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a b s t r a c t

A rectangulation is a tiling of a rectangle by a finite number
of rectangles. The rectangulation is called generic if no four of
its rectangles share a single corner. We initiate the enumeration
of generic rectangulations up to combinatorial equivalence by
establishing an explicit bijection between generic rectangulations
and a set of permutations defined by a pattern-avoidance condition
analogous to the definition of the twisted Baxter permutations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The main characters in this paper are tilings of a rectangle by finitely many rectangles. A cross in
such a tiling is a point which is a corner of four distinct tiles. Fixing a rectangle S and considering the
space of all tilings of S by n rectangles with a uniform probability measure, the set of tilings having
one or more crosses has measure zero. Thus we call a tiling generic if it has no crosses.

We consider generic tilings up to the natural combinatorial equivalence relation which we now
describe. We orient S so that its edges are vertical and horizontal. A rectangle U in a tiling R is below a
rectangle V if the top edge of U intersects the bottom edge of V (necessarily in a line segment rather
than in a point). Similarly, U is left of V if the right edge of U intersects the left edge of V . A tiling R
of a rectangle S is combinatorially equivalent to a tiling R′ of a rectangle S ′ if there is a bijection from
the rectangles of R to the rectangles of R′ that exactly preserves the relations ‘‘below’’ and ‘‘left of’’.
A generic rectangulation is the equivalence class of a generic tiling. We will often blur the distinction
between generic rectangulations (i.e. equivalence classes) and equivalence class representatives, in
particular specifying an equivalence class by describing a specific tiling.

Our main result is a bijection between generic rectangulations with n rectangles and a class of
permutations in Sn that we call 2-clumped permutations. These are the permutations that avoid the
patterns 3-51-2-4, 3-51-4-2, 2-4-51-3, and 4-2-51-3, in the notation of Babson and Steingrímsson [5],
which is explained in Section 2. The author’s counts of generic rectangulations, for small n, are shown
in Table 1.
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Table 1
The number of generic rectangulations with n rectangles.

n Generic rectangulations

1 1
2 2
3 6
4 24
5 116
6 642
7 3,938
8 26,194
9 186,042

10 1,395,008
11 10,948,768
12 89,346,128
13 754,062,288
14 6,553,942,722
15 58,457,558,394
16 533,530,004,810
17 4,970,471,875,914
18 47,169,234,466,788
19 455,170,730,152,340
20 4,459,456,443,328,824
21 44,300,299,824,885,392
22 445,703,524,836,260,400
23 4,536,891,586,511,660,256
24 46,682,404,846,719,083,048
25 485,158,560,873,624,409,904
26 5,089,092,437,784,870,584,576
27 53,845,049,871,942,333,501,408

We define k-clumped permutations in Section 2. For now, to place the 2-clumped permutations
in context, we note that the 1-clumped permutations are the twisted Baxter permutations, which
are in bijection with the better-known Baxter permutations. Baxter permutations are also relevant
to the combinatorics of rectangulations. Indeed, Baxter permutations are in bijection [1,19] with the
mosaic floorplans considered in the VLSI (Very Large Scale Integration) circuit design literature [13].
Mosaic floorplans are certain equivalence classes of generic rectangulations. (A similar result linking
equivalence classes of generic rectangulations to pattern-avoiding permutations is given in [4].) In
light of results of [2], the bijection from Baxter permutations to mosaic floorplans can be rephrased
as a bijection to a subclass of the generic rectangulations that we call diagonal rectangulations, which
figure prominently in this paper.

The symbol Gn will denote the set of 2-clumped permutations. Let gRecn be the set of generic
rectangulations with n rectangles. The bijection from Gn to gRecn is defined as the restriction of a
map γ : Sn → gRecn. We show that γ is surjective and that its fibers are the congruence classes of
a lattice congruence on the weak order on Sn. We do not prove directly that the fibers of γ define a
congruence. Instead, we recognize the fibers as the classes of a congruence arising as one case of a
construction from [17], where lattice congruences on the weak order are used to construct sub Hopf
algebras of the Malvenuto–Reutenauer Hopf algebra of permutations. The results of [17] show that
the 2-clumped permutations are a set of congruence class representatives. Thus the restriction of γ is
a bijection from Gn to gRecn.

Note added in proof

After this paper was accepted, the author became aware of a substantial literature studying
generic rectangulations under the name rectangular drawings. This literature includes some results
on asymptotic enumeration as well as computations of the exact cardinality of gRecn for many values
of n. See, for example, [3,11,14]. In particular, the main result of this paper answers an open question
posed in [3, Section 5].
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2. Clumped permutations

In this section, we define k-clumped permutations. We begin with a review of generalized pattern
avoidance in the sense of Babson and Steingrímsson [5]. Let y = y1 · · · yk ∈ Sk, and let ỹ be a word
created by inserting a dash between some letters of y1 · · · yk, with at most one dash between each
adjacent pair. A subsequence xi1 · · · xik of x1 · · · xn is an occurrence of the pattern ỹ in a permutation
x ∈ Sn if the following two conditions are satisfied: first, for all j, l ∈ [k] with j < l, the inequality
xij < xil holds if and only if yi < yl holds. Second, if yj and yj+1 are not separated by a dash in ỹ, then
ij = ij+1 − 1. That is, the dashes indicate which elements of the subsequence are not required to be
adjacent in x. For example, the subsequence 4512 of 45312 ∈ S5 is an occurrence of the pattern 3-4-
1-2, or an occurrence of the pattern 34-12, but not an occurrence of the pattern 3-41-2. If there is no
occurrence of the pattern ỹ in x, then we say that x avoids ỹ.

To define k-clumped permutations, we first consider the twisted Baxter permutations, defined
in [17] and shown in unpublished notes by West [18] to be in bijection with Baxter permutations.
A published proof can be found in [15] or [12]. The twisted Baxter permutations are the permutations
that avoid the patterns 2-41-3 and 3-41-2. This pattern-avoidance condition on a permutation x =

x1 · · · xn can be rephrased as follows: for every descent xi > xi+1, the values strictly between xi+1 and
xi are either all to the left of xi or all to the right of xi+1. (The Baxter permutations are defined by a
similar condition: they are the permutations avoiding 3-14-2 and 2-41-3.)

In anypermutation x, wedefine a clump associated to a descent xi > xi+1 to be anonemptymaximal
sequence of consecutive values strictly between xi and xi+1, all of which are on the same side of the
entries xixi+1. No requirement is made on the positions, relative to each other, of the values in the
clump. For example, in the permutation 269153847 ∈ S9, there are four clumps associated to the
descent 9 > 1, namely 2, 345, 6, and 78.

The pattern avoidance condition defining twisted Baxter permutations is that each descent xi >
xi+1 has at most one clump, so we refer to twisted Baxter permutations as 1-clumped permutations.
More generally, a k-clumped permutation is a permutation x such that each descent xi > xi+1
has at most k clumps. One can easily rephrase the definition of k-clumped permutations in terms
of generalized patterns avoidance (avoiding 2( k

2 )!(
k
2 + 1)! generalized patterns if k is even or

2( k+1
2 )!( k+1

2 )! generalized patterns if k is odd). For example, the 2-clumped permutations, which play
the central role in this paper, are the permutations avoiding 3-51-2-4, 3-51-4-2, 2-4-51-3, and 4-2-51-
3. By convention, the only (−1)-clumped permutation is the identity. The 0-clumped permutations
are the permutations such that if xi > xi+1 then xi −1 = xi+1. Equivalently, they are the permutations
avoiding 31-2 and 2-31. These permutations in Sn are in bijectionwith subsets of {1, 2, . . . , n−1}. The
3-clumped permutations appear not to have been considered before. For n from 1 to 9, the numbers
of 3-clumped permutations are 1, 2, 6, 24, 120, 712, 4804, 35676 and 284816.

Theweak order on Sk is a lattice whose cover relations are xl ywith x = x1 · · · xk and y = y1 · · · yk
such that xi = yi+1 < yi = xi+1 for some i ∈ [k − 1], with xj = yj for j ∉ {i, i + 1}. A join-irreducible
permutation is a permutation x ∈ Sk with exactly one descent,meaning that, for some index i ∈ [k−1],
we have xi > xi+1 but xj < xj+1 for every j ∈ [k−1]with j ≠ i. (Such a permutation is join-irreducible
in the weak order in the usual lattice-theoretic sense.)

We now review a construction from [17, Section 9]. A join-irreducible element x ∈ Sk is called
untranslated if its unique descent xi > xi+1 has xi = k and xi+1 = 1. In this case, a scramble of x is any
permutation y such that yi = k, yi+1 = 1 and every entry jwith 1 < j < k occurs to the left of position
i in x if and only if it occurs to the left of position i in y. Let y be a scramble of x and let ỹ be obtained
from y by inserting a dash between each pair of consecutive entries except between k and 1. We say
that the scramble y of x occurs with adjacent cliff if the pattern ỹ occurs.

Let C be any collection of untranslated join-irreducible elements in Sk, with k varying, so that, for
example, C may be {312, 2413}. The following is essentially [17, Theorem 9.3].

Theorem 2.1. For each n, there exists a unique congruence H(C)n on the weak order on Sn with the
following properties:
(i) A permutation z is the minimal element in its H(C)n-class if and only if, for every x ∈ C and all

scrambles y of x, the permutation z avoids occurrences of y with adjacent cliff.
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(ii) Suppose w l z in the weak order, and let zi and zi+1 be the adjacent entries of z that are swapped to
convert z to w, with zi > zi+1. Then w ≡ z modulo H(C)n if and only there exists x ∈ C, a scramble
y ∈ Sk of x, and an occurrence of ỹ in z such that the entry of z corresponding to the entry k in ỹ is zi
and the entry of z corresponding to 1 in y is zi+1.

In [17], the congruence H(C)n is constructed for the purpose of building combinatorial Hopf
algebras. Here, we can take Theorem 2.1 as the definition of H(C)n. Property (i) in Theorem 2.1 is
a direct restatement of [17, Theorem 9.3], while property (ii) is the key point in the proof of [17,
Theorem 9.3]. It is easy and well-known that in a congruence on a finite lattice, each congruence class
is an interval. Thus a congruence is uniquely determined by the set of cover relations w l z such that
w ≡ z. Furthermore, the minimal permutations described in Property (i) are a system of congruence
class representatives.

Let Γ be the congruence H({35124, 24513})n on Sn. Theorem 2.1 specializes to the following.

Proposition 2.2. (1) A permutation is the minimal element in its Γ -class if and only if it is a 2-clumped
permutation.

(2) Suppose x l y in the weak order, and let e and a be the adjacent entries that are swapped to convert
y to x, with a < e. Then x ≡ y modulo Γ if and only if there are entries b, c, and d in y with
a < b < c < d < e such that b and d are on the same side of ea, while c is on the other side of
ea.

More generally, for each k ≥ −1, there is a congruence described by Theorem 2.1 such that the
minimal elements of congruence classes are exactly the k-clumped permutations.

3. The map from permutations to generic rectangulations

In this section, we define a map γ from Sn to gRecn. We will see, in Section 4, that γ restricts to a
bijection from the set of 2-clumped permutations to gRecn. The key point in the proof that γ restricts
to a bijection will be the fact that its fibers are the congruence classes of the congruence Γ defined at
the end of Section 2.

To define the map γ , we first consider a smaller class of rectangulations which we call diagonal
rectangulations and a map from permutations to diagonal rectangulations. The diagonal of the
underlying rectangle S is the line segment connecting the top-left corner of S to the bottom-right
corner of S. Recall that each rectangulation is a combinatorial equivalence class. A rectangulation
is a diagonal rectangulation if it has a representative in which each rectangle’s interior intersects
the diagonal. A diagonal rectangulation is in particular a generic rectangulation, because if any four
rectangles have a common vertex, it is impossible for all of their interiors to intersect the diagonal.
Diagonal rectangulations have been considered under other names, for example in [2,9,10].

We now review, from [15], the definition of a map ρ from permutations to diagonal
rectangulations. Maps closely related to ρ have appeared prior to [15], for example in [2,10]. To define
ρ, first draw n+1 distinct diagonal points on the diagonal of S, with one of the points being the top-left
corner of S and another being the bottom-right corner of S. Number the spaces between the diagonal
points as 1, 2, . . . , n, from top-left to bottom-right. Given x ∈ Sn, read the sequence x1 · · · xn from left
to right and draw a rectangle for each entry according to the following recursive procedure:

Let T be the union of the left and bottom edges of S with the rectangles drawn in the first i − 1
steps of the construction. It will be apparent by induction that T is left- and bottom-justified. To draw
the ith rectangle, consider the label xi on the diagonal. If the diagonal point p immediately above/left
of the label xi is not in T , then the top-left corner of the new rectangle is the rightmost point of T that
is directly left of p. If p is in T (necessarily on the boundary of T ), then the top-left corner of the new
rectangle is the highest point of T directly above p. If the diagonal point p′ immediately below/right
of the label xi is not in T , then the bottom-right corner of the new rectangle is the highest point of T
that is directly below p′. If p′ is in T then the bottom-right corner of the new rectangle is the rightmost
point of T that is directly to the right of p′.
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Fig. 1. Steps in the construction of ρ(8 75 2 6 9 314 ).
© 2011, Nathan Reading.

Example 3.1. Fig. 1 illustrates the map ρ. In each step, the new rectangle is shown in red (the darker
gray when not viewed in color), and the set T consists of the white rectangles together with the left
and bottom edges of S. The part of S not covered by rectangles is shaded in light gray.

Given a diagonal rectangulation R, we number the rectangles in R according to the position of their
intersections with the diagonal, starting with rectangle 1, which contains the top-left corner of S and
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Fig. 2. Wall slides.
© 2011, Nathan Reading.

ending at rectangle n, which contains the bottom-right corner of S. Thus, for example, in constructing
the rectangulation ρ(x), we first construct the rectangle numbered x1, then the rectangle numbered
x2, etc. Say a permutation x = x1 · · · xn is compatible with a diagonal rectangulation R if and only if, for
every i ∈ [n], the left and bottom edges of the rectangle numbered xi are contained in the union of the
left and bottom edges of S with the rectangles numbered x1, . . . , xi−1. Equivalently, x is compatible
withR if, for every i ∈ [n], the union of the rectangles numbered x1, . . . , xi is left- and bottom-justified.
The following fact is established in the proof [15, Proposition 6.2], which asserts that ρ is surjective.

Proposition 3.2. Given a diagonal rectangulation R, the fiber ρ−1(R) is the set of permutations in Sn that
are compatible with R.

The following proposition, which is the concatenation of [15, Proposition 4.5] and [15, Theorem
6.3], shows in particular that the fibers of ρ constitute a congruence of the kind described in
Theorem 2.1.

Proposition 3.3. Suppose xly in the weak order, and let d and a be the adjacent entries that are swapped
to convert y to x, with a < d. Thenρ(x) = ρ(y) if and only if there are entries b and c, with a < b < c < d,
such that b and c are on opposite sides of da in y.

In some of the literature on floorplanning for integrated circuits, generic rectangulations are
referred to as mosaic floorplans, but in that literature, the term mosaic floorplan always implies a
coarser equivalence relation than the combinatorial equivalence used to define rectangulations as
equivalence classes. Specifically, two generic rectangulations are equivalent as mosaic floorplans if
and only if they are related by a sequence of what we call wall slides. A wall in a rectangulation R is a
line segment in the underlying rectangle S, not contained in an edge of S, that is maximal with respect
to the property of not intersecting the interior of any rectangle of R. A wall slide along a wallW is the
operation taking two walls of R that end inW , from opposite sides, and sliding them past each other,
without changing any of the other incidences in R. Wall slides come in two orientations, as illustrated
in Fig. 2. The following is a very special case of [2, Theorem 4].

Proposition 3.4. Given a generic rectangulation R, there exists a unique diagonal rectangulation R′ such
that R and R′ are equivalent as mosaic floorplans.

To see Proposition 3.4 as a special case of [2, Theorem 4], we need the definition of a diagonal
rectangulation given in [15, Section 5]: let X be a set of n−1 distinct points on the diagonal of S, none
of which is the top-left corner or bottom-right corner of S. Then a diagonal rectangulation of (S, X) is a
generic rectangulation such that every wall contains a point of X and such that every point of X lies on
a wall. By Law and Reading [15, Proposition 5.2], this definition is equivalent to the earlier definition.

Suppose R is a generic rectangulation and let R′ be the diagonal rectangulation that is equivalent
to R as a mosaic floorplan. As before, number the rectangles in R′ according to the position of their
intersectionswith the diagonal, 1 to n from top-left to bottom-right. Letting this numbering propagate
along wall slides in the obvious way, we obtain a numbering of the rectangles of R. For each vertical
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Fig. 3. A generic rectangulation.
© 2011, Nathan Reading.

wall W of R, we produce a permutation σW of a subset of [n] as follows: moving from the bottom
endpoint ofW to the top endpoint ofW , when we come to a wallW ′ that is incident toW on the left,
we record the number of the rectangle that has its right edge in W and its bottom edge in W ′. When
we come to a wall W ′ that is incident to W on the right, we record the number of the rectangle that
has its left edge in W and its top edge in W ′. The resulting partial permutation σW is called the wall
shuffle associated toW , because it is obtained by shuffling two sequences: the decreasing sequence of
numbers of rectangleswhose right edge is contained inW (excluding the bottom such rectangle) from
bottom to top and the decreasing sequence of numbers of rectangles whose left edge is contained in
W (excluding the top such rectangle) from bottom to top.

For each horizontal wall W , we construct the wall shuffle associated to W in a similar manner.
Moving from the left endpoint of W to the right endpoint of W , when we come to a wall W ′ that is
incident to W on the top, we record the number of the rectangle that has its bottom edge in W and
its right edge in W ′. When we come to a wall W ′ that is incident to W on the bottom, we record the
number of the rectangle that has its top edge inW and its left edge inW ′. The partial permutation σW ,
in this case, is obtained by shuffling two increasing sequences: the sequence of numbers of rectangles
whose bottom edge is contained inW (excluding the rightmost such rectangle) from left to right and
the sequence of numbers of rectangles whose top edge is contained inW (excluding the leftmost such
rectangle) from left to right.

Example 3.5. Fig. 3 shows a generic rectangulation R whose associated diagonal rectangulation R′ is
the rectangulation from Fig. 1. The numbering of rectangles is inherited from R′. Tables 2 and 3 show
the wall shuffles associated to R.

Specifying a generic representation R is equivalent to specifying the associated diagonal
rectangulation R′ along with the wall shuffles for each wall. For some walls, there may be only one
shuffle possible, and this unique shuffle may be empty. The shuffles may be chosen arbitrarily (among
shuffles of the appropriate rectangle numbers) and independently for each wall, and each sequence
of choices of R′ and the wall shuffles yields a different generic rectangulation.

When a wall slide is performed along a wall W , the move alters σW by swapping two adjacent
entries which number rectangles on opposite sides of W . Since a wall slide only changes the
combinatorics locally, performing a wall slide along W does not alter the wall shuffle for any other
wall.

We now define the map γ : Sn → gRecn. Let x = x1x2 · · · xn ∈ Sn and construct R′
= ρ(x).

Let W be a vertical wall in R′ and consider the rectangles in R′ having their right edges contained in
W . By construction, the numbers of these rectangles form a decreasing subsequence of x1x2 · · · xn.
Similarly, the numbers of the rectangles in R′ having their left edges contained in W are a decreasing
subsequence of x1x2 · · · xn. Thus we can specify a wall shuffle σW by taking the subsequence of
x1x2 · · · xn consisting of the appropriate rectangle numbers. For a horizontal wall W , the numbers of
the rectangles having their top edges contained inW forman increasing subsequence of x1x2 · · · xn and
the numbers of the rectangles having their top edges contained inW form an increasing subsequence
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Table 2
Wall shuffles in vertical walls of the rectangulation of Fig. 3.

Rectangles left of wall Rectangles right of wall Wall shuffle

2 3 Empty
5 6 Empty
8, 7, 6 13, 11, 9 7 6
9 10 Empty
3, 1 4 1
11, 10, 4 12 4
13 14 Empty
14 15 Empty

Table 3
Wall shuffles in horizontal walls of the rectangulation of Fig. 3.

Rectangles above wall Rectangles below wall Wall shuffle

1 2, 3 3
2, 3, 4 5, 6, 9, 10 269 3
5, 6 7 5
9, 10 11 9
7 8 Empty
11, 12 13, 14, 15

of x1x2 · · · xn, so, in this case as well, we can specify a wall shuffle for W by taking an appropriate
subsequence of x1x2 · · · xn. The diagonal rectangulation R′ together with all of these wall shuffles
define the generic rectangulation γ (x).

Example 3.6. This is a continuation of Examples 3.1 and 3.5. Fig. 1 shows the construction of ρ(x)
for x = 8 75 2 6 9 314 . To construct γ (x), we look at each wall of ρ(x). For
example, ρ(x) has a horizontal wallW with rectangles 2, 3, and 4 aboveW and rectangles 5, 6, 9, and
10 below W . The restriction of x to the set {2, 3, 6, 9, 10} is 269 3. Thus γ (x) is a rectangulation
that is mosaic equivalent to ρ(x) and that has a wall shuffle 269 3. Considering similarly the other
five horizontal walls of ρ(x) and the eight vertical walls of ρ(x), we see that γ (x) is the rectangulation
shown in Fig. 3. (Cf. Tables 2 and 3.)

Example 3.7. Fig. 4 shows the map γ applied to every permutation in S4. The permutations in S4 are
shown in the weak order, and the 24 rectangulations in gRec4 are shown in the corresponding order.
As a byproduct of the results of Section 4, themap γ : Sn → gRecn induces a lattice structure on gRecn
such that γ is a surjective lattice homomorphism.

4. Main theorem

In this section, we prove our main theorem.

Theorem 4.1. The restriction of γ is a bijection from the set of 2-clumped permutations in Sn to the set
of generic rectangulations with n rectangles.

The proof of Theorem 4.1 is accomplished by proving three propositions.

Proposition 4.2. The map γ : Sn → gRecn is surjective.

Proof. Let R′ be any diagonal rectangulation and choose an arbitrary wall shuffle for each wall of R′.
We need to show that there exists x = x1x2 · · · xn ∈ Sn such that ρ(x) = R′ and such that each chosen
wall shuffle is a subsequence of x1x2 · · · xn. That is, we need to show that the rectangles of R′ can be
ordered consistent with the requirements of Proposition 3.2 and with the wall shuffles.

Suppose, for 1 ≤ i ≤ n, that we have chosen i − 1 rectangles in an order consistent with
the requirements of Proposition 3.2 and with the wall shuffles. We will show that we can choose
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Fig. 4. γ : S4 → gRec4 .
© 2011, Nathan Reading.

a rectangle in step i that also satisfies the requirements. Since we have chosen consistent with
Proposition 3.2, the union T of the i − 1 rectangles chosen with the left and bottom edges of S, is a
left- and bottom-justified set. To satisfy the requirement of Proposition 3.2 in step i, we must chose a
rectanglewhose bottomand left edges are contained in T . To show thatwe can choose such a rectangle
consistent with the wall shuffles, we extend an argument from the proof of [15, Proposition 6.2].

The top-right boundary of T is a polygonal path from the top-left corner of S to the bottom-right
corner of S, always moving directly right or directly down. Each point where the path turns from
moving down to moving right is the bottom-left corner of a rectangle of R′ that is not contained in T .
We index these rectangles U1, . . . ,Um from top-left to bottom-right. The left edge of U1 is necessarily
contained in T , or else wewere wrong to index it as U1. Thus if U1 fails to have both its bottom and left
edges in T , then its bottom edge is not contained in T . This implies that the left edge of U2 is contained
in T . We continue until we find the first j such that the bottom edge of Uj is contained in T . Since the
bottom edge of Um is in T , such a j exists. Necessarily, the left edge of Uj is also contained in T .

We now consider the walls containing the edges of Uj. First, let Wl be the wall containing the left
edge ofUj. (If j = 1 and the left edge ofUj is in the left edge of S, then there is nowall shuffle associated
to the left edge of Uj.) Because the bottom edge of Uj−1 is not contained in T , the top endpoint of Wl
is contained in the bottom edge of Uj−1, as illustrated in Fig. 5. (If j = 1 and the left edge of Uj is not
in the left edge of S, then the top vertex ofWl is in the top edge of S.) We conclude that all rectangles
adjacent to and left of Wl are contained in T . Thus we can pick Uj in step i consistent with the wall
shuffle inWl.

Second, letWt be thewall containing the top edge ofUj. IfWt is also thewall containing the bottom
edge of Uj−1, then since the bottom edge of Uj−1 is not contained in T , the top-left corner p of Uj is
the top-right corner of another rectangle of R′. Since that other rectangle must intersect the diagonal,
every point onWt from p rightwards is above the diagonal. ThusUj−1 is the rightmost of the rectangles
adjacent to and aboveWt , because otherwise the bottom-right corner ofUj−1 is the bottom-left corner
of a rectangle of R′ that does not intersect the diagonal. Since the left edge of Uj−1 is contained in T , all
other rectangles adjacent to and aboveWt are constructed in steps 1 through i − 1. Thus we can pick
Uj in step i consistent with the wall shuffle in Wt . If Wt is not the wall containing the bottom edge of
Uj−1, then the left endpoint ofWt is also the top-left corner of Uj. (This is the case that is illustrated in
Fig. 5.) In this case, Uj is leftmost among rectangles adjacent to and belowWt , so Uj does not figure in
the wall shuffle inWt .

We have shown that pickingUj in step i is allowed by Proposition 3.2 and by thewall shuffles in the
walls Wl and Wt . Let Wr be the wall containing the right edge of Uj and let Wb be the wall containing
the bottom edge of Uj, if these exist. If j = m, then there is no wall Wr and either there is no wall Wb
or Uj is the rightmost rectangle adjacent to and aboveWb, so that Uj does not figure in the wall shuffle
in Wb. Thus if j = m, the rectangle Uj can be picked in step i. If, on the other hand, j < m, then Uj can
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Fig. 5. A figure illustrating the proof of Proposition 4.2.
© 2011, Nathan Reading.

be picked in step i if and only picking it is allowed by the wall shuffle inWr and by the wall shuffle in
Wb.

LetW ′

l be the wall containing the left edge of Uj+1 and letW ′
t be the wall containing the top edge of

Uj+1. We will prove the following claim: if picking Uj in step i is disallowed by the wall shuffle in Wr ,
or if it is disallowed by the wall shuffle inWb, then the left edge of Uj+1 is contained in T , and picking
Uj+1 in step i is allowed by the wall shuffle inW ′

l and by the wall shuffle inW ′
t .

First, suppose that pickingUj in step i is disallowed by thewall shuffle inWr . If the bottom endpoint
of Wr is also the bottom-right corner of Uj (as shown in Fig. 5), then Uj is the lowest of the rectangles
adjacent to and left of Wr . This would contradict the supposition that picking Uj next is disallowed
by the wall shuffle inWr , so we conclude that the wallWr continues below Uj. Since the bottom edge
of Uj is contained in T , it follows that the bottom right corner of Uj is the next convex corner of T . In
particular, thewall shuffle inWr requires us to chooseUj+1 beforeUj. Since thewallW ′

l coincides with
Wr , we know that the wall shuffle in W ′

l does not prevent us from choosing Uj+1 next. Also, we see
that the left edge of Uj+1 is contained in T : otherwise the right edge of Uj intersects the left edge of
Uj+1, making Uj+1 the topmost of the rectangles adjacent to and right of Wr (because R′ is a diagonal
rectangulation). This contradicts the supposition that picking Uj next is disallowed by the wall shuffle
in Wr . Furthermore, we see that the top-left corner of Uj+1 is strictly below the convex corner of T
separating Uj from Uj+1: otherwise, that convex corner is the corner of four rectangles of R′ (including
Uj and Uj+1). Thus Uj+1 is the leftmost rectangle adjacent to and belowW ′

t , so it does not figure in the
wall shuffle inW ′

t .
Next, suppose that picking Uj in step i is disallowed by the wall shuffle in Wb. Let V be leftmost

among rectangles adjacent to and belowWb that are not contained in T . The rectangle V is also shown
in Fig. 5. Since picking Uj in step i is disallowed by the wall shuffle in Wb, the rectangle V exists and
comes before Uj in the wall shuffle forWb. The top endpoint of the wallW ′

l is the top-left corner of V ,
and in particular is contained in T . Thus all of the rectangles adjacent to and left ofW ′

l are in T , so that
choosingUj+1 in step i is allowed by thewall shuffle inW ′

l . If V = Uj+1, thenW ′
t = Wb, andwe already

know that the wall shuffle in Wb requires us to pick V next. If V is not Uj+1, then the left endpoint of
W ′

t is contained in T , so Uj+1 is the leftmost rectangle adjacent to and below W ′
t , and thus Uj+1 does

not figure in the wall shuffle inW ′
t . In either case, the left edge of Uj+1 is contained in T , and we have

proved the claim.
If the bottom edge of Uj+1 is contained in T , then the claim implies that picking Uj+1 in step i is

allowed by Proposition 3.2 and by the wall shuffles in the walls W ′

l and W ′
t . We can thus argue for

Uj+1 just as we have argued above for Uj. If the bottom edge of Uj+1 is not contained in T , then we find
the first k > j such that the bottom edge of Uk is contained in T , and start over as above, replacing
Uj with Uk. Eventually, we will find a rectangle that can be picked, because the bottom edge of Um is
contained in T and because, as mentioned above, wall shuffles in the walls below Um and to the right
of Um will never prevent its being picked. �

Proposition 4.3. Suppose xly in the weak order, and let e and a be the adjacent entries that are swapped
to convert y to x, with a < e. Then γ (x) = γ (y) if and only if there are entries b, c, and d in y, with
a < b < c < d < e, such that b and d are on the same side of ea, while c is on the other side of ea.
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a b

Fig. 6. Figures illustrating the proof of Proposition 4.3.
© 2011, Nathan Reading.

Proof. Both conditions in the proposition imply that ρ(x) = ρ(y), by the definition of γ and by
Proposition 3.2. Throughout the proof, let R′ be the diagonal rectangulation ρ(x) = ρ(y). We claim
that γ (x) = γ (y) if and only if Ua and Ue are not adjacent to any common wall of R′. Indeed, if Ua
and Ue are not adjacent to any common wall of R′, then x and y must define the same wall shuffles
on the walls of R′, so γ (x) = γ (y). Conversely, suppose Ua and Ue are adjacent to a common wall W
of R′. The assumption that ρ(x) = ρ(y) rules out the possibility that Ua and Ue are both on the same
side of W , so Ua and Ue are on opposite sides of W . Since Ua is chosen immediately before Ue when
R′ is constructed as ρ(x) but immediately after Ue when constructing R′ as ρ(y), we see that a and e
are both entries in σW . That is, if W is vertical, then neither Ua nor Ue is the bottom-most rectangle
adjacent to W on the left, and neither Ua nor Ue is the topmost rectangle adjacent to W on the right.
Similarly, ifW is horizontal, neither of the two rectangles are the leftmost rectangle belowW nor the
rightmost rectangle aboveW . We conclude that γ (x) ≠ γ (y) and we have proved the claim.

Suppose there are entries b, c , and d in y, with a < b < c < d < e, such that b and d precede ea,
but c follows ea. Let T be the union of the left and bottom edges of S with the rectangles chosen before
Ua and Ue when R′ is constructed as ρ(x) or ρ(y). In the construction of R′ as ρ(x), the rectangle Ua is
chosen next, but in the construction of R′ as ρ(y), the rectangle Ue is chosen next. Thus both T ∪ Ua
and T ∪Ue are bottom- and left-justified sets. Therefore, every point of Ue is strictly below and strictly
to the right of every point of Ua. See Fig. 6(a), ignoring, for now, the labels pa and pe. In particular, Ua
and Ue are not adjacent to a common wall of R′. By the claim, γ (x) = γ (y).

Similarly, if there are entries b, c , and d in y, with a < b < c < d < e, such that c precedes ea,
but b and d follow ea, we see that every point of Ue is strictly below and strictly to the right of every
point of Ua. See Fig. 6(b), ignoring the labels p, pa, and pe. In particular, Ua and Ue are not adjacent to a
common wall of R′, so γ (x) = γ (y).

Conversely, suppose γ (x) = γ (y). Let T be as above. For every concave corner p of the top-right
boundary of T , there is a rectangle of U whose bottom-left corner is p. Let pa be the bottom-left corner
of Ua and let pe be the bottom-left corner of Ue. Both pa and pe are concave corners of the boundary
of T . There are two possibilities: the first is that, looking from top-left to bottom-right at the concave
corners of the boundary of T , there is some concave corner between pa and pe. In this case, there exist
entries b, c , and d in y, with a < b < c < d < e, such that b and d are before ea, while c is after
ea, as illustrated by Fig. 6(a). The second possibility is that, from top-left to bottom-right, there are no
other concave corners between pa and pe. Thus there is a single convex corner p of T between pa and
pe. Since R′ equals both ρ(x) and ρ(y), both Ua and Ue have their bottom and left edges contained in T .
If p is the bottom-right corner of Ua, or if p is the top-right corner of Ue, then Ua and Ue are adjacent to
a common wall. By the claim, this is a contradiction to the supposition that γ (x) = γ (y). Thus there
exist entries b, c , and d in y, with a < b < c < d < e, such that c is before ea, while b and d are after
ea, as illustrated in Fig. 6(b). �

Proposition 4.2 asserts that every fiber of γ is nonempty. The following proposition characterizes
the fibers more exactly, and completes the proof of Theorem 4.1.

Proposition 4.4. Each fiber of γ is a Γ -class. In particular, each fiber of γ contains a unique 2-clumped
permutation.
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Proof. By Propositions(2) and 4.3, the fibers of γ are unions of Γ -classes. Suppose x and y are distinct
permutations with γ (x) = γ (y). Then ρ(x) = ρ(y) and x and y are consistent with the same set of
wall shuffles. Wewill show that x and y are congruent modulo Γ . Let i be the smallest index such that
xi ≠ yi. We argue by induction on n − i.

There is some k > i such that yk = xi. Since γ (x) = γ (y), either the rectangle numbered xi or the
sequence of rectangles numbered yiyi+1 · · · yk can be chosen next, consistent with the requirements
of Proposition 3.2 and with the wall shuffles. We conclude that the entry yk = xi does not participate
in any wall shuffles with any of the entries yiyi+1 · · · yk−1.

Consider the sequence of permutations starting with y and moving the entry yk to the left one
place at a time, without changing the relative positions of the other entries, with the final entry y′ in
the sequence having yk in position i. Then γ is constant on the sequence. Since each pair of adjacent
permutations in the sequence is a covering pair in the weak order, each pair is related as described
in Proposition 4.3. But then Proposition 2.2(2) says that the entire sequence is contained in one Γ -
class, so that in particular y′ and y are congruent modulo Γ . Since γ (x) = γ (y′) and x and y′ agree in
positions 1 through i, by induction we conclude that x and y′ are congruent modulo Γ . Thus x and y
are congruent modulo Γ .

We have shown that each fiber of γ is a Γ -class. The second assertion of the proposition follows
by Proposition 2.2(1).

5. Remarks on enumeration

A pleasant formula was obtained in [7] for the number of Baxter permutations in Sn.

B(n) =


n + 1
1

−1 
n + 1
2

−1 n
k=1


n + 1
k − 1

 
n + 1

k

 
n + 1
k + 1


.

This formula applies to twisted Baxter (i.e. 1-clumped) permutations and to diagonal rectangulations
as well. In this section, we make several remarks on the problem of enumerating generic
rectangulations or 2-clumped permutations. In particular, we give some indications that the
enumeration of 2-clumped permutations will be harder than the enumeration of 1-clumped
permutations.

Remark 5.1. One way to enumerate generic rectangulations is by specializing a formula of Conant
and Michaels [8]. This formula is a recursion, with signs, counting rectangulations according to the
number of crosses. Thanks to Jim Conant for providing the results of his recursive calculations which
verify and extend Table 1.

Remark 5.2. Another approach to enumerating 2-clumped permutations is to apply the key idea
from [7]. This approach appears not to lead to a formula for the number of generic rectangulations,
but is useful computationally, as we now explain.

Suppose x ∈ Gn. For each entry a in x, let β(a) = {b ∈ [a + 1, n] : b is before a}. Then n + 1 can
be placed before a in x to obtain another 2-clumped permutation if and only if one of the following
holds: β(a) = ∅, β(a) = [a+ 1, n], β(a) = [a+ 1, c] for some c with a+ 1 ≤ c < n, or β(a) = [d, n]
for some d with a + 1 < d ≤ n. Notice that if a satisfies none of these requirements, then even after
n+1 is inserted elsewhere to obtain a permutation x′

∈ Gn+1, the entry a in x′ still satisfies none of the
requirements. Notice also that n+1 can be inserted after all of the entries of x to obtain a permutation
in Gn+1.

Accordingly, we encode a 2-clumped permutation by a string of letters as follows. Read through
the elements of x from left to right, and for each element a, write a letter in the string as follows:

n (for ‘‘null’’ or ‘‘n’’) if a = n. Assume a ≠ n in the following cases.
e (for ‘‘empty’’) if β(a) = ∅.
f (for ‘‘full’’) if β(a) = [a + 1, n].
l (for ‘‘lower’’) if β(a) = [a + 1, c] for some c with a + 1 ≤ c < n.
u (for ‘‘upper’’) if β(a) = [d, n] for some d with a + 1 < d ≤ n.
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If none of these apply, then write nothing.
For example, for each of the permutations 2413, 4213, 3124 and 3142, the symbol 5 can be inserted

anywhere except before the symbol 1. The sequences of letters for these permutations are respectively
en · f,nu · f, e · ln, and e ·nf, with a dot ‘‘·’’ indicating an entry in the permutation that does not produce
a letter. The respective strings are enf, nuf, eln, and again enf.

Ifwe place the symbol n+1 before a in x or ifweplacen+1 after all entries of x, we can construct the
string of letters corresponding to the new permutation x′ by the following procedure. Insert the letter
n in the string before the letter corresponding to a or at the end of the string and alter letters before
the insertion according to the following rule: n becomes e, e is unchanged, f becomes l, l is unchanged,
and u is deleted. Alter letters occurring after the insertion as follows: n becomes f, e becomes u, f is
unchanged, l is deleted, and u is unchanged.

Now we can dispense with permutations entirely and simply insert letters into strings, counting
the resulting strings by multiplicities. We start with the string n, encoding the permutation 1 ∈ G1.
Inserting before or after the one letter in the string, we obtain en and nf, corresponding to the
permutations G2 = {12, 21}. Inserting into these two strings, we obtain the strings een (for 123), enf
twice (for 132 and 231), nuf (for 312), eln (for 213), and nff (for 321). In the next round of insertions,
deletions of letters come into play, so that for example, inserting n after the e in eln, we obtain enf.
This corresponds to inserting 4 after 2 in 213 to obtain 2413. In all, there are 15 stringswhich represent
the 24 permutations in G4.

The values shown in Table 1 are the results of a simple computer program that generates all strings
and keeps track of multiplicities.

In contrast, representing 1-clumped permutations (i.e. twisted Baxter permutations) by strings
leads to an enumeration formula. In this case the locationswhere n+1 can be inserted are the locations
labeled n, e, or f, with the same definitions as above.When n is inserted into the string, the remainder
of the string is altered as follows: before the insertion, n becomes e, e is unchanged, and f is deleted.
After the insertion, n becomes f, e is deleted, and f is unchanged. All of the strings are of the form einf j,
for i, j ≥ 0 and i + j ≤ n − 1. Define G(n, i, j) to be the multiplicity of the string einf j for 1-clumped
permutations in Sn. Up to reindexing in n, the numbers G(n, i, j) coincide with the numbers Tn(i, j)
in [7], and the obvious recurrence onG(n, i, j) coincideswith the recurrence on Tn(i, j). This recurrence
can be solved as in [7], or by the generating functionmethod of [6]. In particular, the generating tree for
the twisted Baxter permutations is isomorphic to the generating tree for Baxter permutations. Indeed,
the original proof [18] that twisted Baxter permutations biject with Baxter permutations proceeded
by establishing this isomorphism of generating trees.

Remark 5.3. Mallows [16] gave a combinatorial interpretation for the terms in formula for B(n) by
pointing out that the term indexed by k counts Baxter permutations with k ascents (or rises). There are
two dual ways to define ascents: we will say that a right ascent is a pair of adjacent entries such that
the left entry in the pair is smaller than the right entry in the pair. A left ascent is a pair of entries i and
i−1with i−1 appearing before i in the permutation.We can similarly define right descents (left entry
in the pair larger) and left descents (i − 1 appearing after i). Recall that the Baxter permutation are
the permutations avoiding 3-14-2 and 2-41-3. It is easy to see that a given permutation is a Baxter
permutation if and only if its inverse is a Baxter permutation. (See e.g. [15, Corollary 4.2].) Thus,
when counting Baxter permutations according to the number of ascents, it does not matter whether
we use right ascents or left ascents. Furthermore, it is immediate that a permutation is a Baxter
permutation if and only if its reverse permutation is also a Baxter permutation. Thus the formula for
Baxter permutationswith a fixednumber of ascents is the sameas the formula for Baxter permutations
with a fixed number of descents. It is easy to see that the number of ascents in a permutation x equals
the number of vertical walls in the diagonal rectangulation ρ(x). Thus the formula for B(n) counts
diagonal rectangulations according to the number of vertical walls.

The number of left ascents of x also equals the number of verticalwalls in the generic rectangulation
γ (x) and the number of left descents of x equals the number of horizontalwalls. Thus by the symmetry
of the rectangulations, counting 2-clumped permutations by left descents is equivalent to counting
2-clumped permutations by left ascents. However, the inverse of a 2-clumped permutation is not
necessarily a 2-clumped permutation, so it matters whether we take the left or right definitions
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of descents or ascents. Thus there are at least three reasonable statistics by which to count: left
ascents/descents, right ascents, or right descents. Computations show that these three statistics are
distributed differently, and suggest the following conjecture:

Conjecture 5.4. Fix k ≥ 0. Then for n ≥ 1, the number of 2-clumped permutations in Sn with exactly d
right descents is a polynomial pk(n) of degree 3d and leading coefficient

d
i=1

2
i(i + 1)(i + 2)

=
2d+1

d!(d + 1)!(d + 2)!
.

The polynomial pk(n) must have factors (n − 1)(n − 2) · · · (n − d), so the point is to determine the
polynomial p̃k(n) of degree 2d that results when these factors are taken out. The first few polynomials
appear to be p̃0(n) = 1,

p̃1(n) = (n2
− 2n + 3)/3,

p̃2(n) = (5n4
− 36n3

+ 142n2
− 279n + 270)/180, and

p̃3(n) = (14n6
− 213n5

+ 1688n4
− 8361n3

+ 26000n2
− 46884n + 37800)/15120.

It should be emphasized that the point of the conjecture is to find a formula enumerating all 2-clumped
permutations. The conjecture can be proved for some small values of k, and proofs for additional values
of k are of interest only to the extent to which they lead to a conjecture on the general form of pk(n).

The other two statistics (left ascents/descents and right ascents) do not lead to polynomial
formulas. In particular, counting 2-clumped permutations by left ascents, or equivalently counting
generic rectangulations by the number of vertical walls, appears to be hard.
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