Orthodeoxia and platypnoea after acute organophosphorus poisoning reversed by CPAP: a newly described cause and review of the literature

D. Bouros*,§, P. Agouridakis†, A. Tsatsakis‡, E. Askitopoulou† and N. M. Siafakas*

Departments of *Pulmonary, †Critical Care Medicine and ‡Toxicology, Medical School University of Crete, Greece 71110

The case of a 60-year-old male patient, who survived severe organophosphorus poisoning, and subsequently developed platypnoea and orthodeoxia is described. The patient was mechanically ventilated for a long period of time in the intensive care unit. During the weaning trial, he developed platypnoea and orthodeoxia (PaO₂ 85 mmHg in recumbency, and 40 mmHg in upright position). Interestingly, the patient’s orthodeoxia was alleviated on continuous positive airway pressure (CPAP) treatment. This is a newly described cause of the platypnoea–orthodeoxia syndrome. The possible pathophysiological mechanisms are discussed and a review of the reported abnormal states associated with this condition is presented.

Introduction

Dyspnoea in the upright position that is relieved by resuming the supine posture was first described by Burchell et al. (1) in 1949, and later Altman and Robin (2) coined the term ‘platypnoea’ (from the Greek words platys=recumbent and pnoez=breath). This is a rare form of dyspnoea and is usually accompanied by arterial desaturation in the upright position that is improved during recumbency, a condition that is called orthodeoxia (from the Greek words orthos=upright and deoxia=desaturation). Both platypnoea and orthodeoxia have been described in patients with different underlying conditions (2–28) (Table 1).

To our knowledge, the platypnoea–orthodeoxia couple has not been previously described in a patient with severe organophosphorus (OP) poisoning.

Case Report

A 60-year-old farmer was admitted to the intensive care unit after attempting suicide by ingesting an unknown quantity of the OP insecticide dimethoate 2 h previously. On admission the patient was in deep coma, Glasgow coma scale (GCS) 4, had pinpoint-sized pupils and reduced muscle tone and tendon reflexes. He was haemodynamically unstable with sinus bradycardia, (heart rate 45–55 beats min⁻¹), multiple (>5 min⁻¹) unifocal ventricular extrasystoles and hypotension (mean arterial pressure <60 mmHg). He also had severe cyanosis, gasping respirations and diffuse rales on chest auscultation. Chest radiography was normal and PaO₂/fraction of

Table 1 Abnormal states associated with platypnoea–orthodeoxia

<table>
<thead>
<tr>
<th>State</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>2–3</td>
</tr>
<tr>
<td>Shunts – intracardiac</td>
<td>4–14</td>
</tr>
<tr>
<td>– peripheral</td>
<td>15</td>
</tr>
<tr>
<td>Atrial septal aneurysm</td>
<td>16</td>
</tr>
<tr>
<td>Postpneumonectomy and postlobectomy</td>
<td>4, 14–19</td>
</tr>
<tr>
<td>ARDS</td>
<td>20</td>
</tr>
<tr>
<td>Diffuse parenchymal lung disease</td>
<td>21</td>
</tr>
<tr>
<td>Autonomic dysfunction</td>
<td>22</td>
</tr>
<tr>
<td>Ileus</td>
<td>23</td>
</tr>
<tr>
<td>Amiodarone lung toxicity</td>
<td>24</td>
</tr>
<tr>
<td>Eosinophilic endomyocardial disease</td>
<td>25</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>26–27</td>
</tr>
<tr>
<td>Pulmonary emboli</td>
<td>4</td>
</tr>
<tr>
<td>Constrictive pericarditis</td>
<td>28</td>
</tr>
<tr>
<td>Organophosphorus poisoning</td>
<td>Present case</td>
</tr>
</tbody>
</table>

COPD, chronic obstructive pulmonary disease; ARDS, adult respiratory distress syndrome.
inspired oxygen taken after 1 h mechanical ventilation was 320. The abdominal wall was soft, there were increased bowel sounds and sialorrhea. Bouts of diarrhoea started 4 h after admission and lasted for 3 days. The patient was intubated and resuscitated, and mechanical ventilation started. Atropine was given as boluses of 2 mg every 10 min up to 0.06 mg and subsequently continued as infusion of 0.05 mg kg\(^{-1}\) h\(^{-1}\) for 23 days (cumulative dose 649 mg). Pralidoxime (2-PAM) was given as boluses of 1 g 4 and 6 h after admission, and then as 500 mg q.i.d. for 12 days (cumulative dose 24 g). The dose of atropine was adjusted in order to: (i) minimize bronchial secretions; (ii) maintain pupil size as greater than 3 mm; and (iii) keep the heart rate greater than 100 beats min\(^{-1}\). The dose of pralidoxime was also adjusted aiming to: (i) normalize acetylcholinesterase (Ache) serum levels, i.e. greater than 3.5 U l\(^{-1}\); and (ii) normalize the neuromuscular response, checked clinically and by a relaxograph (Datex, type 100-23-01, Finland).

The remaining therapy included gastric lavage with activated charcoal and manitol every 3 h for the first 24 h, until gastric lavage was free of poison.

Laboratory results on admission were: haematocrit 44%; Hb 14 g dl\(^{-1}\); serum urea 6 mmol l\(^{-1}\) (reference values 2.2-9 mmol l\(^{-1}\)); serum creatinine 133 mmol l\(^{-1}\) (range 65-141 mmol l\(^{-1}\)); K\(^{+}\) 2.92 meq l\(^{-1}\) (range 3.5-5.5 meq l\(^{-1}\)); Na\(^{+}\) 152 meq l\(^{-1}\) (range 135-145 meq l\(^{-1}\)); Ca\(^{2+}\) 2 mmol l\(^{-1}\) (range 2.2-2.58 mmol l\(^{-1}\)); aspartate aminotransferase (SGOT) 70 U l\(^{-1}\) (range 15-35 U l\(^{-1}\)); alanine aminotransferase (SGPT) 67 U l\(^{-1}\) (range 9-39 U l\(^{-1}\)); lactate dehydrogenase 500 U l\(^{-1}\) (range 70-280 U l\(^{-1}\)); and creatine kinase 280 U l\(^{-1}\) (range 25-185 U l\(^{-1}\)).

The patient was evaluated twice daily by the same doctor for the severity of his condition (APACHE II score), central nervous system function (GCS score), respiratory function (Murray's Acute Lung Injury score) (29), and the skeletal muscle function (clinical examination, relaxogram).

The toxicological analysis for dimethoate quantitation by gas chromatography (30) in biological samples gave the following results: serum levels 9.3 μg ml\(^{-1}\), gastric fluid 18 mg ml\(^{-1}\) and urine 43 μg ml\(^{-1}\). Serum levels of dimethoate returned to non-toxic levels (<0.05 μg ml\(^{-1}\)) 15 days later. Ache serum levels on admission and during the following days determined spectrophotometrically (Boehringer Mannheim kit) are shown in Fig. 1.

The course of the disease was prolonged, requiring mechanical ventilation for 30 days, atropine therapy for the first 23 days and pralidoxime administration for 12 days (Fig. 2).

Clinical examination showed that the first skeletal muscle to recover was the diaphragm, followed by the muscles of the extremities. The intercostal muscles did not show any clinical activity and the patient had a diaphragmatic type of breathing. The weaning trial of the patient from the mechanical ventilation started 20 days after admission, initially on intermittent mandatory ventilation (IMV) mode, and 6 days later on continuous positive airways pressure (CPAP) (7.5-12.5 cm H\(_2\)O) for 4 days. On the thirtieth day, after the patient had been stable for 3 days breathing 40% O\(_2\) through a tracheostomy and a T-piece, he was put into the sitting position. Minutes later, he developed acute respiratory distress (tachypnoea, tachycardia, cold perspirations, upper chest inspiratory infold and severe cyanosis). Arterial PaO\(_2\) dropped from 85 to 40 mmHg (SaO\(_2\) from 95
Orthodeoxia and platypnoea

All the previously described causes and related abnormal states (Table 1) had been excluded in our patient.

The proposed aetiologic mechanisms for the development of platypnoea–orthodeoxia include intracardiac (4, 14, 25), pulmonary vascular shunts [congenital (15) or acquired (26, 27)] and severe ventilation–perfusion mismatch (2, 3, 22–24).

Dimethoate (phosphorodithioic acid, 0,0-dimethyl ester), a systemic and contract organophosphorus insecticide is produced and marketed in Greece by various chemical companies under the trade names Dimephos, Dimethoate, Dimethol, Rogor, Roxion, all of them 40% solutions of the active compound. The reported LD₅₀ value (orally in rats) is 250 mg kg⁻¹. Three main types of neurotoxicity have been associated with OP agent poisoning (31): (1) The acute cholinergic crisis, which presents minutes to 24 h after exposure, characterized by a combination of muscarinic, nicotinic and central nervous system signs and attributed to inhibition of carboxylic esterases. (2) The delayed neurotoxicity, a predominantly motor polyneuropathy arising 2–3 weeks after the exposure and attributed to the inhibition of a separate esterase, termed the neuropathy target esterase. (3) The intermediate syndrome, appearing 2–5 days after the acute crisis, characterized by acute respiratory distress and skeletal muscles weakness, which coincides with prolonged cholinesterase inhibition resistant to atropine and oximes treatment.

Although it is obvious that the patient developed a severe and protracted intermediate syndrome after an acute cholinergic crisis both due to OP poisoning, the reason for platypnoea–orthodeoxia is not clear. One possible explanation is the earlier resuming of activity of the diaphragm in relation to intercostal muscles. However, this is based only on the observation of the diaphragmatic type of breathing of the patient.

Another explanation could by the automatic nervous system dysfunction as a result of OP poisoning. In this case, when the patient is erect the underlying...
autonomic failure followed by a decrease in blood pressure, inadequate perfusion of the upper lung and increased zone I, result in ventilation-perfusion mismatch, hypoxaemia and dyspnœa (22,24,28). This seems impossible in our case because the blood pressure was stable even after the CPAP application. An intracardiac shunt as a possible cause of platypnoea--orthodoxia was excluded by contrast echocardiography done in both the recumbent and sitting positions.

References


