The Extension of Roth's Theorem for Matrix Equations Over a Ring

Liping Huang*
Department of Basic Sciences
Xiangtan Mining Institute
Xiangtan, 411201, P.R. China

and

Jianzhou Liu
Department of Mathematics
Xiangtan University
Xiangtan, 411105, P.R. China

Submitted by Robert M. Guralnick

ABSTRACT

This paper extends Roth's similarity theorem as follows: Let R be a ring with identity, $B(A) = \sum_{i=0}^{k} B_i A^i \in R_{mxq}$, if either R is a division ring and $A \in R$, A is algebraic, or R is finitely generated as a module over its center, then the matrix equation $\Sigma_{i=0}^{k} A^i X B_i = C$ over R has a solution if and only if

$$\begin{pmatrix} \lambda I - A & -C \\ O & B(\lambda) \end{pmatrix} \equiv \begin{pmatrix} \lambda I - A & O \\ O & B(\lambda) \end{pmatrix}.$$

© Elsevier Science Inc., 1997

Let R be a ring with identity, and $\text{Cen } R = \{ r \in R \mid rx = xr, \ x \in R \}$ be the center of R. Let $R_{m \times n} (R_{m \times n}[\lambda])$ denote the set of all $m \times n$ matrices over $R (R[\lambda])$, $A(\lambda) \equiv B(\lambda)$ denote that $A(\lambda) \in R_{m \times n} [\lambda]$ is equivalent to

* Supported by the National Natural Science Foundation of China.

© Elsevier Science Inc., 1997

0024-3795/97/$17.00

655 Avenue of the Americas, New York, NY 10010

PH 50024-3795(96)00286-8
$B(\lambda) \in R_{m \times n}[\lambda]$ over $R[\lambda]$, and $A \sim B$ denote that $A \in R_{n \times n}$ is similar to $B \in R_{n \times n}$ over R. Let $M(\lambda) = \sum_{i=0}^{k} M_i \lambda^i \in R_{m \times n}[\lambda]$, $A \in R_{m \times m}$, and define

$$[M(\lambda)]_L(A) = \sum_{i=0}^{k} A^i M_i.$$

On the solvability of a matrix equation, we have the well-known Roth's theorems [1] as follows:

Similarity Theorem. Let F be a field, $A \in F_{n \times n}$, $B \in F_{m \times m}$, and $C \in F_{n \times m}$. Then the matrix equation

$$AX - XB = C$$

has a solution $X \in F_{n \times m}$ if and only if

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \sim \begin{pmatrix} A & O \\ O & B \end{pmatrix},$$

or equivalently, if and only if

$$\begin{pmatrix} \lambda I - A & -C \\ O & \lambda I - B \end{pmatrix} \equiv \begin{pmatrix} \lambda I - A & O \\ O & \lambda I - B \end{pmatrix}.$$

Equivalence Theorem. Let F be a field, $A \in F_{m \times r}$, $B \in F_{s \times n}$, and $C \in R_{r \times n}$. Then the matrix equation

$$AX - YB = C$$

has a solution $X \in F_{r \times n}, Y \in R_{m \times s}$ if and only if

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \equiv \begin{pmatrix} A & O \\ O & B \end{pmatrix}.$$

Let R be a ring with identity. If the matrix equation (2) [or (5)] over R has a solution over R if and only if (3) [or (6)] holds, then we say R has the
similarity [or equivalence] property. On the extension of Roth's theorem, R. Guralnick [2] showed that a semisimple Artinian ring has the equivalence property, and

Lemma 1 [2]. An Artinian principal ideal ring has the equivalence property (cf. [3]).

W. Gustafson and J. Zelmanowitz [4] showed that:

Lemma 2. Let R be a ring with identity. If R is finitely generated as module over its center, then R has the equivalence property.

Some noncommutative results for the extension of Roth's theorem to the matrix equation $AXB + CYD = E$ or $AXB - GXD = E$ can be found in the author's papers [5] and [6].

In this paper, we discuss the extension of Roth's theorem for the matrix equation

$$
\sum_{i=0}^{k} A^iX B_i = C, \quad (7)
$$

where $A \in R_{n \times n}$, $B_i \in R_{m \times q}$, $i = 0, 1, \ldots, k$, and $C \in R_{n \times q}$.

Clearly, the equation (7) is the generalization of the following equations:

$$
AX - XB = C, \quad (8)
$$

$$
X - AXB = C, \quad (9)
$$

$$
AXB = C. \quad (10)
$$

Let D be a division ring, $A \in D_{n \times n}$. If there exists a polynomial $f(\lambda) \in (\text{Cen } D)[\lambda]$ such that $f(A) = 0$, then A is said to be algebraic [7]. If $A \in D_{n \times n}$ is algebraic, then there exists a unique monic polynomial $q(\lambda) \in (\text{Cen } D)[\lambda]$ of minimum degree such that $q(A) = 0$, and $q(\lambda)$ is called the minimal central polynomial of A.

Clearly, if $A \in D_{n \times n}$ is centralizable, i.e. there exists an invertible matrix P over D such that $P^{-1}AP$ is a matrix over $\text{Cen } D$, then A is algebraic. If D is a finite dimensional central division algebra over a field, then any $n \times n$ matrix D is algebraic. Thus, the algebraic matrix over a division ring is more useful.
LEMMA 3 [8]. Let \(R \) be a ring with identity. Given \(f, g \in R[\lambda] \), if \(g \) is monic, then there exist unique elements \(q, r \in R[\lambda] \) such that
\[
f = gq + r, \quad \text{deg } r < \text{deg } g.
\] (11)

THEOREM 1. Let \(R \) be a ring with identity, \(B(\lambda) = \sum_{i=0}^{k} B_i \lambda^i \in R_{m \times q}[\lambda] \). Then the matrix equation (7) over \(R \) has a solution \(X \in R_{n \times m} \) if and only if the matrix equation
\[
(\lambda I - A)X(\lambda) + Y(\lambda)B(\lambda) = C
\] (12)
over \(R[\lambda] \) has a solution \((X(\lambda), Y(\lambda)) \in R_{n \times (q+m)}[\lambda] \).

Proof. If the matrix equation (7) over \(R \) has a solution \(X_0 \in R_{n \times m} \), let \(\bar{B}_0 = X_0 B_0 - C, \bar{B}_i = X_0 B_i, i = 1, \ldots, k, \) and
\[
Q(\lambda) = \sum_{i=1}^{k} \sum_{j=0}^{i-1} \lambda^{i-j-1} A^j \bar{B}_i,
\] (13)
then it is easy to see that
\[
X_0 B(\lambda) - C = (\lambda I - A)Q(\lambda), \quad \text{or}
\]
(14)
Thus, the matrix equation (12) has a solution \((X(\lambda), Y(\lambda)) = (-Q(\lambda), X_0) \in R_{n \times (q+m)}[\lambda] \).

Conversely, if (12) has a solution \((X_0(\lambda), Y_0(\lambda)) \in R_{n \times (q+m)}[\lambda] \), then it is easy to see that
\[
[Y_0(\lambda) B(\lambda)]_L(A) = [C - (\lambda I - A)X_0(\lambda)]_L(A) = C.
\] (15)
Let \(Y_0(\lambda) = \sum_{j=0}^{r} D_j \lambda^j \in R_{n \times m}[\lambda], X_1 = \sum_{j=0}^{r} A^j D_j \in R_{n \times m} \). By (15), we have
\[
\sum_{i=0}^{k} A^i X_1 B_i = \sum_{i=0}^{r} \sum_{j=0}^{k} A^{i+j} D_j B_i
\]
\[
= \left(\sum_{j=0}^{r} \sum_{i=0}^{k} \lambda^{i+j} D_j B_i \right)_L(A)
\]
\[
= [Y_0(\lambda) B(\lambda)]_L(A)
\]
\[
= C.
\] (16)
Thus, matrix equation (7) over \(R \) has a solution \(X = X_1 \).
Now, we extend Roth's similarity theorem as follows:

Theorem 2. Let \(R \) be a ring with identity, and \(B(\lambda) = \sum_{i=0}^{k} B_i \lambda^i \in R_{m \times q}[\lambda] \). If either \(R \) is a division ring and \(A \subseteq R_{n \times n} \) is algebraic, or \(R \) is finitely generated as module over its center, then the matrix equation (7) over \(R \) has a solution \(X \in R_{n \times m} \) if and only if

\[
\begin{pmatrix}
\lambda I - A & -C \\
O & B(\lambda)
\end{pmatrix}
\equiv
\begin{pmatrix}
\lambda I - A & O \\
O & B(\lambda)
\end{pmatrix}.
\]

(17)

Proof. If matrix equation (7) has a solution \(X \in R_{n \times m} \), then by Theorem 1, there exists \((X_i(\lambda), Y_i(\lambda)) \in R_{n \times (q + m)}[\lambda] \) such that

\[
(\lambda I - A)X_i(\lambda) + Y_i(\lambda)B(\lambda) = C.
\]

(18)

Let

\[
P(\lambda) = \begin{pmatrix} I_n & Y_i(\lambda) \\ O & I_m \end{pmatrix} \quad \text{and} \quad Q(\lambda) = \begin{pmatrix} I_n & X_i(\lambda) \\ O & I_m \end{pmatrix}.
\]

(19)

Then we have

\[
P(\lambda) \begin{pmatrix}
\lambda I - A & -C \\
O & B(\lambda)
\end{pmatrix} Q(\lambda) = \begin{pmatrix}
\lambda I - A & O \\
O & B(\lambda)
\end{pmatrix}.
\]

(20)

Conversely, if the condition (17) holds, we prove that matrix equation (7) has a solution as follows:

Case 1. Suppose \(R \) is a division ring and \(A \in R_{n \times n} \) is algebraic. Let \(F = \text{Cen } R, \ q(\lambda) \in F[\lambda] \) be the minimum central polynomial of \(A \), and

\[
I_q = (q(\lambda)) = \{ q(\lambda)f(\lambda) | f(\lambda) \in R[\lambda] \}.
\]

(21)

Let \(\overline{R} = R[\lambda]/I_q \) be a quotient ring, by Lemma 3, \(\overline{R} \) can be written as \(R = \{ f + I_q | f \in R[\lambda] \text{ and } \deg f < \deg q(\lambda) \} \). Thus, it is easy to see that \(\overline{R} \) is an Artinian principal ideal ring. Without loss of generality, we assume that \(\lambda I - A, \ B(\lambda), \) and \(C \) are matrices over \(\overline{R} \). By (17), it is easy to see that

\[
\begin{pmatrix}
\lambda I - A & -C \\
O & B(\lambda)
\end{pmatrix}
\equiv
\begin{pmatrix}
\lambda I - A & O \\
O & B(\lambda)
\end{pmatrix} \quad \text{over } \overline{R}.
\]
Thus, by Lemma 1, the matrix equation

\[(\lambda I - A)X(\lambda) + Y(\lambda)B(\lambda) = C\]

(22)

over \(\overline{R}\) has a solution \((X_0(\lambda), Y_0(\lambda)) \in \overline{R}_{n \times (q + m)}\). Since \(q(A) = 0\), it makes sense to define \([I_q]_{N \times M}(A) = 0\) for all natural numbers \(N, M\). Let \(Y_0(\lambda) = Y_1(\lambda) + (I_q)_{n \times m}\), where \(Y_1(\lambda) = \sum_{j=0}^{r} D_j \lambda^j \in R_{n \times m}[\lambda]\); then we have

\[
[Y_1(\lambda)B(\lambda)]_L(A) = [Y_0(\lambda)B(\lambda)]_L(A) = C - (\lambda I - A)X_0(\lambda)]_L(A) = C.

(23)

Let \(X_1 = [Y_1(\lambda)]_L(A) = \sum_{j=0}^{r} A^jD_j \in R_{n \times m}\); then by (23) we have

\[
\sum_{i=0}^{k} A^iX_1B_i = \sum_{j=0}^{r} \sum_{i=0}^{k} \lambda^{i+j}D_j B_i(A) = [Y_1(\lambda)B(\lambda)]_L(A) = C.

(24)

This is, the matrix equation (7) has a solution \(X = X_1\).

Case 2. Suppose that \(R\) is finitely generated as module over \(\text{Cen } R\). Since \(\text{Cen}(R[\lambda]) = (\text{Cen } R)[\lambda]\), thus \(R[\lambda]\) is also a ring which is finitely generated as module over its center. By Lemma 2, we know that matrix equation (12) over \(R[\lambda]\) has a solution \((X_1(\lambda), Y_1(\lambda)) \in R_{n \times (q + m)}[\lambda]\). Thus, by Theorem 1, it is clear that the matrix equation (7) over \(R\) has a solution \(X \in R_{n \times m}\).

By Theorem 2, clearly we have

Corollary 1. Let \(A \in R_{m \times m}, B \in R_{n \times n}\), and \(C \in R_{m \times n}\). If either \(R\) is a division ring and \(A\) is algebraic, or \(R\) is a ring which is finitely generated as a module over \(\text{Cen } R\), then the matrix equation \(AX - XB = C\) over \(R\) has a solution \(X \in R_{m \times n}\) if and only if

\[
\begin{pmatrix}
\lambda I_m - A & -C \\
O & \lambda I_n - B
\end{pmatrix} \equiv \begin{pmatrix}
\lambda I_m - A & O \\
O & \lambda I_n - B
\end{pmatrix}.
\]

(25)
Corollary 2. Let \(A \in R_{m \times m} \), \(B \in R_{n \times n} \), and \(C \in R_{m \times n} \). If either \(R \) is a division ring and \(A \) is algebraic, or \(R \) is a ring which is finitely generated as a module over \(\text{Cen} R \), then matrix equation \(X - AXB = C \) has a solution \(X \in R_{m \times n} \) if and only if

\[
\begin{pmatrix}
\lambda I_m - A & -C \\
0 & I_n - \lambda B
\end{pmatrix} \equiv \begin{pmatrix}
\lambda I_m - A & O \\
O & I_n - \lambda B
\end{pmatrix}.
\]

Clearly, Corollary 2 is the extension of Theorem 2 in [9].

Corollary 3. Let \(A \in R_{m \times m} \), \(B \in R_{n \times q} \), and \(C \in R_{m \times q} \). If \(R \) is a division ring and \(A \) is algebraic, or \(R \) is a ring which is finitely generated as a module over \(\text{Cen} R \), then the matrix equation \(AXB = C \) over \(R \) has a solution \(X \in R_{m \times n} \) if and only if

\[
\begin{pmatrix}
\lambda I - A & -C \\
O & \lambda B
\end{pmatrix} \equiv \begin{pmatrix}
\lambda I - A & O \\
O & \lambda B
\end{pmatrix}.
\]

REFERENCES

Received 20 December 1995; final manuscript accepted 8 April 1996