit method  of order 4 with an error constant Cs = 1/720, and the method is 

h h 2 
Y n + l  - -  Y n  ~-  -~ (Y/n+l q- Y/n) -- ~ (Y~+I -- Y~) " (10)  

For k = 1 and g = 3, we get an implicit method of order 6 with an error constant  Cr = -1/100800,  
and the method is 

h , h 2 ,, h a ,,, y , , )  
Y n + l  - -  Y n  = -~ (Yn+l  q- Y/n) -- ~ (Yn+l  -- Y~) q- ~ (Yn+l  -Jr- . (11)  

1Bulgarian mathemat ic ian  Academician Nikola Obrechkoff (1896-1963, born in Varna) who did pioneering work 
in such diverse fields as analysis, algebra, number  theory, numerical analysis, summat ion  of divergent series, 
probabil i ty an statistics.  
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Obrechkoff methods  for the solution of second-order IVPs (2) can be found in [7]. Here, P-Stable 
Obrechkoff methods  with minimal phase-lag for periodic initial-value problems are discussed. 
Also Simos [8] presents P-stable Obrechkoff method. In [9], Obrechkoff methods for general 
second-order differential equations (3) are developed. 

Before we continue, we need several definitions. For the multistep method to  solve the first- 
order IVP 

k k 

i = 0  i = 0  

we define the characteristic polynomials (see, e.g., [1]) 

k 

p(~) = ~ a,~ ~, (13) 
i = 0  

and 
k 

~(~) = ~ b,~'. (14) 
i = 0  

The order of the method is defined to be p if for an adequately smooth arbi t rary test  function ¢(x), 

k k 

~ a,¢(x + ih) - h ~ b,¢'(x + ih) = cp+lhp+l¢(p+l)(x) + o (hp+2), 
i=O i=O 

where Cp+l is the error constant. The  method is assumed to satisfy the following: 

(1) ak = 1, la01 + Ib01 # 0, 
(2) p and a have no common factor (irreducibility), 
(3) p(1) = 0, p'(1) = a(1) (consistency), 
(4) the method is zero-stable (relates to the magnitude of the roots of p). 

For the multistep method to solve the second-order IVP 

k k 

i = 0  i = 0  

we define the characteristic polynomials p and a as before. 
The order of the method is defined to be p if for an adequately smooth arbi t rary test func- 

tion ~(z), 

k k 

~¢(x  + ih) - h ~ ~ b,¢"(~ + ih) = cp+~h~+~¢ (~÷~)(~) + o (h~+~), 
i=O i=O 

where Cp+2 is the error constant. The  method is assumed to satisfy the following: 
k 

(1) ak = 1, [a0[ + [b0] ¢ 0, ~--~=0 [b~[ ~ 0, 
(2) p and a have no common factor (irreducibility), 
(3) p(1) = p'(1) = 0, p"(1) = 2a(1) (consistency), 
(4) the method is zero-stable. 

The method is called symmetric if 

ai = ak- i ,  bi = bk-i,  for i = 0, 1 , . . . ,  k. 

DEFINITION. (See [10].) The method described by the chara~cteristic polynomials p, a is said to 
have interval of periodicity (0, H 2) i f  for ali H 2 in the in te rva / the  roots  of 

V (w, H 2) = p(w) + H2a(w)  = O, H = wh, 
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satisfy 
wl = e  ie(H), w 2 = e  -ie(H), Iwsl-~l, s = 3 , 4 , . . . , k ,  

where O(H) is a real function. 

DEFINITION. (See [10].) The method  described by the characteristic polynomials p, a is said to 
be P-stable if its interval of  periodicity is (0, oc). 

Lambert and Watson proved that a method described by p, a has a nonvanishing interval of 
periodicity only if it is symmetric and for P-stability the order cannot exceed 2. Fukushima [11! 
has proved that the condition is also sufficient. To be precise, we quote the result of [11]. 

THEOREM. Consider an irreducible, convergent, symmetric  multistep method.  Define a function 

p(e e) 
g(o)- ~(e,o) 

Then, the method  has a nonvanishing interval of  periodicity i f  and only i f  

(1) g(O) has no nonzero double roots in the interval [0, Tr], or 

(2) g"(O) is positive on all the nonzero double roots of  g(O) in the interval [0, ~r]. 

However, higher-order P-stable methods were developed by introducing off-step points or higher 
derivatives of f ( x ,  y). 

DEFINITION. (See [12].) Phase-lag is the leading coefficient in the expansion of ](0(H) - H) / H[. 

Symmetric two-step Obrechkoff methods involving higher-order derivatives were developed by 
Ananthakrishnaiah [7]. 

2. F I R S T - O R D E R  I V P S  

To show the similarity between Obrechkoff and super-implicit methods, let us consider the 
method given by (10). Now, if we approximate the higher-order derivatives (in this case y") by 
some finite differences, we get super-implicit methods (see [2]). Clearly, the approximation must 
be of high enough order so as to preserve the order of Obrechkoff method. If this is not done, 
we may get a super-implicit method of a lower order. For example, suppose we use centered 
differences for the second derivatives, then 

I / / / 

i ,  _ Yn+l - Yn-1 tl Yn+2 -- Yn (16) 
Yn 2h ' Yn+l - 2h 

Substituting these in (10), we get 

h h2 (Y'n+2- Y~ Y'n+12~ hymn 1) 
y~+l  - yn = ~ ( y ' + l  + y ' )  - ~ \ ~ 

Simplifying, one has a second-order approximation 

yn÷l  - ~ = - y ' + ~  + ~ -  ( ~ ' ÷ 1  + y ' )  - y ' - l .  (17) 

Using MAPLE [13], we find that the truncation error is 

11 hSy(5 ) + O (h 6) 
720 

so the method is actually fourth order. Notice that, the error constant is 11 times larger than 
the original Obrechkoff method (10). We had to pay a price for not requiring y" and it comes in 
the form of larger error constant and requiring a future value (Yn+2)- 
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If we take a forward approximat ion of order 3 

2~ i i 1 : -- -- + 2 Y n - 1  -- Y n - 2 )  - -  2yn+ 1 y~ (yn÷l  yn -1 )  1 - ~  (y '÷2  ' ' ' 
(18) , 1 1 

yn÷l  = ~ (y '÷2  - y ' )  - 1 - ~  (y '÷3  - 2y '÷~  + 2y" - y ' - l )  • 

Substi tut ing these in (10), we get 

y~÷ ,  - y~ = ~ (y '÷1  + y ' )  - ~ (y '+2  - y ' )  - I - ~  (Y'÷3 - 2y~÷~. + 2y" - y ' _ , )  

+ i ~  ( y ; ÷ l  - y'~-~) - 1 - ~  (Y'÷~ - 2y~÷~ + 2 y ' _ l  - y~_~ . 

Simplifying 

y ~ ÷ ~ - y n  ~ ( y ' ÷ l + y ' ) -  (y '+~  , , , = -- Yn+l  -- Yn "{- Y n - 1 )  

h _ 3  I t t , . 
+ -F~ (Y'÷~ Y"÷~ + 2y,,÷~ + 2y" - ~yn-1 + y . -~)  

After collecting like terms,  we get a third-order approximat ion 

h , h , 5 h  9 5 h  9 h , h , (19) 
y~+~ - y .  = ~ y ~ + ~  - ~ y ~ + ~  + y '+~ + y" _ ~ y ~ _ ~  + l - ~ y ~ _ 2 .  

Again using MAPLE,  we find tha t  the  t runcat ion error is 

1 hSy(5 ) + O ( h  6) 
720 

so the method is actually fourth order. This t ime we have the same error constant  as Obrechkoff 
method (10), but  require more future values than  before. One can use these ext ra  values to get a 
higher-order method.  The  price now is two future values to get the same error constant.  It  does 
not seem to be worthwhile to get the same error constant  if we can increase the order. 

3. S E C O N D - O R D E R  I V P S  

The numerical integration methods  for (2) can be divided into two distinct classes, 

(a) problems for which the solution period is known (even approximately)  in advance, 
(b) problems for which the period is not known [7]. 

For the first class, see [14,15] and references there. Here, we consider the second class only. In 
this section, we take the P-stable method of order 6 given by Ananthakr ishnaiah [7] 

h 2 h 4 
= " 18 n . ii [ (4) ) 

(20) 
h 6 [ ( 6 )  y ( ~ )  

and show how to get a super-implicit  method  equivalent to it. This method has a t runcat ion 
error 

50400 hSy (s) + O (h ~°) , 

and it is of minimal  phase-lag. In order, to get a super implicit, we expand ~,~+~ ~ (6) + 18yn(6) +Yn-1- (6) 
in te rms of y" at  n and neighboring points, i.e., 

y(a+) 1 + 2y (s) + y ( ~  = A y ~  + S y ~ + ~  + C y ~ _ ~  + D y e +  2 + E y ~ _  2, (21) 
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where the undetermined coefficients can be found by comparing coefficients of the Taylor series 
expansion on both sides. The resulting system of equations is 

A + B + C + D + E = O ,  

B - C + 2 ( D - E )  = 0 ,  

B + C + 4(D + E) = 0, 

B -  C + 8 ( O -  E) = 0, 

24 
S + C + 16(O + E) = 4~-~, 

B -  C +  3 2 ( O -  E) = 0. 

(22) 

24 16 4 
A =  h - ~ ,  B = C -  h4, D = E = ~ .  (23) 

Thus, 
I !  I1 I !  I I  

Yn-2)  
(6) h 4 

Y,+l + 2y(n 6) + Y(6)1 = 24y~ -- 16(y~+ 1 + Yn-1) + 4(y~+2 + 

Now, we do the same for the fourth-order derivatives 

(24) 

Vn+l ~ (4) _ 22y(4) + y(4) l  = ay n'' + bYn+l" + cYn-lt' + dyn+ 2 "  + eyn_2," (25) 

where the undetermined coefficients can be found in a similar fashion. It is easy to see that  

168 92 8 
a -  b = c =  - - -  d = e -  

3h 2' 3h 2' 3h 2" 
(26) 

Thus, 

y,~-l) + 8(y,,+2 + y"-2) 92(Yn+1 + " (4) _ 22y(n4) + y(4_) 1 168y~ - " " 
Yn+l = 3h 2 

Substituting (24) and (27) into (20), we have 

(27) 

h 2 
y,~+l - 2y,~ + v,~_~ Yd (y"+~ + 18y" y, ,-1j  

h 4 (168y" " " " ) - + Y,~-I) + 8(Yn+2 + 92(vn+~ v"-~) 
600 3h 2 

h 6 [ 24y" - 16(Y'+1 + Y'~--I) -F 4(y~,+2 -I- y/n/_2) "~ 
+ 1-~-0-0 ~, h a ) " 

Collecting terms, we get 

y,~+l 2 y n + y ~ - ]  h 2 1 9 7  ' '  1 1 } 
- -  = " " - -  " Yn-2)  , [ ~y~Yn + (Yo+I + Yn-1) ~ (Yn+2 + " ' (28) 

which is the sixth-order method given as equation (3) in [2]. The error constant of this sixth-order 
method is Cs -- 31/60480, which is larger than the error constant for the P-stable sixth-order 
method (20) of Ananthakrishnaiah by a factor of more than 25. Are super-implicit methods 
always giving larger error constant? In first-order IVPs, we showed that  we can get the same 
error constant if we allow an extra future value (two instead of one). We now get a super-implicit 

With five unknowns we can satisfy the first five equations, but it turns out tha t  the symmetric 
property of the solution satisfies also the sixth automatically. It  is easy to see that  
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method of the same order and error constant. The price is an extra future value. It  can be shown 
that  

yn+l _ 2yn + yn_l  = h2 {1723  , 32~0 , ,, 53 , , ,  5 i ~ Y ~  + (Yn+I + Y,-1) - ~ (Yn+2 + Y,-2) 
(29) 

23 I, ) } 
+43--5  (y"÷3 + yn-3 , 

has an error constant of Cs = -1 /50400,  exactly as (20). We t ry  the eighth-order super implicit 

Yn+l - 2yn + Yn-1 = h 2 f 12067 , 2171 , 73 
15-i y. + (y.÷l + y"-l) - --10080 + 

31 . ~ (30) 

+00-  (y ÷3 + y"-3) ) 

Again using MAPLE,  we find the error constant Clo = -289/3628800.  Compare this to the 
eighth-order Obrechkoff method of [7] with an error constant 

2 
610  = --  

7.  I0[ '  
The super implicit has an error constant more than 1012 times larger. We can create super- 
implicit method of the same error constant but requiring more future values than  the ones in [2]. 

4. N U M E R I C A L  E X P E R I M E N T  

We consider the nonlinear undamped Duffing's equation 

y -  + y + y3 = B cos ~t,  

with B = 0.002 and ~ = 1.01. The exact solution (see [16]) is given by 

y( t )  = A1 cos ~ t  + Aa cos 3ftt + As cos 5~t  + A7 cos 7£tt, 

where 

A1 = 0.200179477536, A3 = 0.246946143(-03), 

A5 = 0.304016(-06),  A7 = 0.374(-09).  

We give here the results of the sixth-order Obrechkoff method as given in [7] and the same order 
super-implicit method. Both  are implicit methods and Picard iteration is used. The step size 
used is h = 1r/5. The absolute errors for t = 21r(2r)10r are presented in the following two tables. 
The super-implicit methods give smaller absolute errors. 

If we reduce the step size to h = 7r/12, we reduce the absolute errors by two orders of magnitude. 

Table 1. Absolute  errors in y(t) with  h = r / 5 .  

t 

1.00 1 .88(-04)  

2.00 7 .46(-04)  

3.00 1 .63(-03)  

4.00 2 .78(-03)  

5.00 4 .11(-03)  

Obrechkoff Super  Implicit 

2.04(-05) 
8.09(-05) 
1.80(-08) 
3.15(-04) 
4.82(-04) 

Table 2. Absolute  errors in y(t) with h = 1r/5 and  h = 1r/12. 

1.00 

2.00 

3.00 

4.00 

5.00 

Super  Implicit 
7r 

2.04(-05) 
8.09(-05) 
1.80(-04) 
3.15(-o4) 
4.82(-04) 

Super Implicit 
7r 

12 

2.53(-07) 
1.01(-06) 
2.25(-06) 
3.95(-06) 
6.05(-06) 
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5. C O N C L U S I O N S  

In this paper, we showed the equivalence of super-implicit and Obrechkoff methods. The 
advantage of Obrechkoff methods is that they are high-order one-step methods and thus will not 
require additional starting values. On the other hand, they will require higher derivatives of the 
right-hand side. In case the right-hand side is complex, we may prefer super-implicit methods. 
One can use super-implicit methods given by Fukushima. In general, these methods have larger 
error constants. We have found here that one can develop super-implicit method having the same 
error constants as Obrechkoff but requiring an extra future value. On the other hand, Fhkushima 
showed that one can get a higher-order method for the additional future value. A numerical 
example shows that the super-implicit methods are more accurate than Obrechkoff schemes of 
the same order. 
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