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Abstract

Stone–Weierstrass-type theorems for groups of group-valued functions with a discrete range or a discrete
domain are obtained. We study criteria for a subgroup of the group of continuous functions C(X,G) (X
compact, G a topological group) to be uniformly dense. These criteria are based on the existence of so-
called condensing functions, where a continuous function φ: G → G is said to be condensing (respectively,
finitely condensing) if it does not operate on any proper, point separating, closed subgroup of C(K ,G),
with K compact, (respectively, with K finite) that contains the constant functions.

The set DF (G) of finitely condensing functions in C(G,G), is characterized, for any Abelian topo-
logical group G, as the set of those functions that are both non-affine and do not have nontrivial generalized
periods (i.e. that do not factorize through nontrivial quotients of G). This provides approximation theorems
for functions with discrete domain and arbitrary (topological group) range.

We also show that when G is discrete, every finitely condensing functions is condensing. The set of
D(G) of condensing functions is thus characterized for discrete Abelian G. This provides approximation
theorems for functions with an arbitrary (compact) domain and a discrete range. Answering an old question
of Sternfeld, the description of D(Z) that follows is particularly simple: given φ:Z → Z, φ ∈ D(Z) if
and only if for every k ∈ N with k ≥ 2, there are n1, n2 ∈ Z such that n1 − n2 is a multiple of k, while
φ(n1)− φ(n2) is not.
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1. Introduction

In his paper [2] Sternfeld introduced the concept of constructive topological group as an
indicator of when (some weak form of) the Stone–Weierstrass theorem may hold in a group
of group-valued functions.

Definition 1.1 (Definition 3 of [2]). A topological group G is constructive if for every compact
space K and every subgroup H of C(K ,G) which contains the constant functions and separates
points, either H is dense or there is φ ∈ C(G,G) that does not operate on H (that is, with
φ ◦ h ∉ H for some h ∈ H).

The paper [2] contains some examples of constructive groups such as the group Z of integers,
or the additive group of a real Banach space and some examples of nonconstructive groups as the
two-element group Z2 or the circle group T . The authors of the present paper later showed, [1],
that a locally compact group with more than 2 elements is constructive if and only if it is either
totally disconnected or homeomorphic to Rn for some positive integer n.

Once a group G is known to be constructive it is natural to seek whether stronger forms
of the Stone–Weierstrass hold for G, as happens with the classical case G = R: notice that a
linear subspace L of C(K ) is a subalgebra (respectively, a sublattice) if the function f (x) = x2

(respectively, the function f (x) = |x |) operates on L . In general, if some non-affine function h
in C(R) operates on a linear subspace L of C(K ) which contains the constants, then the uniform
closure of L is an algebra. Thus, if L separates the points of K , then it is dense in C(K ) [3,
Theorem 1.1]. It is in this direction that the set of condensing functions is introduced.

Definition 1.2 (Definition 1(ii) of [2]). A function φ ∈ C(G,G) is condensing (respectively,
finitely condensing) if the following holds: for every compact (respectively, finite) space K
and every subgroup H of C(K ,G) which separates the points of K and contains the constant
functions, if φ operates on H, then H is uniformly dense in C(K ,G).

The set of condensing (respectively, of finitely condensing) functions in C(G,G) is denoted
by D(G) (respectively, by DF (G)).

Each condensing function provides a simple criterion for the denseness of a subgroup. Our
objective in this paper is to characterize D(G). We address in particular the following question.

Question 1.3 (Section 4 of [2]). For a constructive group G, find D(G). In particular, find D(Z).

For Abelian G, an obvious obstacle for a function φ ∈ C(G,G) to be condensing is to
be affine. Recall that a function φ: G → H , with G and H Abelian groups, is affine if the
associated function φa : G → H given by φa(g) = φ(g)− a with a = φ(0) is a homomorphism.
Observe that φ is affine if and only if φ(a + b − c) = φ(a) + φ(b) − φ(c), for every
a, b, c ∈ G. Thus every affine function operates on the subgroup H of C({1, 2, 3, 4},G) given
by H = { f : f (3)− f (4) = f (1)− f (2)}.

Another easily identified obstruction is the existence of a closed subgroup H ⊂ G such that
φ factorizes through G/H (think of the subgroup H ⊂ C({1, 2},G) defined by the condition
f ∈ H if and only if f (1)− f (2) ∈ H , observe that this argument is also valid for non-Abelian
groups). To mark this case we say, following [2], that a subgroup H of G is a generalized period
of φ, if φ(x H) is contained in φ(x)H for every x ∈ G.

Note that H will be a generalized period of φ, if φ factors through G/H .
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Definition 1.4. We say that a function φ ∈ C(G,G) mixes cosets if it does not have any nontriv-
ial closed generalized periods. The set of functions in C(G,G) that mixes cosets will be denoted
by Λm(G).

The main result of Section 3 (proved as Theorem 3.9) shows that being affine and admitting
generalized periods are the only obstacles for a function to be finitely condensing. This turns to
be a characterization of the set of condensing functions for discrete G (and hence an answer to
Question 1.3 in this case) since, as shown in Section 2, DF (G) = D(G), if G is discrete. We
have as a consequence that φ ∈ C(G,G) is in DF (G) if and only if it is not affine and mixes
cosets.

Since affine maps between free Abelian groups of finite rank always have generalized periods,
condensing functions on Z are easy to identify. In fact, we show in Section 3 that the set D(Z)
can be described as Λm(Z) where

Λm(Z) = {φ: Z → Z: for every k ∈ N, k ≥ 2, there are n1, n2 ∈ Z
such that n1 − n2 = 0(mod k), but φ(n1)− φ(n2) ≠ 0(mod k)} .

Some of the conditions we impose are not natural for noncommutative groups. A function
for instance may be condensing and yet admit a generalized period (see Example 4.2). This can
be remedied by requiring generalized periods to be normal subgroups, no condensing function
may then admit a normal generalized period. In Section 3 we find some other characterizations
of DF (G) that are easily adaptable to the noncommutative case, it is not clear however whether
these conditions can be related to easy algebraic properties such as being affine, as it happens in
the commutative case.

2. Reduction to C(F, G) with finite F

It is plain that D(G) ⊆ DF (G). The aim of this section is to establish, for a discrete group G,
the equality DF (G) = D(G). Notice that, by [2, Proposition 1 (iv)], DF (Z2) = ∅. Therefore, all
groups are assumed to be different from Z2.

Let G be a group. Given a compact space K , a partition {V1, V2, . . . , Vn} is said to be
subordinated to a function h ∈ C(K ,G) if h(K ) = {z1, z2, . . . , zn} and, for each i = 1,
2, . . . , n, we have Vi = h−1(zi ). Our first result provides a useful tool for analyzing the
relationship between condensing and finitely condensing functions.

Theorem 2.1. Let G be a group and consider, for a compact space K , a subgroup H of C(K ,G)
which separates the points of K and contains the constant functions. If a function φ ∈ DF (G)
operates on H, then, given a partition {V1, V2, . . . , Vn} of K subordinated to a function h ∈ H

and a finite subset {z1, z2, . . . , zn} ⊂ G, the function g defined as

g|Vi = zi , i = 1, 2, . . . , n

belongs to H.

Proof. Let Fh denote the subgroup of H defined as

Fh =

g ∈ H : g|Vi is constant, 1 ≤ i ≤ n


.

Let us take now the finite space Fn = {1, 2, . . . , n} and let ϕ be the function from Fh into
C(Fn,G) defined by the requirement that ϕ(g)(i) = g(Vi ) for each i ∈ Fn .
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It is routine to verify that ϕ is a group monomorphism. In particular, ϕ(Fh) is a subgroup of
C(Fn,G). Moreover, as a matter of definition, ϕ(Fh) contains the constant functions and, since
h ∈ Fh , it separates the points of Fn . We next prove that φ operates on ϕ(Fh). For, consider
ϕ(g) ∈ ϕ(Fh) where g ∈ Fh , then the function φ ◦ g belongs to H (φ operates on H) which
implies that φ ◦ g ∈ Fh . Our claim now follows from the fact that φ ◦ ϕ(g) = ϕ(φ ◦ g).

Since φ is finitely condensing, we have just proved that ϕ(Fh) = C(Fn,G). If we consider
the function t : Fn → G defined as t (i) = zi for each i = 1, 2, . . . , n, then ϕ−1(t) satisfies the
desired properties. This completes the proof. �

The significance of the previous theorem for our purposes is captured by the next two lemmas.
For the remainder of this section, we shall impose the blanket assumption of discreteness on all
given groups. This fact implies that, for any finite space K ,C(K ,G) is discrete and has no proper
dense subsets. Also for the remainder of this section K will always denote a compact space and
H a subgroup of C(K ,G) which contains the constant functions and separates the points of K .

Lemma 2.2. Assume that there is φ ∈ DF (G) which operates on H. Let {Vi }
n
i=1 be a finite

family of pairwise disjoint clopen subsets of K . If x ∉
n

i=1 Vi and, for each i = 1, 2, . . . , n,
there is a function hi ∈ H such that

hi (x) = ri , hi |Vi ≡ si

with ri ≠ si , then, for each g ∈ G \ {e}, we can find a function hg ∈ H such that
hg(x) = g, hg|

n
i=1 Vi

≡ e and hg(K ) = {e, g}.

Proof. Let g ∈ G \ {e}. We proceed by induction on the number of the clopen sets in the family
{Vi }

n
i=1. For n = 1, consider the partition C of K subordinated to h1. Since r1 ≠ s1, the pairwise

disjoint clopen subsets h−1
1 (r1) and h−1

1 (s1) belong to C with V1 ⊆ h−1
1 (s1). Thus, Theorem 2.1

tells us that there is a function m1 in H satisfying m1|h−1(r1)
= g and m1|K\h−1

1 (r1)
≡ e. For

n > 1, choose g1 and g2 in G with g1 · g2 ∉ {e, g1, g2} (observe that G has more than two
elements). By induction hypothesis, there are m1,m2 ∈ H such that

(i) mi (x) = gi for i = 1, 2,
(ii) m1|n−1

i=1 Vi
≡ e,

(iii) m2|Vn ≡ e,
(iv) m1(K ) = {e, g1} and m2(K ) = {e, g2}.

Then (m1 · m2)(x) = g1 · g2 and (m1 · m2)(y) ∈ {0, g1, g2} when y ∈
n

i=1 Vi . Since
g1 · g2 ∉ {e, g1, g2}, we can apply Theorem 2.1 in order to obtain a function hg ∈ H with
hg(x) = g, hg|

n
i=1 Vi

≡ e and hg(K ) = {e, g}. �

Lemma 2.3. Assume that there is φ ∈ DF (G) which operates on H. Let V be a clopen subset
of K . If there exist functions h1, h2, . . . , hn in H and points x1, x2, . . . , xn in K such that

hi (xi ) = ri ≠ e, hi |K\V ≡ e,

for each i = 1, 2, . . . , n, then, for each g ∈ G \ {e}, there is a function hg ∈ H satisfying
hg|n

i=1 h−1
i (ri )

≡ g and hg|K\(
n

i=1 h−1
i (ri ))

≡ e. In particular, hg|K\V ≡ e.

Proof. The proof proceeds along the same lines as the proof of Lemma 2.2: it follows from
induction on the number of elements of the set {x1, x2, . . . , xn}. The step n = 1 is a consequence
of Lemma 2.2. For n > 1, choose g1 and g2 in G with g1 · g2 ∉ {e, g1, g2}. By induction
hypothesis, there are m1,m2 ∈ H such that
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(i) m1|n−1
i=1 h−1

i (ri )
≡ g1.

(ii) m1|K\
n−1

i=1 h−1
i (ri )

≡ e.

(iii) m2|h−1
n (rn)

≡ g2.
(iv) m2|K\h−1

n (rn)
≡ e.

It is easy to check that (m1 · m2)(xi ) ∈ {g1 · g2, g1, g2} (i = 1, 2, . . . , n) and that
g|K\(

n
i=1 h−1

i (ri ))
≡ e. The result is now a consequence of Theorem 2.1. �

Lemmas 2.2 and 2.3 imply that H separates pairwise disjoint clopen sets.

Theorem 2.4. Assume that there is φ ∈ DF (G) which operates on H. Let g ∈ G \ {e}. If V is a
clopen subset of K , then the function

h(x) =


g, x ∈ V
e, x ∈ K \ V

belongs to H.

Proof. Fix x ∈ V . Since H separates points of K , a simple application of Theorem 2.1
implies that for each y ∈ K \ V , there is a function hy ∈ H such that hy(x) = g and
hy(y) = e. By compactness, we can find a finite set {y1, y2, . . . , yn} ⊂ K \ V such that

h−1
yi
(e) : i = 1, 2, . . . , n


is a cover of K \ V . Since the functions


hyi

n
i=1 and the family

h−1
yi
(e) : i = 1, 2, . . . , n


satisfy the conditions of Lemma 2.2, there is a function hx ∈ H such

that hx (x) = g and hx |K\V ≡ e.
Consider now the cover


h−1

x (g) : x ∈ V


of V . By compactness, there is a finite subcover
h−1

x1
(g), h−1

x2
(g), . . . , h−1

xn
(g)


. The set {x1, x2, . . . , xn} and the clopen set V satisfy the

conditions of Lemma 2.3, hence there is h ∈ H such that h|n
i=1 h−1

xi (g)
≡ g and h|K\V ≡ e.

The result now follows from the fact that V =
n

i=1 h−1
xi
(g). �

Now we are prepared to show the main result of this section.

Theorem 2.5. If there is φ ∈ DF (G) which operates on H, then H = C(K ,G).

Proof. Let g ∈ C(K ,G) be given. Since G is discrete, there are z1, . . . , zn ∈ G with g(K ) =

{z1, . . . , zn}. We now apply Theorem 2.4 to the clopen sets V j = g−1({z j }), j = 1, . . . , n and
get a collection of functions h j ∈ H with h j (V j ) ≡ z j and h j (K \ V j ) ≡ e. Then g =

∏n
j=1 h j

and, hence, g ∈ H. �

Corollary 2.6. If G is discrete, then DF (G) = D(G).

Given a topological (not necessarily discrete) group G, let Gd denote the underlying group
equipped with the discrete topology. Assume that φ ∈ DF (Gd) and that K is a finite space. If φ
operates on a subgroup H of C(K ,G)which separates points and contains the constant functions,
we can apply Corollary 2.6 in order to obtain H = C(K ,Gd) = G K . Thus, φ ∈ DF (G). We
have just proved: if G is not constructive and DF (Gd) ≠ ∅, then D(G) ≠ DF (G). Since
a nonconstructive group G necessarily has, by definition D(G) = ∅, the following question
naturally arises:

Question 2.7. Is there a group G which is not constructive and such that DF (G) ≠ ∅?
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Another relevant question in this direction is the following

Question 2.8. Does there exist a constructive group such that D(G) = ∅?

3. Subgroups of C(F, G) with finite F

Having proved that DF (G) = D(G) for discrete groups, we restrict our attention in this
section to groups of continuous mappings on finite sets.

Recall that a subgroup H of G is a generalized period of φ, if for each x ∈ G, φ(x H) is
contained in φ(x)H . Note that H will be a generalized period of φ if and only if whenever
x−1 y ∈ H, φ(x)−1φ(y) ∈ H . Recall as well that we denote by Λm(G) the set of functions in
C(G,G) that do not admit any nontrivial closed generalized periods, that is, the collection of
functions that mix closed cosets.

To avoid undue repetition in the statements of our results, we adopt the convention that F
always stands for a finite set with the discrete topology. To relate properties of a subgroup H of
C(F,G) to properties of G, we will use in the next two lemmas a collection of functions defined
as follows.

Definition 3.1. Let H be a subgroup of C(F,G). For every A ⊂ F and every j ∈ A we define
the subgroup

G A
j (H) = {x ∈ G: there is f ∈ H with f (k) = e for all k ∈ A \ { j} and f ( j) = x} .

Lemma 3.2. Let G be a topological group and let H be subgroup of C(F,G). Let A ⊂ F and
j ∈ A be given. If φ ∈ C(G,G) operates on H, then G A

j (H) is a normal subgroup of G and a
generalized period for φ.

Proof. We first show that G A
j (H) is a generalized period. Let x, y ∈ G be such that x−1 y ∈

G A
j (H), this means that there is a function f ∈ H with f ( j) = x−1 y and f (k) = e for

k ∈ A \ { j}. Then f2 = φ(x)−1 · (φ ◦ (x · f )) ∈ H. It is clear that f2(k) = e, for k ∈ A \ { j} and
that f2( j) = φ(x)−1φ(y), therefore φ(x)−1φ(y) ∈ G A

j (H) and G A
j (H) is a generalized period

of φ.
To see that G A

j (H) is a normal subgroup of G we take x ∈ G A
j (H) and g ∈ G. Let f ∈ H

be such that f ( j) = x and f (k) = e if k ∈ A \ { j}, then ḡ−1 f ḡ ∈ H which shows that
g−1xg ∈ G A

j (H). �

Let H be a subgroup of C(F,G). In the lemma and theorem that follow we will extend
functions defined in the complement F \{ j} of a point j to the whole F . The following notations
will be useful to that effect:

(1) If j ≠ k ∈ F and f : F \ { j} → G, we denote by f j,k : F → G the function defined by the
conditions:

f j,k �F\{ j} = f and f j,k( j) = f (k).

(2) If x ∈ G and B ⊂ F we denote by f x
B : F → G, the function defined by:

f x
B ( j) = x if j ∈ B and fB( j) = e if j ∉ B.
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(3) Given j, k ∈ F, j ≠ k we also define

H j,k =


f : F \ { j} → G: f j,k ∈ H

.

Lemma 3.3. Let H be a subgroup of C(F,G) that separates points of F. Let in addition B ⊂ F
be such that f x

B ∈ H for every x ∈ G. If j ∈ B and k ∈ F \ B, then either H j,k separates points
of F \ { j} or there are j1, j2 ∈ F such that f ( j2) = f ( j1) · f ( j)−1

· f (k), for every f ∈ H.

Proof. Take j1, j2 ∈ F \ { j}, j1 ≠ j2. Since H separates points there is f1 ∈ H with
f1( j1) ≠ f1( j2).

Let first both j1, j2 ∈ B. If f = f1· f f1( j)−1
· f1(k)

B , then f ∈ H. Since f ( j) = f (k), f �F\{ j} ∈

H j,k . Observing that, for i = 1, 2,

f ( ji ) = f1( ji ) · f1( j)−1
· f1(k),

we see that f separates j1 and j2.
The same function works if j1, j2 ∉ B, for in this case f ( ji ) = f1( ji ), i = 1, 2.
Suppose finally that j1 ∈ B and j2 ∉ B and assume that there is f2 ∈ H with f2( j2) ≠

f2( j1) · f2( j)−1
· f2(k). Consider this time f = f2 · f f2( j)−1

· f2(k)
B We see as above that

f �F\{ j} ∈ H j,k . Now f ( j1) = f2( j1) f2( j)−1
· f2(k) and f ( j2) = f2( j2). Our choice of

f2 then shows that f separates j1 and j2. �

The next lemma is our main technical tool.

Lemma 3.4. Let G be a topological group, and H ⊂ C(F,G) be a closed subgroup that
separates points and contains the constant functions.

Assume that φ ∈ C(G,G) is non-affine. If φ operates on H, then either:

(1) φ has a nontrivial closed normal generalized period, or
(2) there is a dense subgroup D of G and a collection of homomorphisms ρk : D → G, 1 ≤ j ≤

n with n ≤ |F | such that:
(a) D is a generalized period of φ.
(b) The homomorphisms ρk are injective for k = 1, . . . , n.
(c) The subgroup ∆ = {g ∈ D: ρk(g) = g for all 1 ≤ k ≤ n} is closed in G and ∆ ≠ G.
(d) If y−1x ∈ D, then

ρk

φ(x)φ(y)−1φ(y) = φ


yρk(y

−1x)

, for all k = 1, . . . , n. (3.1)

Proof. Assume that (1) does not hold. Since by Lemma 3.2 G A
j (H) is a normal generalized

period of φ for every A ⊂ F and j ∈ A and (1) fails to be valid, we have φ ∈ Λm(G) and the
subgroups G A

j (H) are either trivial or dense.
We proceed to prove the lemma by induction on N = |F |. If F = {1, 2}, we choose

f ∈ H with f (1) ≠ f (2). Then, since the function f (2)
−1

f belongs to H, we find that
f (2)−1 f (1) ∈ G F

1 (H). It follows that G F
1 (H) is dense in G. The same argument shows that

G F
2 (H) is dense in G and therefore that H is dense in (and hence equal to) C(F,G).
Assume now that |F | = N and that the lemma is proved for subgroups H ⊂ C(X,G) with

|X | ≤ N − 1.
As the inductive hypothesis can be applied to the closure of the restriction groups H �A =

{ f �A: f ∈ H}, A ⊂ F , we can assume that H �A is dense in C(A, F) for every A ⊂ F . In the
same vein we have the following easily proved.



190 J. Galindo, M. Sanchis / Journal of Approximation Theory 163 (2011) 183–196

Claim. If H j,k separates the points of F \ { j}, then H j,k = C(F \ { j}). In addition, we may
assume that H j,k does not separate points whenever G F

j is dense for otherwise H must be dense.

Let now m ≤ |F | be chosen so that G Am
j0
(H) is dense in G for some Am ⊆ F with |Am | = m

and G A
j (H) = {0}, for every A ⊂ F with |A| ≥ m + 1.

If Am = F , then choose k ≠ j0. Then the subgroup H j0,k separates points and we can
apply our induction hypothesis to H j0,k so both H j0,k and G F

j0
(H) are dense which implies that

H = C(F,G). Assume now that n = N−m > 0 and enumerate F\Am as F\Am = { j1, . . . , jn}.
We then define, for each 1 ≤ k ≤ n, a map ρk : G Am

j0
(H) → G, in such a way that for all

x ∈ G Am
j0
(H) there is a function f ∈ H with f ( j0) = x, f ( j) = e if j0 ≠ j ∈ Am and

f ( jk) = ρk(x).
The map ρk is well-defined: we would otherwise have two functions f1, f2 ∈ H with

fi ( j0) = x, fi ( j) = e if j0 ≠ j ∈ Am, i = 1, 2 and f1( jk) ≠ f2( jk). Then f2( jk)−1 f1( jk) ∈

G Am∪{ jk }
jk

(H). This goes against our choice of m since |Am ∪ { jk}| = m + 1.
The proof of injectivity of ρ follows exactly the same pattern. Since H is a subgroup the maps

ρk must be homomorphisms.
While the ρk’s may be discontinuous, ∆ = {g ∈ D: ρk(g) = g for all 1 ≤ k ≤ n} is closed in

G. It suffices to observe that

∆ = {x ∈ G: f x
{ j0, j1,..., jn}

∈ H},

where f x
{ j0, j1,..., jn}

is the map introduced just before Lemma 3.3. Since H is a closed subgroup it
is clear that ∆ must be closed.

Suppose now that ∆ = G. In that case the map f x
{ j0, j1,..., jn}

is in H for every x ∈ G (i.e.,
the functions ρk are all equal to the identity mapping). Picking k ∈ Am \ { j0} we may apply
Lemma 3.3 (here { j0, j1, . . . , jn} plays the role of B and F \ { j0, j1, . . . , jn} = Am \ { j0}) to
find that either H j0,k separates points of F \ { j0} or there are j1, j2 ∈ F, j0 ≠ j1, j0 ≠ j2 such
that f ( j2) = f ( j1) f ( j0)−1 f (k) for all f ∈ H.

Suppose now that H j0,k separates points. By the claim, H j0,k = C(F \ { j0},G) and
G F

j0
(H) = G. It would follows that H does not separate points leading to a contradiction. We

can therefore suppose that H j0,k does not separate points and thus that, by Lemma 3.3, there
are j1, j2 ∈ F, j0 ≠ j1, j0 ≠ j2 such that f ( j2) = f ( j1) f ( j0)−1 f (k) for all f ∈ H. Then,
recall that φ operates on H, φ( f ( j1) f ( j0)−1 f (k)) = φ( f ( j1))φ( f ( j0))−1φ( f (k)) for every
f ( j1), f ( j0) and f (k) with f ∈ H. Since, by our inductive hypothesis, the group of restrictions
H �{ j1, j0,k} must be dense in C({ j1, j0, k},G) we conclude that φ(xy−1z) = φ(x)φ(y)−1φ(z)
for all x, y, z ∈ G which implies that φ is affine. This goes against our hypothesis on φ and we
have that ∆ ≠ G.

Only assertion (d) remains now to be checked.

Let to that end x, y ∈ G with y−1x ∈ G Am
j0
(H). Define the function f : F → G by

f ( jk) = yρk(y−1x), 1 ≤ k ≤ n, f ( j0) = x and f ( j) = y for j0 ≠ j ∈ Am . Then
f ∈ H. Since φ operates on H and H contains the constants, the function h: F → G with
h( jk) = φ(yρk(y−1x))φ(y)−1, 1 ≤ k ≤ n, h( j0) = φ(x)φ(y)−1 and h( j) = e for j0 ≠ j ∈ Am
is also in H. It follows from the definitions of the homomorphisms ρk that, for every 1 ≤ k ≤ n,

ρk


φ(x)φ(y)−1


= φ(yρk(y

−1x))φ(y)−1. �
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Since our applications in this section of the previous lemma will concern Abelian groups we
switch here to additive notation. For the rest of the present section, the identity element will
consequently be denoted as 0. We remark that, in the setting of Abelian groups, the Eq. (3.1)
becomes

ρk

φ(x)− φ(y)


+ φ(y) = φ


ρk(x − y)+ y


, for all k = 1, . . . , n (3.2)

whenever x − y ∈ D.

Remark 3.5. Notice that, under the conditions in Lemma 3.4, Eq. (3.2) with x = g and y = 0
tells us that ρkφ(g) = φρk(g) for every g ∈ D (1 ≤ k ≤ n). We shall freely use of this fact in
the sequel.

Lemma 3.6. Let G be an Abelian topological group, φ: G → G a continuous function and
ρk : D → G, 1 ≤ k ≤ n be a homomorphism defined on a subgroup D of G such that
Eq. (3.2) holds. The subgroup ∆ = {g ∈ D: ρk(g) = g for all 1 ≤ k ≤ n} is then a generalized
period of φ.

Proof. Let x, y ∈ G with x − y ∈ ∆. Then, applying Eq. (3.2), ρk(φ(x) − φ(y)) =

φ

ρk(x − y) + y


− φ(y). Taking into account that x − y ∈ ∆, ρk(x − y) = x − y so that

φ(x)− φ(y) ∈ ∆. �

Lemma 3.7. Let G be an Abelian topological group and φ: G → G a continuous function with
φ(0) = 0. If φ does not have any nontrivial closed generalized period but φ ∉ DF (G), then
φ(g) = −φ(−g) for every g ∈ G.

Proof. Since φ ∉ DF (G), there is a finite set F such that φ operates on a proper closed subgroup
of H ⊂ C(F,G) that separates points and contains the constant functions.

As φ does not admit closed nontrivial generalized periods, there are a dense subgroup D of
G and a collection of homomorphisms ρk : D → G, 1 ≤ k ≤ n, such that conditions (a)–(d) of
Lemma 3.4 hold.

Let g ∈ D and choose k, 1 ≤ k ≤ n. Applying Eq. (3.2) to x = ρk(g)− g and y = ρk(g), we
have that

ρk


φ

ρk(g)− g


− ρk


φ

ρk(g)


+ φ


ρk(g)


= 0.

After re-arranging terms we obtain

ρk


φ

ρk(g)− g


= ρk


ρk


φ(g)


− φ(g)


.

Since ρk is injective, it follows that

φ

ρk(g)− g


= ρk(φ(g))− φ(g). (3.3)

Applying on the other hand the same equation to x = 0 and y = −g, we have that

φ

ρk(g)− g


= −ρk


φ(−g)


+ φ(−g). (3.4)

This identity can be used in Eq. (3.3) to yield

−φ(g)+ ρk

φ(g)


= −ρk(φ(−g))+ φ(−g)

or, what is the same,
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ρk

φ(g)+ φ(−g)


= φ(g)+ φ(−g),

and this for every k = 1, . . . , n.
Thus φ(g) + φ(−g) ∈ ∆ with ∆ as defined in Lemma 3.4(c). Since the subgroup ∆ is a

proper closed subgroup and a generalized period of φ (Lemma 3.6) we have that ∆ = {0},
therefore φ(g) = −φ(−g), for every g ∈ D. Since D is dense and φ is continuous the lemma
follows. �

Theorem 3.8. Let G be an Abelian topological group and φ: G → G a continuous function. If
φ does not have nontrivial closed generalized periods and is not affine, then φ ∈ DF (G).

Proof. Suppose φ ∉ DF (G). We shall assume that φ(0) = 0 and then prove that either φ has a
generalized period or φ is a homomorphism. Once the theorem is proved for these functions the
general result follows. If φ(0) = a ≠ 0, we can work with the function φa(g) = φ(g)− a. Since
φ and φa have the same generalized periods we find that either φ has a generalized period or φa
is a homomorphism, meaning that φ is affine.

We proceed as in Lemma 3.7. Let φ be a function which operates on a proper closed subgroup
of H ⊂ C(F,G), that separates points and contains the constant functions.

There will be a dense subgroup D of G and a collection of homomorphisms ρk : D → G, 1 ≤

k ≤ n such that the properties (a)–(d) of Lemma 3.4 hold.
By Lemma 3.7 we have that φ(g) = −φ(−g) for every g ∈ G.
Let g1, g2 ∈ D be arbitrarily chosen and take k, 1 ≤ k ≤ n. Putting x = ρk(g1 − g2) + g2

and y = ρk(g1 − g2) Eq. (3.2) becomes

ρk


φ

ρk(g1 − g2)+ g2


− ρk


φ(g1 − g2)


+ ρk


φ(g1 − g2)


= ρk


φ(g1)


.

Since ρk is injective we obtain that

φ

ρk(g1 − g2)+ g2


− ρk


φ(g1 − g2)


+ φ(g1 − g2) = φ(g1). (3.5)

Using again Eq. (3.2) for the term φ

ρk(g1 − g2)+ g2


, Eq. (3.5) becomes

ρk

φ(g1)− φ(g2)


+ φ(g2)− ρk


φ(g1 − g2)


+ φ(g1 − g2) = φ(g1). (3.6)

Regrouping the terms of (3.6) we obtain

ρk

−φ(g1 − g2)+ φ(g1)− φ(g2)


= −φ(g1 − g2)+ φ(g1)− φ(g2).

Since this is valid for every k = 1, . . . , n and every g1, g2 ∈ D, φ(g1 −g2)−φ(g1)+φ(g2) ∈

∆ with ∆ as defined in Lemma 3.4(c). Since ∆ is a proper closed subgroup and a generalized
period of φ (Lemma 3.6) we have that ∆ = {0}, therefore φ(g1 −g2) = φ(g1)−φ(g2), for every
g1, g2 ∈ D. Since D is dense and φ is continuous the theorem follows. �

Theorem 3.8 gives the harder direction of our desired characterization of DF (G).

Theorem 3.9. Let G be an Abelian topological group. A continuous function φ: G → G is not
in DF (G) if and only if it is either affine or admits a nontrivial closed generalized period.

Proof. If φ is not in DF (G), φ must either be affine or admit a closed generalized period by
Theorem 3.8

As indicated in the introduction continuous affine functions are not in DF (G): if H ⊂ C({1,
2, 3, 4},G) is defined as H = { f ∈ C({1, 2, 3, 4},G): f (3) − f (4) = f (1) − f (2)} then H is
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closed, nontrivial and φ operates on H. In the same vein, if φ has a nontrivial closed generalized
period H ⊂ G, then φ operates on the closed subgroup H = { f ∈ C({1, 2},G): f (1)−1 f (2) ∈

H}. Therefore functions with closed nontrivial generalized periods are not in DF (G). �

For discrete G, we can use Corollary 2.6 to obtain a characterization of D(G).

Corollary 3.10. Let G be a discrete Abelian topological group. A function φ ∈ C(G,G) is in
D(G) if and only if it is not affine and mixes cosets.

In certain cases the description of D(G) is simpler, for instance when G is a free Abelian
group of finite rank.

Lemma 3.11. Let G be an Abelian topological group and let ψ : G → G be an affine map. If
ρ is the homomorphism ρ(g) = ψ(g) − ψ(0), then the subgroups ρ(G) and (I d − ρ)(G) are
generalized periods of ψ .

Proof. If x, y ∈ G are such that x −y = (I d−ρ)(g),ψ(x)−ψ(y) = ρ(x)−ρ(y) = ρ(x −y) =

(I d −ρ)(ρ(g)) ∈ (I d −ρ)(G). The latter subgroup is hence a generalized period of ψ . The case
of ρ(G) follows in exactly the same way. �

Lemma 3.12. Let G denote a free Abelian group of finite rank with free generators {e1, . . . , en}.
If ρ: G → G is an endomorphism of G, then either ρ or (I d − ρ) is not surjective.

Proof. Let M f be the matrix whose columns are the coordinates of ρ(ei ), 1 ≤ i ≤ n. Then
ρ is surjective if and only if

det(M f )
 = 1. This equality cannot be satisfied by both M f and

MI d− f = I − M f . �

Theorem 3.13. If G is a (discrete) free Abelian group of finite rank, then a function φ: G → G
belongs to D(G) if and only if it does not have any nontrivial generalized periods.

Proof. By Corollary 3.10 we only have to show that affine maps always admit nontrivial gener-
alized periods.

Let ψ : G → G be affine and let ρ(g) = ψ(g) − ψ(0) be the associated homomorphism.
By Lemma 3.12, either ρ or I d − ρ is not surjective. Since both ρ(G) and (I d − ρ)(G) are
generalized periods of ψ (Lemma 3.11) we conclude that ψ ∉ Λm(G). �

We are now ready to answer Sternfeld’s question on D(Z).

Corollary 3.14. The set D(Z) can be described as follows:

D(Z) = Λm(Z) = {φ: Z → Z: for every k ∈ N, k ≥ 2 there are n1, n2 ∈ Z
such that n1 − n2 = 0(mod k), but φ(n1)− φ(n2) ≠ 0(mod k)} .

Constructing functions in D(Z) is easy:

Corollary 3.15. If φ(0) = 0 and for every k ∈ N, φ(k) ≠ 0(mod k), then φ ∈ D(Z).

Corollary 3.16. D(Z) is dense in ZZ for the product topology of ZZ.



194 J. Galindo, M. Sanchis / Journal of Approximation Theory 163 (2011) 183–196

4. Odds and ends around D(G)

We discuss in this section the sharpness of the conditions we obtain in the previous sections.

Example 4.1. There are functions φi : Z2 × Z2 → Z2 × Z2, i = 1, 2, such that:

(1) φ1 does not have nontrivial generalized periods, yet is not condensing (it is affine).
(2) φ2 is not affine but, yet is not condensing (it has nontrivial generalized periods).

These functions show that being non-affine or mixing cosets separately are not sufficient
conditions to be in D(G) (and thus that in general none of the conditions of Theorem 3.9 can be
removed).

Proof. Let e1, e2 denote the generators of Z2 × Z2. Define φ1 as the endomorphism of Z2 × Z2
given by φ1(e1) = e2, φ1(e2) = e1 + e2. The only proper subgroups of Z2 × Z2 are ⟨e1⟩, ⟨e2⟩

and ⟨e1 + e2⟩, and it is readily checked that none of them is a generalized period of φ1. Being a
homomorphism, φ ∉ D(G) by Corollary 3.10.

To find functions with generalized periods that are not affine is even easier, define for instance
φ2 as

φ2(0) = 0, φ2(e1) = e1, φ2(e2) = e1 and φ2(e1 + e2) = e1.

Then the subgroup ⟨e1⟩ is a generalized period of φ2 while φ2 is obviously non-affine. �

A more intriguing question is to determine which functions are in D(G) for noncommutative
G. In this case, having a (non-normal) generalized period is not an obstacle any more.

Example 4.2. Let G = Σ3 denote the group of permutations on the set {1, 2, 3}. There is a
function φ ∈ D(G) that admits a generalized period.

Proof. Let φ: G → G be the function defined as follows:

φ(e) = e φ((1 2)) = (1 2)

φ((1 3)) = (1 2 3) φ((1 2 3)) = (13)

φ((23)) = (1 2 3) φ((1 3 2)) = (13).

Let H be a proper subgroup of C(F,Σ3), with F finite, that separates points and contains the
constant functions. Suppose that φ operates on H.

The only nontrivial normal subgroup of G is the subgroup H = {e, (123), (132)}. Since
φ(e) = e and φ(123) ∉ H , we see that H is not a generalized period of φ. By Lemma 3.4, there
are injective homomorphisms ρ: G → G different from the identity such that

ρ

φ(y)−1φ(x)


φ(y) = φ


yρ(y−1x)


.

Applying this equality to x = (123) and y = e one obtains

ρ

(13)


= φ


ρ((123))


and therefore ρ


(13)


= (13) because ρ(123) must have order 3.

Repeating the same process with x = (13) and y = e, we have that ρ(123) = φ(ρ(13))
and thus that ρ((123)) = (123), for the only element of order three in the range of φ is (123).
Since ρ((13)) = (13) and ρ((123)) = (123) and the permutations (13) and (123) generate G,
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we deduce that ρ is the identity. This goes against Lemma 3.4, showing that φ cannot operate on
H. Thus, φ ∈ D(G).

It is obvious that K = ⟨(1 2)⟩ is a generalized period for φ. �

The generalized period of the above example is non-normal. Notice that a function with a
normal generalized period cannot be in D(G). In the light of this fact and Theorem 3.9 raise the
following question:

Question 4.3. Let G be a non-Abelian topological (even discrete) group. Prove or disprove the
following statement: a continuous function φ: G → G is not in DF (G) if and only if it is either
affine or admits a nontrivial, non-normal, closed generalized period.

We end by noting that the subgroup lattice of C(F,G) for non-Abelian groups G can be very
poor. This suggests that the whole approximation scheme should probably be considered from a
different point of view in this case.

Example 4.4. Let G denote the alternating group A5 of degree five. If F is finite, and H is
a subgroup of C(F,G) that separates points and contains the constant functions, then H =

C(F,G).

Proof. The argument runs in parallel with that of Lemma 3.4.
Since the subgroups G A

j (H) (A ⊆ F) are normal (Lemma 3.2) and G is a simple group

[4, Theorem 2.11], we have that either G A
j (H) = {e} or G A

j (H) = G, for every F ⊆ G.
We will argue by induction on n = |F |.
When n = 2,G F

j (H) ≠ {e} (see the proof of Lemma 3.4), for all j ∈ F . Hence, G F
j (H) = G

for every j ∈ F . This means that H = C(F,G).
Assume now that for every K ⊂ F , with K ≠ F,C(K ,G) has no proper point-separating

subgroups that contain the constant functions.
The same argument of Lemma 3.4 shows that G F

j (H) = {e} for all j ∈ F .
We now fix j0 ∈ F . Our inductive hypothesis implies that {h �F\{ j0}: h ∈ H} = C(F \

{ j0},G).
Fix another point j1 ∈ F, j1 ≠ j0 and for each (a, x, y) ∈ G × G × G let ha,x,y : F → G

be defined as h( j0) = a, h( j1) = y and h( j) = x if j ∈ F, j ≠ j0, j ≠ j1. We can then define
a map ρ̃: G × G → G by assigning to each (x, y) ∈ G × G the only element ρ̃(x, y) such that
hρ̃(x,y),x,y ∈ H. Observe that this element ρ̃(x, y) is well-defined because G F

j0
(H) = {e}.

It is easy to see that ρ̃ is a homomorphism with ρ̃(x, x) = x for every x ∈ G. This implies
that there is a homomorphism ρ: G → G (namely x → ρ̃(x, e)) such that ρ̃(x, y) = ρ(xy−1)· y.

Since every endomorphism of G is an inner automorphism defined by an element σ ∈ Σ5
[4, Theorem 2.17], we can find σ ∈ Σ5 such that ρ̃(τ1, τ2) = ρ(τ1τ

−1
2 )τ2 = σ−1τ1τ

−1
2 στ2 for

every (τ1, τ2) ∈ G × G.
Let now τ ∈ G be chosen arbitrarily. Since ρ̃ is a homomorphism:

τ−1σ−1τ−1στ = ρ̃

(στ−1σ−1, τ )


= ρ̃


(e, τ )


· ρ̃


(στ−1σ−1, e)


= σ−1τ−1σ. (4.1)

Suppose now that σ is different from the identity. There are then i1, i2 ∈ {1, 2, 3, 4, 5} with
i1 ≠ i2 such that σ(i1) = i2. Choose indices i3, i4 ∈ {1, 2, 3, 4, 5} with i3, i4 ∉ {i1, i2} and
σ(i3) = i4.
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Let finally τ ∈ G be such that τ(i1) = i1, τ (i2) = i3 and τ(i4) = i2 (we can choose τ to
be τ = (i2 i3 i4) if i3 ≠ i4 and τ = (i2 i3)( j k) with j, k ∈ {1, 2, 3, 4, 5} \ {i1, i2, i3} in case
i3 = i4). Then

(τ−1σ−1τ−1στ)(i1) = i2

while

(σ−1τ−1σ)(i1) = i3,

and equality (4.1) cannot hold. We conclude thus that σ = e and, as a consequence, that ρ
is the identity automorphism. It follows that ρ̃(x, y) = x for every x, y ∈ G. But then the
function hx,x,y ∈ H. Taking y ∈ G, y ≠ x and multiplying by the constant function x−1, we
find then that he,e,yx−1 ∈ H, showing that G F

j1
(H) ≠ {e}. This contradiction shows that, indeed,

H = C(F,G). �
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