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Abstract

We study and improve the OBF technique [1], which was used in distributed algorithms for the decomposi-
tion of a partitioned graph into its strongly connected components. In particular, we introduce a recursive
variant of OBF and experimentally evaluate several different implementations of it that vary in the degree
of parallelism. For the evaluation we used synthetic graphs with a few large components and graphs with
many small components. We also experimented with graphs that arise as state spaces in real model check-
ing applications. The experimental results are compared with that of other successful SCC decomposition
techniques [6,5].

Keywords: SCC decomposition, parallel, OBF technique

1 Introduction

Decomposing a directed graph into its strongly connected components is one of

the basic graph problems. It has many applications, among others in analysis of

computer systems. It can be solved in linear time. Standard algorithms for SCC

decomposition are Tarjan’s algorithm [7] and Kosaraju’s algorithm, also known as

1 This work has been partially supported by the Grant Agency of Czech Republic grant No. 201/06/1338
and the Academy of Sciences grant No. 1ET408050503.

Electronic Notes in Theoretical Computer Science 198 (2008) 63–77

1571-0661 © 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.02.001
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81957312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


Double DFS [3]. However, graphs modelling complex computer systems tend to

be very big which makes it hard to handle them on a single machine. One way

to tackle this problem is to distribute the graph across a cluster of workstations.

Unfortunately, all known linear sequential algorithms are based on depth first search

(DFS) and no efficient parallel implementation of DFS is known, which renders the

sequential algorithms unusable in a distributed setting. Different approaches must

be used to design a good distributed algorithm.

Several distributed algorithms for SCC decomposition have already been pro-

posed. They all exploit the fact that we can efficiently compute the set of vertices

reachable from a certain vertex or set of vertices. The first distributed algorithm [5],

known as FB, is based on the simple observation that the SCC to which a given

vertex v belongs, is the intersection of the set of vertices reachable from v and the

set of vertices reachable from v in the transposed graph.

Other algorithms [6,1] are more involved but their basic building block is still

reachability analysis in the original or the transposed graph.

We focus on the OBF technique introduced in [1]. OBF is essentially a procedure

that divides a rooted graph into independent sub-graphs, possibly eliminating some

trivial SCCs in the process. No SCC crosses a boundary of an independent sub-

graph so we can use whichever algorithm we like to decompose the sub-graphs. The

original paper used the FB algorithm for the sub-graphs. We improve the OBF

technique so that it can be applied recursively.

Having a number of independent sub-graphs we can run SCC decomposition on

them in parallel, thus increasing the degree of parallelism. Note that in a distributed

environment, a single reachability analysis itself runs in parallel already. It is not

clear a priori whether the gain of decomposing all sub-graphs in parallel outweighs

the overhead and complexity, compared to decomposing the sub-graphs one by one,

as was done in [1].

The rest of the paper is organised as follows. Necessary definitions from graph

theory and existing distributed algorithms are presented in Section 2. The new

algorithm based on recursive application of OBF is described in Section 3. Results

of experiments are in Section 4. In particular, we compare our new algorithm with

the algorithms from [6,5,1], and we measure the effect of decomposing sub-graphs

one by one, or in parallel. Contributions of the paper are summarised and future

work is outlined in Section 5.

Acknowledgement

We like to thank Simona Orzan for discussions on the CH-algorithm and sharing

its implementation.

J. Barnat et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 63–7764



2 Preliminaries

2.1 Directed Graphs

A (directed) graph G is a pair (V,E), where V is a set of vertices, and E ⊆ V × V

is a set of edges. If uEv, then v is called (immediate) successor of u and u is called

(immediate) predecessor of v. The indegree of a vertex v is the number of edges

having v as endpoint, i.e., the number of elements in the set {u | (u, v) ∈ E}.
GT = (V,ET ), the transposed graph of G = (V,E), is the graph G with all edges

reversed, i.e., ET = {(u, v) | (v, u) ∈ E}.

A path is a sequence of vertices s0, . . . , sk, s.t. siEsi+1 for all 0 ≤ i < k; a simple

path is one that contains no duplicated vertices. The length of this path is k, the

number of edges. We write sE∗t if there is a path starting in s and ending in t. A

graph is rooted if there is an initial vertex s0 ∈ V such that s0E
∗t for all t ∈ V .

Given a graph G, we use n, m and l, to denote the number of vertices, edges, and

the longest simple path between any two vertices in G, respectively.

A sub-graph W ⊆ V is strongly connected if sE∗t and tE∗s in W for all s, t ∈ W .

A strongly connected component (SCC) is a maximal strongly connected sub-graph.

The quotient graph of G = (V,E) has the SCCs of G as vertices. It has an edge

between X and Y , iff for some x ∈ X and y ∈ Y , xEy. Note that by definition of

SCCs, the quotient graph cannot contain cycles. An SCC is non-trivial if it contains

at least one edge. An SCC is leading if it has no predecessors in the quotient graph.

A set S ⊆ V is SCC-closed if each SCC in the graph is either completely inside

the set or completely outside the set (also named independent sub-graph). Given a

graph G, we denote by N , M and L, the number of vertices, edges and the length

of the longest (simple) path in the quotient graph of G, respectively.

For v ∈ W ⊆ V , the forward closure of v in W is the set S = {s ∈ W | vE∗

W
s},

where EW = {(x, y) | (x, y) ∈ E ∧x, y ∈ W}. If W is not specified, the whole graph

is meant. The forward closure of S ⊆ W in W is the union of forward closures of

all vertices in S in W . Finally, the backward closure of v (or S) in W is the forward

closure of v (or S) in W in the graph GT .

Reachability analysis is a procedure that computes a (forward/backward) closure

of a vertex or set. We often use the word search instead of reachability analysis.

So, if we say that forward search restricted to W ⊆ V is started from vertex v or

set S, we mean that forward closure of v or S in W is about to be computed.

2.2 Existing techniques for distributed SCC decomposition

Next we briefly describe existing distributed algorithms for SCC decomposition

from [5,1,6].

All algorithms below have an optimisation routine in common, which removes

all initial trivial SCCs (called elim-atomic in [6], OWCTY [4] in [1]). It repeatedly

removes vertices whose indegree is (or becomes) zero, because these must be trivial

components. Note that this procedure cannot detect trivial components that lie

in between strongly connected components. This procedure is implemented as a
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O−eliminated verticeswhere O is stopped

where F is stopped B−identified slices

Fig. 1. OBF slice identification.

distributed forward reachability on a part of the graph.

2.2.1 FB

This is the basic algorithm from [5]. It picks a pivot vertex p, computes its forward

and backward closures F and B using distributed reachability. Note that F ∩ B is

the SCC of p. Note that all other SCCs lie completely within one of the following

subsets: F \B, B\F and V \(B∪F ). Hence, the algorithm continues by recursively

applying FB to these three independent subgraphs.

2.2.2 OBF (OWCTY-BWD-FWD) [1]

This algorithm identifies a number of slices in linear time, in such a way that each

non-trivial component lies completely within one of the slices. On each slice, the

algorithm FB is applied. Identifying the slices is done by repeating the following

steps, starting from the initial vertex:

O Remove vertices without predecessors using OWCTY [4] (these are trivial

SCCs)

B compute the backward closure B on vertices that are reached in step 1, but

not eliminated; this defines a slice B.

F Remove slice B, to be processed separately, and start the next iteration from

the successor vertices of B.

The procedure is illustrated in Figure 1.

2.2.3 Colouring/Heads-off (CH) [6]

This algorithm uses a totally ordered set of colours. Initially, each vertex has its own

colour. The colours are repeatedly propagated to successors with a smaller colour,
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until eventually all edges are increasing. Note that a vertex can be recoloured several

times. Also note that after colouring, all vertices in a single SCC have the same

colour. So all edges between vertices of different colours can be removed.

In the second step, one takes as roots those vertices that kept their initial colour.

The SCCs of those roots consist of the vertices that are backward reachable (within

the same colour). These SCCs are removed (heads-off) and the algorithm proceeds

with the remaining sub-graph.

3 Recursive OBF

As shown in [1], OBF performs better than FB in a number of experiments. Note

that in OBF the graph is split in slices in linear time. On each slice, algorithm FB

is applied. But, as OBF is better than FB, we now propose to recursively apply

OBF to the slices.

However, the slice may not be rooted, so we must:

• Repeatedly pick a vertex from the slice and compute its forward closure within

the slice; we call this a “rooted chunk”. Subsequently run OBF on each rooted

chunk within the slice;

• Add a termination criterion in case the whole slice is one SCC

Adding a termination criterion is easy. No special work has to be done. We

simply count the vertices visited during the first backward search in the first rooted

chunk (The “B” part of OBF). If the slice consists of exactly one SCC there will

be only one rooted chunk in it; O will not eliminate any vertex, and so B will be

started from the root and explores the whole slice. Conversely, if B starting from

the root of the first chunk explores the whole slice, the slice is one SCC, for it is

both the forward and the backward closure of the root. This is described in detail

in the Pseudocode subsection.

3.1 Pseudocode of Recursive OBF

The pseudocode of Recursive OBF is in Figure 2. We start with the whole graph.

Vertices in recognised SCCs are removed from the “working” set V until we end up

with an empty set at which point all SCCs have been identified.

Initially we assume that we don’t have a vertex from which all other vertices

are reachable (initial vertex). To start OBF we need such a vertex, so we pick

one vertex (line 3) and compute its forward closure Range in V using procedure

FWD() (line 4). OBF is then applied on Range. Vertices from V \ Range will be

processed in the next iterations of the main while-loop (lines 2–23).

Before OBF is started on Range, Range is saved into OriginalRange, it will

enable us to determine if a slice found by OBF is an SCC. On line 9 there is an

invariant “(Forward closure of Seeds in Range) = Range”. In the first iteration of

while-loop on lines 8–22 the invariant holds trivially, because Seeds contains just

one vertex and Range was computed as a forward closure of that vertex. Pro-

cedure OWCTY() eliminates leading trivial components by repeatedly removing
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1 proc OBFR-P(V )

2 while (V �= ∅) do

3 Pick a vertex v ∈ V

4 Range := FWD(v, V )

5 Seeds := {v}
6 V := V \ Range

7 OriginalRange := Range

8 while Range �= ∅ do

9 [Invariant: Forward closure of Seeds in Range = Range]

10 Eliminated,Reached,Range := OWCTY(Seeds,Range)

11 [All elements of Eliminated are trivial SCCs]

12 B := BWD(Reached,Range)

13 if (B = OriginalRange) then

14 B is SCC

15 else

16 in parallel do

17 OBFR-P(B)

18 od

19 Seeds := FWD-SEEDS(B,Range)

20 fi

21 Range := Range \ B

22 od

23 od

24 end

Fig. 2. Recursive OBF

indegree 0 vertices reachable from Seeds. Eliminated vertices are returned as the

set Eliminated, OWCTY() also removes eliminated vertices from Range. Ver-

tices at which OWCTY() stops (they have positive indegree) are returned as the

set Reached. The forward closure of Reached in Range = Range, since any path

that leads from Seeds to a non-eliminated vertex has to contain some vertex from

Reached. All elements from Eliminated are trivial SCCs. Now a backward search is

started from vertices in Reached. This search is implemented by procedure BWD().

Backward closure of Reached in Range is returned as the set B. This is the first

SCC-closed slice found by OBF. If the set B equals the set OriginalRange, it means

that all vertices in the SCC-closed set OriginalRange are reachable from the same

single vertex (Note that B = OriginalRange is only possible in the first iteration of

the while-loop 8–22) and so B is indeed an SCC. Consequently, Range\B is empty

set and the while-loop finishes.

If B �= OriginalRange we run OBFR-P() on B recursively. Moreover, note

that the nested procedure can be run in parallel, which increases parallelism. Seeds

for the next iteration of the while-loop 8–22 are computed by the procedure FWD-

SEEDS, which simply returns all vertices from Range that are immediate successors

of vertices in B but not in B. Since all paths that reach vertices in Range \B from
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B must contain some vertex from Seeds, after we subtract B from Range, the

invariant of line 9 is satisfied. When Range = ∅, the while-loop 8–22 finishes and

we handle the remaining vertices in V .

Theorem 3.1 The overall time complexity of Recursive OBF is O(L.(m + n)).

Proof Recursive OBF (OBFR for short) first partitions the graph in a set of rooted

chunks. Paths in the quotient graphs of the chunks can be no longer than L (the

length of the longest path in the quotient graph of the whole graph). Since the

chunks are rooted, they contain only one leading SCC, the SCC the root belongs

to. The longest path in the quotient graph must contain the root (otherwise it

could be extended). If the leading SCC is trivial, it is eliminated by OWCTY. If

it is non-trivial, it is equal to the first OBF slice. In both cases, recursive calls to

OBFR are invoked on graphs with strictly smaller L. So the depth of recursion is

at most L. Since two distinct OBFR procedures on the same depth of recursion

operate on disjoint parts of the graph, at most O(m + n) work is done for each

recursion depth. Thus the overall complexity is O(L.(m + n)). �

3.2 Increasing the degree of parallelism

In [1] it was noticed that OBF has a better worst-case running time than CH,

mainly due to possible recolouring. Still, our initial experiments (cf. Figure 5)

showed that CH performs better on graphs with many small SCCs. We attribute

this to the higher degree of parallelism in CH, which outweighs the extra costs due

to recolouring in this case.

There is room to increase parallelism in OBFR-P() too. The pseudocode of

this “more parallel” version is in Figure 4. It exploits the fact that, after we pick a

vertex in V and identify its forward closure Range in V , we can run OBF on Range

in parallel and without waiting for its completion we can pick another vertex from

V and start computing its closure.

So we essentially have three versions of Recursive OBF varying in the “degree

of parallelism”. This is illustrated in Figure 3. Each diagram starts with a bold

vertical axis, where the downward direction represents the progression of time. The

numbered columns represent independent parallel procedures. An arrow from col-

umn i to column j indicates that procedure i starts procedure j. For simplicity, the

figure does not show recursive calls of OBF.

Assume we have a graph whose vertices are partitioned into the following disjoint

sets according to how Recursive OBF works on the graph: V = B11 ∪ B12 ∪ B13 ∪
B21 ∪ B31 ∪ B32. B1(1−3) = B11 ∪ B12 ∪ B13 is the closure (Range) of the first

picked vertex (first rooted chunk) and the individual sets are the slices identified

by OBF in the closure. Similarly B2(1) = B21 is the closure of the second picked

vertex (second rooted chunk) and B3(1−2) = B31 ∪ B32 is the closure of the third

picked vertex (third rooted chunk). For simplicity, we assume there are no trivial

components eliminated by OWCTY.

The leftmost diagram in Figure 3 illustrates operation of the basic Recursive

OBF when no parallel procedures are executed. SCCs are processed one by one
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B12

B13

B11

B21
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B32

B11

B12

B13

B11

B12

B13

B31

B32

B21

B21

B32

B31

B2(1)

B3(1−2)

B1(1−3) B1(1−3)

B2(1)

B3(1−2)

B1(1−3)

B2(1)

B3(1−2)

Fig. 3. Three versions of Recursive OBF different in degree of parallelism

(delete lines 16 and 18 from Figure 2).

The middle diagram in Figure 3 illustrates operation of Recursive OBF in Fig-

ure 2. Each time a new slice is identified by OBF, a new parallel procedure is started

to process the slice. The algorithm first picks a vertex, identifies the set B1(1−3),

then the slices B11, B12 and B13. Only then it can pick another vertex from the

unexplored part of the graph, identify B2(1), ...

The rightmost diagram in Figure 3 illustrates operation of the “more parallel”

Recursive OBF in Figure 4. It does slicing of B1(1−3), B2(1), and B3(1−2) in separate

parallel procedures. This allows it to get to B2(1) and B3(1−2) much faster.

4 Experimental Evaluation

The experiments were carried out on a cluster of 8 workstations interconnected with

1 Gbps Ethernet. Each workstation was equipped with AMD AthlonTM 64 3500+

Processor and 1 GB RAM. We used the LAM/MPI library for message passing. Our

implementation is a distributed memory one. The graph is partitioned into a number

(in our case 8) of disjoint parts. Each workstation owns one part. Each workstation

runs the same code and communicates with other workstations via the message

passing library only. The computation at each workstation proceeds sequentially

(the execution of independent parallel procedures is serialized) meaning that no

additional threads are executed. This is achieved by maintaining an appropriate

piece of information about each procedure in an “array of procedures” and iterating

over its elements repeatedly to let each procedure perform some work. Note that a

single procedure runs in parallel over different partitions of the graph.

We observed that Recursive OBF suffers from the amount of synchronization

points among individual procedures. However, the amount of synchronization points

may be significantly reduced if independent procedures are started as soon as all

data they depend on are ready. Starting independent procedures can be viewed

as an implementation detail, however, it has proven to have significant impact on

the performance. The three different versions presented in the previous section are

recapitulated in the following.
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proc OBFR-MP(V )

while (V �= ∅) do

Pick a vertex v ∈ V

Range := FWD(v, V )

Seeds := {v}
V := V \ Range

in parallel do

OBFR-MPX(Seeds,Range)

od

od

end

proc OBFR-MPX(Seeds,Range)

OriginalRange := Range

while Range �= ∅ do

Eliminated,Reached,Range := OWCTY(Seeds,Range)

All elements of Eliminated are trivial SCCs

B := BWD(Reached,Range)

if (B = OriginalRange) then

B is SCC

else

in parallel do

OBFR-MP(B)

od

Seeds := FWD-SEEDS(B,Range)

fi

Range := Range \ B

od

end
Fig. 4. Recursive OBF with increased parallelism

OBFR-S No procedures are executed in parallel. When OBF identi-

fies a slice it waits for the complete computation on the slice

to finish before continuing.

OBFR-P OBF identifies the slices, and starts a parallel procedure on

each slice as soon as the slice is identified.

OBFR-MP Does the same as the previous one, but additionally within a

slice, it starts a parallel procedure as soon as a new forward

chunk (forward closure of a picked vertex in a possibly not-

rooted slice) within a slice is found.

Our experiments show that indeed the total running time of the algorithm de-

creases by adding more parallelism, despite the extra overhead (e.g., running vari-

ous termination detection procedures in parallel), and despite the fact that a single

reachability computation is already parallel.

We compare Recursive OBF with three other algorithms. Namely FB [5], OBF
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+ FB [1] and CH (Colouring [6]). Like Recursive OBF, FB and OBF + FB can

be implemented with different degrees of parallelism. For the comparisons we im-

plemented only the most parallel versions of these algorithms, which give the best

results. These implementations are denoted by FB-P and OBF-FB-P. CH processes

SCCs inherently in parallel; we reused the code from [6] and all experiments are

carried out in the same software/hardware environment.

4.1 Measurements

For the evaluation we used synthetic graphs with a regular structure and fixed size

SCCs. The aim was to find out how the algorithms work as the SCC size changes.

We used two types of graphs. The first type of graph, called LmLmTn was of

the form Loop(m) || Loop(m) || Tree(n), where Loop(m) is a cycle with m states,

Tree(n) is the binary tree of depth n, and || denotes the Cartesian product of

graphs. This graph has 2n+1 − 1 components of size (m + 1)2. Its quotient graph is

a binary tree.

The second type of graph, called LimLon, uses Line(m), being a sequence of m

states. It is of the form Line(m) || Line(m) || Loop(n) || Loop(n) and consequently

has m2 components of size n2. The quotient graph of the second type is a square

mesh with edges oriented right and down. In the second type there are many paths

of the same length to the same vertex.

We also experimented with graphs that arise as state spaces in real model check-

ing applications. The names of these graphs are prefixed with “cwi”, “vasy” and

“swp”. The former two are taken from the VLTS Benchmark Suite [2] 2 The swp-

graph, called swp dmwnqp, models the behaviour of a sliding window protocol with

m distinct data elements, window size 2n, and queue size p. The complete list is in

Tables 1 and 2.

The size of the graphs is relatively small and in principle they could be de-

composed on a single machine, but they are large enough for experiments with

distributed algorithms to provide insight.

The results for synthetic graphs are in Table 3. The results for real graphs are in

Table 4. All runtimes are in seconds, ”n/a” means that the runtime exceeded 36000

seconds (10 hours). Graphs of dependency of runtime on SCC size are in Figure 6

and in Figure 7. We measured this dependency for synthetic graphs only. Figure 6

does not contain results for all graphs of type 1 since numbers of vertices of some

of these graphs differ too much. Only graphs with approximately 3 000 000 vertices

were chosen. The graphs of type 2 have all approximately 4 000 000 vertices, so

Figure 7 contains results for all of them.

4.2 Evaluation

There is one important issue concerning space complexity. To implement a reach-

ability analysis in linear time we need a way to determine whether a vertex has

2 Note that we consider the graph of all transitions, while [6] considered only (invisible) τ -transitions.
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State space N. of SCCs Size of one SCC States Transitions

L10L10T10 2 047 121 247 687 742 940
L100L100T4 31 10 201 316 231 938 492
L15L15T10 2 047 256 524 032 1 571 840
L4L4T16 131 071 25 3 276 775 9 830 300
L20L20T12 8 191 441 3 612 231 10 836 252
L80L80T8 511 6 561 3 352 671 10 051 452
L350L350T4 31 123 201 3 819 231 11 334 492
L1750L1750T0 1 3 066 001 3 066 001 6 132 002
L1750L1750T1 3 3 066 001 9 198 003 24 528 008

Li200Lo10 40 000 100 4 000 000 15 960 000
Li125Lo16 15 625 256 4 000 000 15 936 000
Li100Lo20 10 000 400 4 000 000 15 920 000
Li80Lo25 6 400 625 4 000 000 15 900 000
Li67Lo30 4 489 900 4 040 100 16 039 800
Li50Lo40 2 500 1 600 4 000 000 15 840 000
Li40Lo50 1 600 2 500 4 000 000 15 800 000
Li30Lo67 900 4 489 4 040 100 15 891 060
Li25Lo80 625 6 400 4 000 000 15 680 000
Li20Lo100 400 10 000 4 000 000 15 600 000
Li16Lo125 256 15 625 4 000 000 15 500 000
Li10Lo200 100 40 000 4 000 000 15 200 000

Table 1
Synthetic graphs used in experiments

State space N. of SCCs Max. SCC size States Transitions

cwi 2165 8723 47 926 423 505 2 165 446 8 723 465
cwi 2416 17605 2 150 392 6 2 416 632 17 605 592
cwi 7838 59101 1 7 838 608 7 838 608 59 101 007
vasy 11026 24660 10 074 720 910 11 026 932 24 660 513
vasy 1112 5290 160 061 71 968 1 112 490 5 290 860
vasy 12323 27667 11 214 774 910 12 323 703 27 667 803
vasy 2581 11442 274 690 26 796 2 581 374 11 442 382
vasy 4220 13944 2 398 982 49 151 4 220 790 13 944 372
vasy 4338 15666 828 412 26 796 4 338 672 15 666 588
vasy 6020 19353 2 041 6 013 920 6 020 550 19 353 474
vasy 6120 11031 4 638 059 1 902 6 120 718 11 031 292
vasy 8082 42933 323 629 7 054 752 8 082 905 42 933 110
swp d2w2q2.s 1 1 429 676 1 429 676 6 704 544
swp d2w2q3.s 1 5 323 836 5 323 836 25 236 056
swp d3w2q2.s 1 5 168 596 5 168 596 24 615 576

Table 2
Real graphs used in experiments

been already visited or not in constant time. This is usually accomplished by allo-

cating an array of booleans with n elements, one for each vertex. Algorithms that

perform many reachabilities in parallel must have such an array for each of them.

Our implementations that fall into this category are FB-P, OBF-FB-P, OBFR-P,

OBFR-MP. There is no problem with reachabilities in the same depth of recursion.

Since they operate on disjoint parts of the graph, one array of size n is enough.

But for procedures in different depths we need separate arrays. And so the space

complexity is O(m + n · (maximum depth of recursion)).

Although the maximum depth of recursion can be as high as n, in our experi-

ments the algorithm we are mainly interested in, Recursive OBF, reached maximum

depth of 15. This makes us believe that space complexity is not a problem of Re-

cursive OBF. However, the FB algorithm exceeded depth 200 in our experiments.

It did not prevent the algorithm from successful computation of SCCs, because our

graphs are relatively small. Nevertheless, this high recursion depth kills the benefit

of having accumulated memory of a cluster of workstations. If we add that FB is

much slower if independent subgraphs are not processed in parallel, we can con-

J. Barnat et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 63–77 73



State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

L10L10T10 10 128 25 8 8 75

L100L100T4 13 19 13 11 5 145

L15L15T10 16 118 56 16 17 142

L4L4T16 2743 6603 671 309 297 325

L20L20T12 224 575 287 74 71 456

L80L80T8 94 107 110 34 45 795

L350L350T4 83 91 88 38 45 1583

L1750L1750T0 34 31 43 17 16 1021

L1750L1750T1 148 138 166 87 82 6533

Li200Lo10 1982 1964 1131 76 58 9317

Li125Lo16 1105 975 740 61 52 5827

Li100Lo20 754 588 520 65 51 4513

Li80Lo25 548 465 454 57 77 3560

Li67Lo30 510 356 484 58 44 3080

Li50Lo40 357 236 163 48 48 3350

Li40Lo50 286 175 126 50 43 2628

Li30Lo67 174 127 110 43 44 2364

Li25Lo80 140 102 103 46 46 2972

Li20Lo100 176 88 80 43 40 2782

Li16Lo125 106 77 115 71 38 2148

Li10Lo200 81 58 90 62 45 1895

Table 3
Runtimes for synthetic graphs (in seconds)

10

100

1000

10000

10 100 1000 10000 100000 1e+06 1e+07
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Fig. 5. Dependency of runtime on SCC size, comparison of OBFR-S and CH, type 1 synthetic graphs
(logarithmic scale)
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State space FB-P OBFR-S OBFR-P OBFR-MP OBF-FB-P CH

cwi 2165 8723 21 43 30 29 22 49

cwi 2416 17605 76 8791 942 51 56 126

cwi 7838 59101 65 58 107 102 72 227

vasy 11026 24660 3387 n/a 3391 416 827 471

vasy 1112 5290 168 5611 399 73 73 365

vasy 12323 27667 4483 n/a 3942 500 1016 509

vasy 2581 11442 169 6182 2084 64 109 276

vasy 4220 13944 531 8348 976 347 1987 151

vasy 4338 15666 209 14352 4445 107 110 310

vasy 6020 19353 60 147 93 51 34 130

vasy 6120 11031 888 26611 1483 282 299 592

vasy 8082 42933 162 440 640 455 407 280

swp d2w2q2.s 12 9 12 16 6 44

swp d2w2q3.s 55 13 28 55 18 102

swp d3w2q2.s 38 16 42 35 15 70

Total runtime 10324 >142621 18572 2583 5051 3702

Table 4
Runtimes for real graphs (in seconds)
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Fig. 6. Dependency of runtime on SCC size, type 1 synthetic graphs (logarithmic scale)

clude that FB is not a very good distributed algorithm. On the other hand, OBF

+ FB reached maximum recursion depth of 17. It seems that the uppermost OBF

is so successful in slicing the whole graph, that the amount of work left for FB that

processes the slices is relatively small.

And now for some comments on the measured runtimes. First for the synthetic

graphs. As one can see from Table 3 OBFR-MP and OBF-FB-P together are clear
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Fig. 7. Dependency of runtime on SCC size, type 2 synthetic graphs (logarithmic scale)

winners. Their runtimes are practically the same because most of the decomposition

was done by the first OBF which is the same for both algorithms. The slices

identified by the OBF were then processed in parallel. It did not matter if OBF or

FB was used for them because of the structure of the slices.

FB, OBFR-S and OBFR-P worked quite well on graphs with large SCCs, but

they require a long time to decompose a graph with many small components.

OBFR-P was the best of them, but its performance on graphs with many small

components is still poor. The reason for the big difference between OBFR-P and

OBFR-MP is that some slices identified by the first OBF contained many parts with

no edges between them and waiting for OBF to finish on one part before moving to

next part affects the performance considerably.

Interestingly enough, for the synthetic graphs of type 1, unlike most of the other

algorithms, especially OBFR-S, the CH algorithm worked better on graphs with

many small components (Figure 5). We were unable to explain this behaviour.

Moreover, it was not confirmed on type 2 graphs (Figure 7). Another interesting

point is the extremely poor behaviour of CH on type 2 graphs. This is explained by

many paths of the same length leading to the same vertex, which causes frequent

re-colouring.

The experiments on real graphs (Table 4) have only one winner, OBFR-MP.

Yet, its victory was not as clear as the victory for synthetic graphs. In particular,

CH turned out to be successful. We included total runtimes for all real graphs to

allow for better comparison.

The structure of the graphs was not regular, so recursive OBF had to go deeper

to decompose the graph. Since the decomposition was not done by the first OBF,

the FB algorithm had much more work in OBF + FB than for synthetic graphs,

which resulted in poor behaviour for some graphs, especially vasy 12323 27667 and
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vasy 4220 13944.

5 Conclusion

We proposed a new algorithm for decomposition of directed graphs into their strongly

connected components. We adopted the OBF technique introduced in [1] and im-

proved it so that it can be applied recursively which resulted in an algorithm (Re-

cursive OBF) that outperformed all the other algorithms in our experiments.

Our experiments show that the way the algorithm is implemented influences its

performance a great deal. In particular, the best implementation turned out to be

the one with the highest degree of parallelism, that is the one which starts another

parallel procedure every time a part of the graph has been identified that can be

processed independently.

There is one type of graphs where Colouring [6] may be the best choice. These

are graphs consisting of many unconnected islands. Such graphs arise for instance

when considering only (invisible) τ -transitions as a preprocessing step to branching

bisimulation reduction. Colouring starts working on all islands simultaneously, but

all the other algorithms process them one by one unless they contain indegree 0 ver-

tices. If these islands are small enough, re-colouring is not a problem and Colouring

will be very fast.

The previous paragraph suggests aims for future work: To improve Recursive

OBF to work better on graphs with many unconnected islands. We have reasons to

believe that such an improvement is possible. More thorough experiments should

also be carried out to confirm our appealing results of Recursive OBF.
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