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Molecular chaperones regulate p53 and suppress senescence programs
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Abstract Many types of cancer cells constitutively express ma-
jor molecular chaperones at high levels. Recent findings demon-
strate that specific depletion of individual chaperones, including
various members of the Hsp70 family, small heat shock proteins,
or VCP/p97, leads to activation of p53 pathway and subse-
quently triggers cellular senescence. Here, we discuss a possibil-
ity that in cancer cells high levels of chaperones serve to keep the
p53 signaling under control, thus allowing cancer cells to evade
the default senescence and form tumors.
� 2007 Federation of European Biochemical Societies.
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It is generally accepted that apoptosis plays the major role in

control of cancer development. In fact, cells encounter multiple

apoptotic stimuli during cancer progression, including activa-

tion of pro-apoptotic myc oncogene [1–3], anoikis, i.e. sub-

strate detachment-induced apoptosis upon invasion and

metastases [4], apoptotic stimuli of tumor milieu, like TNF,

FAS, hypoxia, nutrient deprivation, etc. [5,6]. Accordingly, it

was suggested that the well-documented anti-apoptotic poten-

tial of the heat shock proteins may play a critical role in sup-

pression of apoptosis in cancer cells [7,8]. In line with this

suggestion, recent research from many labs dissected multiple

effects of the major heat shock proteins, Hsp72 and Hsp27,

on various components of multiple apoptotic pathways [9–

11], including Bax, JNK, FAS receptor, Smad, lysosome

stability, and others. However, direct involvement of Hsps in

suppression of cancer-related apoptosis has not been clearly

confirmed. More recently, the attention of the cancer commu-

nity has shifted towards a novel role of cell senescence in con-

trol of cancer development, and with this shift our view on the

role of Hsps in cancer has also evolved towards appreciation of

the major role of Hsps in regulation of the senescence pro-

gram.

Cellular senescence was originally described as a limit to a

number of divisions that a normal cell can undergo. For exam-

ple, normal fibroblasts can divide about 60 times in culture be-

fore acquiring a specific ‘‘flat’’ morphology and becoming

permanently growth arrested [12,13]. Epithelial, endothelial

or hematopoetic cells also have a limit on the number of divi-

sions, which is usually below twenty [14–19]. Originally it was
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thought that the replicative senescence is an ultimate result of

the telomers shortening, but at present it became clear that

senescence could be triggered by various types of DNA dam-

age that results in accumulation of cell cycle inhibitors p16

and p21 [20–24]. Senescence is a very complex program with

multiple end points that include not only growth arrest, but

also enlargement of cells, extensive vacuolization, repression

and de-repression of certain sets of genes, secretion of various

signaling molecules, inhibition of the heat shock response, and

other manifestations.

The senescence program seems to represent one of the major

breaks on cancer emergence. Indeed, limiting cell divisions

seems to be a perfect way of preventing tumor growth [25]. An-

other alternative to achieve the same goal is through activation

of apoptosis. Mammalian cells appear to utilize both programs

to counteract action of the major oncogenes. In fact, as coun-

terintuitive, as it sounds overexpression of major oncogenes

could either activate apoptosis, as seen with myc, or trigger

senescence as seen with Ras, Her-2, PTEN, Raf, and others

oncogenes of the Ras pathway [26–32].

The discovery that cancer cells could become senescent was

quite unexpected since tumor cells by definition divide indefi-

nitely. Nevertheless, being unrestrained by the replicative

senescence, many cancer cells still could undergo senescence

(so-called premature senescence) in response to activation of

oncogenes (Fig. 1), e.g. Ras or Her-2, or to various DNA-dam-

aging drugs, like doxorubicin [33,34]. In fact, the major mech-

anism of action of many anti-cancer drugs seems to be

activation of the premature senescence program [35,36]. These

findings demonstrate that the senescence program remains

functional even after cancer transformation. Premature senes-

cence in cancer cells depends upon activation of the cell cycle

inhibitor p21, while p16 seems to be involved only in senes-

cence of normal cells.

In general oncogenes of Ras pathway activate the senescence

program via several mechanisms that involve activation of

p53, the transcriptional activator of p21. For example, these

oncogenes can activate the DNA damage response kinases

ATM and ATR because of excessive activation of DNA repli-

cation forks, and these kinases phosphorylate and stabilize p53

[37]. Another mechanism involves induction of p19ARF that

inhibits the p53 ubiquitin ligase Hdm2, also leading to stabil-

ization of p53 [38]. In turn stabilization of p53 leads to its

accumulation and activation. Since cancer cells have active

oncogenes that can trigger cell senescence, in order to prolifer-

ate they have to acquire mechanisms that completely or

partially suppress p21. Indeed, it is well known that muta-

tions in p21 or mutations that result in disabling of p21
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Fig. 1. Hsps can suppress p53 and allow proliferation of cells with activated oncogenes. Oncogenes of Ras pathway activate two parallel pathways,
including the proliferation response and the growth inhibitory p53 pathway. Normally p53 induces p21 and causes growth arrest and senescence, thus
preventing cell proliferation. However, proliferating cells acquire mutations in the p53 pathway. Alternatively, high levels of Hsps inhibit p53 and
allow cells to proliferate.
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transcriptional regulator, p53, are extremely common in hu-

man cancers. However, in many cancer types the p53 pathway

remains functional, and therefore alternative mechanisms of

suppression of p21 must operate in these tumors.

How cancer cells with activated oncogenes and intact p53

pathway escape senescence? Cancer cells constitutively overex-

press several major chaperones [39]. It appears that these chap-

erones play an important role in suppressing the senescent

program, thus allowing cancer cells to proliferate. A critical

observation on the role of chaperones in suppression of cellu-

lar senescence was the finding that a specific downregulation of

Hsp70-2, a member of Hsp70 family, leads to rapid senescence

of various cancer cell lines [40,41]. Hsp70-2 was originally de-

scribed as a testis-specific chaperone, but more recently it be-

came clear that it is widely expressed in a variety of cancer

cell types [40,41]. Depletion of this protein using siRNA ap-

proach caused permanent G1 arrest, cell enlargement and flat-

tening typical for senescent cells. These alterations were

associated with up-regulation of p53. Gene array analysis

showed that expression of a large number of genes was signif-

icantly altered (up- or downregulated) upon Hsp70-2 deple-

tion. The pattern of the gene expression alterations had a lot

of similarities to that found in senescence caused by doxorubi-

cin [40,42,43]. One of the genes upregulated at both conditions

was MIC-1, a cytokine of TGFb family, which appeared to be

critical for senescence. In fact, expression of siRNA against

MIC-1 prevented development of flat morphology and other

hallmarks of senescence after depletion of Hsp70-2. Overpro-

duction of MIC-1 is controlled by p53. Therefore the primary

effect of Hsp70-2 depletion seems to involve p53 activation,

which in turn triggers the senescence program. It is likely that

this process involves induction of p21, because it is a direct p53

transcriptional target. On the other hand, MIC-1 appears to

serve as an additional critical p53-dependent co-stimulator of

cell senescence. It is likely that MIC-1 is secreted from cells

and further promotes the senescence program, thus providing

both autocrine and, possibly, paracrine stimulation. Thus,

Hsp70-2 seems to play a role in keeping p53 pathway sup-

pressed, and Hsp70-2 depletion leads to the abrogation of this

control and reactivation of the default senescence program.
A distinct member of the Hsp70 family, the major inducible

heat shock protein Hsp72 plays a similar function in cancer

cells, though the ways of controlling the p53 pathway by

Hsp70-2 and Hsp72 appear to be different (see below). Deple-

tion of Hsp72 led to a strong activation of p53, induction of

p21, cell cycle arrest at both G1 and G2 phases, appearance

of acidic b-gal activity and other hallmarks of senescence

[44]. Previously, Hsp72 was shown to bind p53 [45,46] and re-

tain it in cytoplasm, implying that depletion of Hsp72 would

release p53 and allow its nuclear translocation and activation

of the transcription targets. In addition, p53 was stabilized

upon depletion of Hsp72, due to reduction of activity of the

p53 ubiquitin ligase Hdm2. Defining the primary effect of

Hsp72 depletion on p53 pathway is rather tricky since p53

and Hdm2 represent a negative feedback loop, where p53 in-

duces Hdm2, while Hdm2 facilitate degradation of p53. How-

ever, it was shown that suppression of Hdm2 upon Hsp72

depletion is the primary event, since under these conditions

inhibition of Hdm2 was seen even in p53 knockout cells [44].

Interestingly, though p53 and p21 clearly contributed to

development of senescence in Hsp72-depleted cells, other path-

ways also appear to be involved since a significant senescence

was seen after Hsp72 depletion in p53 knockout colon carci-

noma HCT-116 cells. The p53-independent senescence path-

way under these conditions was associated with the

reduction of expression and increase in the inhibitory phos-

phorylation of the cdc2 kinase [44]. In line with this finding,

partial depletion of cdc2 also caused senescence in p53 knock-

out cells.

There are reports that yet another member of the Hsp70

family, i.e. mitochondrial chaperone Grp75 also could activate

senescence pathway through the control of p53. Being the ma-

jor mitochondrial chaperone, Grp75 shows a pan-cytosolic

localization in normal cells. Upon immortalization, however,

it changes its localization and moves into the perinuclear zone

[47,48]. Association of this protein with cell immortalization is

reflected in its alternative name, mot-2 (mortalin). Interest-

ingly, overexpression of mot-2 protein in C. elegans signifi-

cantly extended the worm’s life span [49]. Importantly,

overexpression of mot-2 in normal human lung fibroblasts
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led to a temporal escape of fibroblasts from the replicative

senescence, allowing extra 12–18 doublings [50]. Effects of

mot-2 on temporal suppression of senescence were associated

with inhibition of p53. Mot-2 directly interacts with p53 and

suppresses its activity by sequestering p53 in cytosol [51–53].

Accordingly, disruption of mot-2 – binding to p53 by specific

peptides leads to p53 translocation to nucleus and concurrent

activation [54]. Therefore, several major Hsp70 family mem-

bers appear to be involved in the control of p53.

Members of the Hsp70 family are not unique in their ability

to interfere with senescence, as depletion of Hsp27 in trans-

formed cells, similarly led to activation of the senescence pro-

gram. In fact, upon siRNA-mediated depletion of Hsp27

human colon tumor cells HCT-116 acquired all major hall-

marks of senescence associated with activation of p53 and

induction of p21 [55]. Similar effects were seen upon depletion

in HeLa cells of a distinct chaperone vcp/p97 that controls

delivery of ubiquitinated substrates to proteasome. Vcp/p97

downregulation led to activation of p53 and subsequent p21

induction and cell cycle arrest accompanied by cell flattening,

vacuolization, and enlargement [56].

As discussed previously, some chaperons could directly inter-

act with p53 and suppress its activity. In addition, the fact that

depletion of different chaperones results in activation of p53

and leads to senescence suggests that these effects could be med-

iated through the chaperones’ general involvement in protein

folding and degradation. In fact, there is a possibility that

depletion of individual chaperones may reduce a refolding/deg-

radation capacity of cells, thus causing a build-up of abnormal

polypeptides, proteotoxicity and subsequent activation of p53.

In line with this suggestion, certain protein damaging stresses

that cause a build-up of abnormal polypeptides, like heat shock

or oxidative stress, lead to activation of p53 [57–59]. However,

surprisingly, targeted depletion of individual chaperones Hsp72

or Hsp27 in HCT-116 cells did not result in accumulation of

abnormal protein species. Accordingly, no accumulation of

oxidized or ubiquitinated proteins were detected [55]. Ubiqui-

tin–proteasome degradation and refolding of model substrates

were normal, indicating that UPS and the chaperone machinery

were not overwhelmed. Moreover, there was no activation of

the heat shock response, suggesting the lack of the proteotoxic

stress [55]. Furthermore, depletion of either Hsp72 or Hsp27

had only minor effects on heat shock sensitivity of these cells,

as judged by activation of apoptosis. Therefore, effects of deple-

tion of individual chaperones on the p53 pathway appear to

control this pathway by specific mechanisms, rather than

through evoking general proteotoxic stress. Findings that dis-

tinct chaperones are involved in control of the p53 and possibly

other senescence pathways may help to explain why chaperones

are often overexpressed in a variety of cancers. In fact, high

expression of Hsp72 and Hsp27 often correlates with the grade

of tumors, drug resistance and overall poor prognosis. Simi-

larly, Hsp70-2, mot-2 and vcp/p97 were reported to be highly

expressed in various tumors, and with some tumors they could

be used as prognostic factors [39]. Therefore cancer cells in con-

trast to normal cells selectively overproduce these chaperones

individually or together. The overproduction of chaperones

in tumors could be achieved through various mechanisms,

including overexpression of the major heat shock transcription

factor Hsf1 [60,61], phosphorylation of Hsf1 by Akt kinase

activated by certain oncogenes [62], expression of a splicing iso-

form of p63 [63] and probably other mechanisms.
What could be the specific physiological significance of in-

creased chaperone expression in cancers? As mentioned above,

activation of certain oncogenes (e.g. Ras, Her-2 or PTEN

mutation) in normal cells stimulate p53 and forces cells to se-

nesce, which serves as an important defense mechanism against

cancer transformation. Depletion of various chaperones trig-

gers senescence suggesting that chaperones serve as endoge-

nous suppressors of a latent senescence program. In other

words, in many cancers various chaperones keep p53 under

control, thus allowing cancer transformation to occur

(Fig. 1). It is possible that tumors accumulate chaperones as

a means to avoid the oncogene-induced senescence. This mech-

anism of evading activation of the senescence program in tu-

mors could be an alternative to acquiring mutations in p53

pathway, which takes place in a large fraction of tumors. All

together these data imply that heat shock proteins could serve

as new important targets for anticancer therapies.
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