gain. Microsimulation and Markov cohort models use simpler models with average annual risks for progression rates that can be treated as updated treatment rates of the Markov cohort models treat disease progression as separate states of the DSAS2 and estimate transition probabilities between such states over time. Disease progression of a radiographic score was modelled in one study, assuming a decreased determination of the radiographic score while being on treatment. No statistical analysis of the impact of disease progression models on ACR response criteria. Finally, the two methods drawn from such CEAs were consistent with those of the gold standard V
effectiveness. The alternative measure of the proportional increase in net cost-effectiveness. The real features of the inputted data. Output was validated against published specific hazards using established formula. We used the proportional increase in net cost-effectiveness in the context of periodic screening and to propose a new measure based on net benefit that quantifies the proportional gain in cost-effectiveness relative to the status quo. We used patient-level data from clinical trials to evaluate the cost-effectiveness of ICERs when the ratio of confirmed to unconfirmed cases (skewed from low degrees of freedom / high-dimensionality and II) under-predict the rare disease, arising from the low ratio of confirmed to non-confirmed cases (skewed from low degrees of freedom). Many diseases (e.g. oncology) display changing hazard rates over time. There are several parametric methods exist with increased number of parameters to alleviate this problem (Generalised Gamma and Generalised F distributions being examples). PRM130 USING MACHINE LEARNING TO DETECT PATIENTS WITH UNDIAGNOSED RARE DISEASES: AN APPLICATION OF SUPPORT VECTOR MACHINES TO A RARE ONCOLOGY DISEASE Rigg, Lodhi H, Naunit F SMS Health, London, UK OBJECTIVES: Diagnostic algorithms to detect undiagnosed patients with rare diseases have the potential to improve patient health and reduce costs associated with these diseases. Accurate machine learning methods are difficult to develop, owing to the low number of positive cases. This study investigated the impact of disease progression models on discrete outcomes such as ACR20/50/70 is rarely considered in health economic models in RA.

PRM127 THE FUTILITY OF COST-EFFECTICACY ANALYSIS Elbashir BD, Chackerian J, Merck Co., Inc., Kenilworth, NJ, USA OBJECTIVES: Cost-effectacy analysis (CEA) (e.g. cost per cure or short-term response) is increasingly being used as an alternative or a supplement to cost-util-

PRM128 THE LIMITATIONS OF ICERS IN SCREENING INTERVENTIONS AND THE RELATIVENET BENEFIT ALTERNATIVE O'Mahony JF Trinity College Dublin, Dublin, Ireland OBJECTIVES: To demonstrate the limitations of the incremental cost-effectiveness ratio (ICER) and to instead use the incremental net benefit (INB) to compare cost-effectiveness. The INB is defined as the ratio of the incremental cost to the incremental effectiveness. The INB can be calculated by subtracting the INB of one strategy from the INB of another strategy. The INB can be calculated for any number of strategies and compared for any number of outcomes. The INB is a more sensitive measure of cost-effectiveness than the ICER, as it takes into account the additional costs and benefits of the different strategies.