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Progressive microcracking in brittle or quasi-brittle materials, as described by damage models, presents a
softening behavior that in turn requires the use of regularization methods in order to maintain objective
results. Such regularization methods, which describe interactions between points, provide some general
properties (including objectivity and the non-alteration of a uniform field) as well as drawbacks (damage
initiation, free boundary).

’éeywords; A modification of the nonlocal integral regularization method that takes the stress state into account is
NZISZ%(;“W proposed in this contribution. The orientation and intensity of nonlocal interactions are modified in

accordance with the stress state. The fundamental framework of the original nonlocal method has been
retained, making it possible to maintain the method’s advantages. The modification is introduced through
the weight function, which in this modified version depends not only on the distance between two points
(as for the original model) but also on the stress state at the remote point.

The efficiency of this novel approach is illustrated using several examples. The proposed modification
improves the numerical solution of problems observed in numerical simulations involving regularization
techniques. Damage initiation and propagation in mode I as well as shear band formation are analyzed

Interactions
Stress state

herein.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In quasi-brittle materials, nonlocality originates in the interac-
tions between microcracks (Bazant, 1991) and leads to stress mag-
nification in some of the areas surrounding a microcrack, thus
allowing for the creation or growth of new microcracks. Nonlocal
damage models aim to describe the behavior of quasi-brittle mate-
rials in microcracked areas that have not yet degenerated into a
large open crack. In addition to restoring objectivity in numerical
modeling for strain softening behavior, these models offer physical
reliability to the results by explicitly introducing the nonlocal nat-
ure of microcracking.

Gradient-enhanced media (Peerlings et al., 1996) or the non-
local integral method (Pijaudier-Cabot and Bazant, 1987), used as
localization limiters, avoids the ill-posedness of governing equa-
tions of equilibrium and thus avoids mesh dependency. Both of
these methods introduce an internal length into the constitutive
law that may be related to the characteristic size of the material
(i.e. aggregate size). In addition to this added length however,
the nonlocal approach also explicitly introduces the shape of the
interaction domain through the weight function shape. Peerlings
et al. (2001) demonstrated that these two methods are strictly
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equivalent when Green'’s function is used as the weight function
in the integral approach. Even though the shape of the weight func-
tion only plays a minor role in a 1D setting, we will still focus on
the second approach since it provides greater flexibility and facili-
tates the introduction of non-isotropic nonlocalities by directly
expressing the interactions between points within the weight
function.

Nonlocal regularization methods are intended to determine
global behavior of the structure as well as macrocracking accord-
ing to a diffuse approach using the damage field. However, sev-
eral drawbacks arise when using the original nonlocal model,
namely:

(a) Damage initiation in the crack tip problem.
Eringen et al. (1977) exposed the crack tip problem in non-
local elasticity. They indicated that the point subjected to
maximum stress is not located at the crack tip. Simone
et al. (2004) demonstrated that this problem leads to errone-
ous damage initiation due to an inaccurate prediction of the
maximum nonlocal equivalent strain in the presence of a
predefined notch. Jirasek et al. (2004) concluded that differ-
ent strategies could be adopted in order to model the notch
either explicitly by geometry or by filling it with a com-
pletely damaged material. Moreover, they were able to
better fit the size effect on fracture energy in the case of a
notch modeled as a layer of completely damaged material.
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Nonetheless, it can be physically expected to observe the
damage initiation and evolution from the crack tip and not
along the notch, as would have been obtained with a layer
of completely damaged material.

(b) Description of kinematic fields in the fracture process zone

(FPZ).
The chosen method fails to represent open macrocracks with
localized strains across the crack. The poor resolution of
local quantities stems from the fact that the nonlocality
introduced into the calculation is established during the
damage process and depends solely on the distance between
neighboring points. At total failure, interactions across the
cracked zone remain activated, thus leading to the so-called
“damage diffusion” process.

(c) Description of interactions in the vicinity of boundaries.
The isotropic and constant description of nonlocalities leads
to an inadequate treatment of interactions in the vicinity of
free boundaries (Krayani et al., 2009; Pijaudier-Cabot and
Dufour, 2010). Since an open macrocrack can be regarded
as a newly formed free boundary, the original formulation
is also inappropriate to model complete failure of the
material.

The interactions are expected to change according to the load-
ing undergone by the medium. In the presence of an FPZ, the devel-
opment of numerous microcracks can be observed in front of a FPZ,
whereas when looking back to front, no microcrack is expected to
appear due to unloading. Similarly, near the boundary of a solid as
loading conditions are being modified, nonlocality would be ex-
pected to differ when compared to the nonlocality throughout
the bulk of the material. To take into account these evolutions,
the nonlocal interactions between points need to be modified.

To overcome these drawbacks, we are proposing a new nonlocal
method designed to satisfy the following criteria:

e convergence to localized kinematic fields upon failure;

o better description of the interactions in a medium with a stress
gradient;

e absence of nonlocal interactions across a crack and, more gener-
ally, in the vicinity of free boundaries.

Over the last decade, several proposals have been forwarded to
address one or more of the problems exposed above. As regards
gradient-enhanced media, Voyiadjis and Abu Al-Rub (2005) pro-
posed for ductile materials, based on experimental observations,
the dependence of the internal length on several parameters, such
as dislocation density and more particularly the plastic strain.
Their proposal leads to a decrease in the length scale parameter
with an increase in plastic strain. This approach allows for the
internal length to evolve with the microstructure, yet the interac-
tions remain isotropic and thus prevent improvement in the treat-
ment of free boundaries or oriented macrocracks.

Geers et al. (1998) introduced the notion of gradient activity to
describe the transient behavior of nonlocal interactions. Compared
to the original gradient-enhanced media with a constant size c of
the interaction domain, such gradient activity induces an evolu-
tion, driven by the local equivalent strain, from zero for an un-
loaded material to c for high strain levels. According to this
approach, points lying outside the localization area, due to a de-
crease in their equivalent strain, tend to become more local as their
gradient activity (i.e. interaction domain) decreases. As a conse-
quence, they tend to be less influenced by points within the local-
ization area. This approach allows for convergence to a crack for
both displacement and nonlocal fields, with no damage diffusion
at high loading levels, by reducing nonlocalities in the unloaded
material. However, according to Simone (priv. comm. 2011), this

improvement does not solve the issue of damage initiation and
shear band evolution described in Simone et al. (2004).

For damage models relying on a nonlocal integral regularization
technique, new proposals are forwarded for the evolution of inter-
actions with damage (Pijaudier-Cabot and Dufour, 2010, addressed
in Desmorat et al. (2010) and described in detail in Desmorat and
Gatuingt (2007)). For the first 2 authors, the distance between
points is replaced by a distance that integrates damage along the
path, so as to reflect the distance over which an elastic wave prop-
agates. As damage increases, this distance virtually increases as
well, leading to a progressive degradation of interactions. On the
simple case of a 1D bar under tension, this approach gives rise to
some interesting results, with a gradual reduction in area with
increasing damage, leading to a localized area with damage equal
to 1 (which can be viewed as a macrocrack). Implementation of
this approach however would seem to be numerically costly for
the 2D and 3D calculations. For each step, performing an integra-
tion along all possible paths between two Gauss points of the dam-
age field is actually required. According to the second approach,
interactions depend on an internal wave propagation time instead
of the distance between points. As the material evolves, this prop-
agation time is modified, leading to a similar result of progressive
degradation of interactions between points around a damaged
area. A number of pending issues remain however with this ap-
proach regarding the choice of wave used and wave interactions
with the boundaries. Furthermore, this approach remains compu-
tationally time-consuming.

BaZant et al. (2010) recently proposed a modification to the
description of the nonlocal field in order to overcome boundary
condition problems. These authors use a layer of local finite ele-
ments along a boundary, which can be perceived as the introduc-
tion of a zero internal length in the boundary layer. This
approach considers an attenuation of the nonlocalities close to a
boundary. Since the behavior remains isotropic however, the frac-
ture process zone (FPZ) width close to boundaries is equal to the
element size; moreover, mesh dependencies are introduced for
crack initiation close to boundaries. Finally, the approach does
not take into account the creation of new boundaries as macro-
cracks, which should modify the nonlocal interactions.

By considering developments on the interactions of microcracks
at the origin of nonlocality, BaZant (1994) has proposed modifying
the nonlocal method by adding a term to the original set-up that
depends on the principal stress directions, as based on interactions
between penny-shaped cracks. Depending on the stress directions,
microcracks will be more or less activated and may magnify the
surrounding stress state by means of interactions with neighboring
microcracks. The redistributions are no longer isotropic, which
tends to enhance the nonlocality description. Yet this approach
also maintains a minimum interaction weight corresponding to
the original nonlocal method, though this does not avoid residual
interactions between points on both sides of a crack upon com-
plete failure or the improper treatment of boundaries.

More recently, Krayani et al. (2009) proposed modifying the do-
main of interactions in the vicinity of boundaries. They focused on
micromechanical considerations relative to interactions between
circular voids using the analytical method developed by Kachanov
(1987), according to which the stress redistribution due to interac-
tions (nonlocal stress) should decrease in the vicinity of boundaries
in the direction normal to these boundaries (Pijaudier-Cabot and
Dufour, 2010). At its limit, the nonlocality is null in the normal
direction of the boundary for a point located on the boundary.

This last proposal forms the basis of the work presented here in
the specific case of a free boundary. This method seeks to properly
describe nonlocal interactions in the vicinity of boundaries, leading
to an improved description of FPZ initiation and thus a better
assessment of size effects Krayani et al. (2009). These
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modifications however only consider specimen geometry and do
not allow for an evolution in interactions during the damage pro-
cess. The nonlocal regularization domain is in fact modified solely
in the vicinity of explicitly defined cracks. Newly damaged areas do
not affect the regularization since new boundaries are not being
created in the model.

In the present contribution, we suggest to enhance the nonlocal
method proposed by Krayani et al. (2009) by providing a broader
framework. To take into account the evolution of nonlocalities in
the medium, we introduce a modification of interactions that de-
pends on the principal stress directions, as proposed by BaZant
(1994); furthermore, the intensity of interactions is proportional
to the stress magnitude. An area under low stress will not influence
its vicinity (e.g. normal to a free boundary or to a fully damaged
zone).

The nonlocal damage model used in our study will be briefly re-
called before introducing modifications of the regularization meth-
od. A test will then be performed on a notched plate under tension,
in comparing the original and stress-based nonlocal methods as re-
gards damage initiation and propagation.

Lastly, a shear band analysis of a specimen under compression
will be performed so as to compare the efficiency of both methods
in determining damage evolution.

2. Nonlocal damage model
2.1. Continuum damage theory

A scalar isotropic damage model for describing the non-linear
behavior of concrete under monotonic loading has been used
herein.

The general stress-strain relationship is:

0ij = (1 = D)Cij : €u (1)

where o and ¢ are the components of the Cauchy stress tensor
and the strain tensor, respectively (i, j, k, € [1,3]) and G, are the
components of the fourth-order elastic tensor. D is a scalar damage
variable that quantifies material degradation; its value rises from 0
(for a virgin material) to 1 (completely degraded material).

The evolution in D is driven by an equivalent strain &, that
quantifies the local deformation state in the material. Among sev-
eral definitions, this paper will consider the equivalent strain de-
fined by de Vree et al. (1995) with the evolution law proposed
by Peerlings et al. (1998)). The scalar damage variable D is a func-
tion of the internal variable Y; this parameter initially equals the
damage threshold ¢p, and is the largest recorded value of &4 during
the damage process. This evolution is governed by the Kuhn-Tuck-
er condition:

teq—Y <0, Y>0, Y(g-Y)=0 (2)

The equivalent strain is based on the von Mises strain (de Vree et al.,
1995):

k-1 1 k=172, 12k
Eeg = m’l +2k\/(1 “oy I+ s v)sz (3)

with v being the Poisson’s ratio and I, and J, two invariants of the
strain tensor ¢ defined as:

L =tr(e) =& + & + & (4)
Jy = g Btr(e-2) - 1(2) )

Parameter k corresponds to the ratio of compressive strength to
tensile strength.

The damage evolution law introduced is the one proposed by
Peerlings et al. (1998):

D— _8%(1 —o+aexp(—B(Y — ep,))) ()

with o and g parameters governing the shape of this evolution law.
An exponential damage evolution law has been chosen in order to
reach high damage levels at very low stress levels, thus avoiding
use of an erosion technique or other methods necessary to execute
a calculation in the case of damage evolution with D equal to 1 at a
finite strain.

This constitutive relation exhibits strain softening and, as a con-
sequence, requires a regularization technique (see for a complete
review Bazant and Jirasek (2002)).

2.2. Original integral nonlocal approach

In the nonlocal damage model, the equivalent strain given in Eq.
(3) is replaced by an average equivalent strain &, over a volume €
in the equation governing the extension of damage as defined by
Pijaudier-Cabot and Bazant (1987):

b= S)eg(s)ds
Eeq (X) = W (7)

¢(x — s) is the weight function defining the interaction between the
considered point located at x and the neighboring points located at
s inside the volume of the structure . This formulation fulfills the
requirement of nonalteration of a uniform field.

The most widely used nonlocal weight function is adopted as
the Gauss distribution function:

2
px ) — exp (— (=) ) ®)

where [, is the internal length of the model and ||x — s|| the distance
between points located at ¥ and s. The characteristic size of the
weighting domain directly depend on the characteristic length [..

The point located at s (distributing point) exerts an isotropic
influence (Fig. 1a), except close to boundaries where the interac-
tion domain is truncated. When considering a point at the level
of the boundary, the number of distributing points with non-neg-
ligible influence on this point is halved. The term in the denomina-
tor in Eq. (7) is consequently halved as well, thus leading to a
double amplitude of the interactions close to the boundary. As a re-
sult, an attraction of damage by the boundaries can be observed
due to truncation of the interaction volume as illustrated by Kray-
ani et al. (2009).

In Appendix A, we illustrate this unintended phenomenon of
damage attraction by boundaries within the framework of the non-
local integral method through studying the damage area under a
Hopkinson test and analyzing how the proposed nonlocal method
manages to describe interactions close to free boundaries.

Another issue identified is the treatment of FPZ at high damage
levels. In Fig. 1b, a quarter of a plate with a central notch is shown,;
this specimen is submitted to a tension of equal magnitude in both
directions. The circles indicated in the figure represent isovalues of
the Gaussian function; these are similar at each point of the spec-
imen and correspond to the influence of the point at the center of
these circles. In the original nonlocal model, this point is able to
influence a point on the other side of the crack since only the dis-
tance between them is considered in the model. From a physical
standpoint however, this interaction should not exist. Since the
presence of a FPZ or a fully developed crack, as well as a free
boundary, modifies the loading on an RVE (Representative Volume
Element) considered in the vicinity, the resulting redistribution of
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Fig. 1. Original nonlocal model: (a) influence of a distributing point, (b) isovalues of the influence of various points in the specimen.

this RVE at the origin of nonlocality had to be modified in order to
reflect the evolution of interactions.

2.3. Nonlocal integral method based on stress state

As mentioned above, the truncation of interaction volume in the
vicinity of the boundary leads to a double amplitude of the non-
local terms in comparison with those in the bulk of the material.
Based on micromechanical considerations, Pijaudier-Cabot and Du-
four (2010) showed that nonlocality corresponds to a stress redis-
tribution due to the presence of defects. In this framework, they
demonstrated that nonlocalities should disappear in the vicinity
of a boundary in the normal direction. As a consequence, they pro-
posed a modification to the interaction domain (Krayani et al.,
2009), whose shape is an ellipsoid with radius equal to the mini-
mum of the internal length and the distance between the consid-
ered point and the boundary. The domain of interaction is
oriented (i.e. isotropy is lost) yet does not evolve over time since
only geometric aspects are being considered. The fully damaged
area can be seen however as a new boundary surrounded by a
damaged zone, which suggests that nonlocal interactions should
vanish in the direction perpendicular to this new boundary.

According to our approach, the perspective for calculating non-
local quantities is slightly different. We no longer consider what a
point located at x can receive, but instead what a point located at s
can distribute. The nonlocality is defined as a quantity given by
each point located at s along its principal stress direction with an
intensity depending on the level of principal stress. We introduce
into the nonlocal regularization the two notions of directionality,
as set forth by Pijaudier-Cabot and Dufour (2010) in the limited
case of the vicinity of boundaries, and intensity variation, which
depends on the state of loading in the structure. The stress field al-
lows for a direct description of the presence of a free boundary and
the development of fracture process zone, both of which lie at the
origin of the modification of nonlocalities.

During the calculation, the evolution in interactions between
points is considered through a single scalar p that, when multiplied
by the characteristic length I (i.e. a length intrinsic to the material
that can be correlated with aggregate size), defines the internal
length of the model. This internal length rises from 0 for an un-
loaded material to I, when reaching maximum tensile stress. It is
important to note that this coefficient, which depends on the stress
state of the distributed points, does not introduce any parameter
into the model.

Let’s denote a,i(S) as the stress state of the point located at s,
expressed in its principal frame. The vectors forming this frame are

u4(s), ux(s), and us(s) with the associated principal stresses a(s),
0(8) and o5(s).

3
Oprin(S) = Y 0i(S) (Wi(8) @ Wi(S)) )
i=1

where ® is the tensor product. We define an ellipsoid centered at
point s, corresponding to a homothety of the original interaction do-
main, with a ratio |%| along the principal stress direction us). f;
denotes the tensile strength of concrete.

The choice of f; is motivated by the intention to describe the
reduction in RVE during the cracking process. Its introduction leads
to no modification of interactions at the tensile stress peak, in the
direction associated with the maximum tensile stress, and thus al-
lows regularizing direct mode I cracking. The characteristic length
I. associated with the material defines the maximum size of the
interaction domain; hence, the internal length pl. of the stress-
based nonlocal model cannot exceed this value. Consequently,
the value of p needs to be limited to 1 under loading directions
for which |o(s)| is greater than f,.

By using the spherical coordinates (p, 0 and ¢), the following
equation describes the ellipsoid associated with the stress state
of the point located at s (Fig. 2).

1
2
P, Gprin (8)” = f sin’ <pc052 0 sin® g sin” 0 + cos? ¢ (10)
t a3(s) a3(s) a2 (s)
U.(s)
Uy(s)

Stress factor used to ponderate

7 the weight function
/?1:— s

X

Fig. 2. Definition of the p coefficient indicating the influence of s on x.
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where 0 is the angle between u; and the projection of (x — s) onto
the plane defined by u; and u,, and ¢ is the angle between us
and (x — s). In considering these angles, we obtain:

oS 6 — U - (U3 A ((X—8)Au3)) sing — U - (us A ((X—8)AU3))
l[us A (% =) Nus)| [us A (X —s) Aus)|
u;-(x—s) (x—5) - (us A (¥ —5) A))
oS =————- sing =
P st P T T sl s A (= s) A

(11)

where A is the vector product and “” is the scalar product.

The weight function now reads:

zwauy
x—-s)=exp|—-(———— 12
o ) P ( (lcp(x, Gprin(S)) (12)

with p(X, 6,,in(s)) equal to the radial coordinate of the ellipsoid pre-
viously defined in the direction (x —s). According to the stress-
based nonlocal model, the intensity of influence of a point at s on
its vicinity depends on both the magnitude and direction of the
principal stresses at s. Fig. 3a provides the influence of the point lo-
cated at s (distributing point) on its vicinity.

For the original nonlocal model, in the area where the redistri-
bution domain is chopped off by the boundaries, the value of the
term in the denominator depends on the distance to the edge
(Eq. (7)). Therefore, the nonlocal kernel looses its symmetry nearby
boundaries. The proposed formulation for the weight function
leads to a non-symmetric nonlocal kernel in the whole domain
(i.e. p(x — s) # ¢(s — X)) since the stress states undergone by both
the point located at x and the point located at s tend to differ most
of the time. Described from a micromechanical perspective, several
authors have revealed this non-symmetry of the nonlocal interac-
tions. This was justified, on one hand, for ductile materials, by Voy-
iadjis and Abu Al-Rub (2005) considering dislocation densities and
plastic strains and, on the other hand, for quasi-brittle materials,
by Bazant (1994) or, more recently, Pijaudier-Cabot et al. (2004)
looking at microcrack interactions.

Indeed, when considering interactions between circular voids
using the analytical method developed by Kachanov (1987) and
Pijaudier-Cabot et al. (2004) indicate that the state at the point lo-
cated at x is the sum of a local quantity at ¥ under remote loading
0., and a nonlocal quantity stemming from a stress redistribution,
due to the presence of microcracks, of the surrounding points at s
under the remote loading (see Eq. (13)).

T(X) = 0. (X) + > [0.(5)

where Iy is an interaction factor derived from the Eshelby solution
to the perturbation stress field due to a circular inclusion loaded by
internal pressure. This factor is proportional to the distance

(13)

(a)

3435

between x and s and to the radius of the circular void rs) (which
makes it somewhat proportional to crack size) at s. Since the radius
of a circular void may differ for each point (r,s) # r,(x)), the inter-
action factors Iy (i.e. the influence of s on x) and I,s (influence of x
on s) may also differ, leading thus to a non-symmetry of the non-
local kernel. In conclusion, the newly proposed interaction kernel
is non-symmetric as the original one along the boundaries and as
all the recent improved propositions based on micromechanical
considerations.

With the stress-based nonlocal method proposed herein, we are
able to retrieve the specific shape of the flat ellipsoid proposed by
Krayani et al. (2009) in the case of a free boundary. The following
condition can thus be derived for the stress tensor: @pn(s) - n=0
with n being the normal vector to the free boundary. As a result,
the points in this area are local in the normal direction.

For purpose of illustration, we have studied a plate with a cen-
tral notch under isotropic biaxial traction. In Fig. 3b, the point C is
not influenced by the notch, which is why the isovalues are close to
being circular. For the point B, in the vicinity of the crack tip, the
stress state is highly disturbed and oriented, leading to ellipses
for the isovalues. The point A is shielded by the crack and hence
undergone only a very low stress state, a situation that exerts no
influence on the surrounding points, as would be expected from
micromechanics.

2.4. Numerical implementation

2.4.1. Computation of the interaction weights for the original nonlocal
model

The general algorithm of the original nonlocal method has been
described in details by Pegon and Anthoine (1997). A fixed connec-
tivity matrix is initially created by defining a list of interacting
neighboring elements j for each element i. The interaction domain
computed for each point is reduced in order to maintain the band
structure of the secant operator during the calculation. A geometric
criterion is thus considered by retaining only those elements j for
which the distance between one of their nodes and a node of the
element i is less than 1.5 x [.. This limit corresponds to an interac-
tion weight ¢ of 1% for a Gaussian distribution. It leads to a band-
width of the secant operator proportional to I.. Consequently, the
higher the internal length is, the wider the bandwidth will be
and the longer the computational time will be. During the initial
step, in order to limit data storage requirements, the weighting is
not stored. Only Boolean values listing the connected elements
are actually stored. This description of the connected elements is
performed once at the beginning and accounts thus for a fixed
computational cost.

During the calculation, the nonlocal regularization is performed
just after evaluating the equivalent strain &e,. The distance to each

Pttt

1
O
C .
>
D\i -
0.3 || A _'
A A A A

Fig. 3. Stress-based nonlocal model: (a) influence of a distributing point, (b) isovalues of the influence of various points in the specimen.
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surrounding Gauss points is then used to compute the weight func-
tion between connected points.

2.4.2. Modifications for the stress-based nonlocal model

The same procedure used for the original nonlocal method is se-
lected for the stress-based nonlocal method. Since the coefficient p
remains lower or equal to 1, the interaction domain for the stress-
based nonlocal method is always included within the domain for
the original nonlocal method, meaning that the connectivity ma-
trix computation, performed at the initial step, is unaffected by
the new regularization method and retained for the stress-based
nonlocal approach. During the calculation, in addition to the dis-
tance to each surrounding Gauss points, the stress state of each
Gauss points is collected in order to compute the weight function
of the stress based nonlocal method. In order to retain an explicit
resolution of the constitutive law, interactions have been com-
puted using the stress state of the previous converged step.

In the definition of p, the direction between the point at x and
the point at s needs to be calculated. For the specific case in which
these two points are merged, the coefficient p is not defined since
no direction can be computed. Nevertheless, by considering a non-
zero value for p and with a distance ||x —s| equal to zero, the
weight for the point located at x is equal to 1; this corresponds
to the local part of the nonlocal equivalent strain.

2.4.3. Definition of the minimum internal length

Under a uniaxial load, the ellipsoid degenerates into a line with
a zero volume. With no minimum size, this specific case yields no
interaction, though a point can be exposed to a relatively high
stress magnitude in one direction. A minimum value of p is there-

1
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fore prescribed to avoid difficulties with zero stress in certain
directions. The minimum value of the internal length pl. is set
equal to the characteristic local size of the element (/area, in 2D
and v/volume, in 3D) and then initially computed for each element.
For a point under high uniaxial stress state, this choice serves to
influence the vicinity along the principal stress directions over a
domain, even though it remains local in the zero-stress direction.
On the other hand, this value also ensures a minimum size of the
interaction domain of less than a single element at complete failure
in order to avoid interactions between points across a macrocrack.
Appendix B analyzes the influence of this minimum value. Such a
rather arbitrary choice has been studied through testing of a 2D
bar under tension with an unstructured mesh.

2.4.4. Treatment of the symmetry

For the original nonlocal method, symmetry conditions are trea-
ted by constructing a mirror image of Gauss points that respect the
symmetry. Nonlocal averaging is then performed over the entire
domain of interactions, including newly-created points. For the
stress-based nonlocal method, the same procedure is imple-
mented, using in addition, the symmetric stress state associated
with the newly-created points in order to compute the weight.

2.4.5. Choice of the solver for the operator

In terms of computational cost, the stress-based nonlocal meth-
od follows the same algorithm as the original nonlocal method.
Due to truncation of the interaction volume close to the boundary,
introducing the original nonlocal regularization leads to a non-
symmetric operator and thus precludes the use of algorithms when
considering the symmetry of the secant operator. For the stress-
based nonlocal model, due to non-reciprocity of the interactions,
given that the stress state tends to be different for each Gauss point
most of the time, the consistent stiffness matrix becomes non-
symmetric even in the bulk part of the model.

Consequently, only the calculation of coefficient p, at each step
of the calculation, affects the general algorithm of the stress based-
nonlocal method compared to the original one.

All the calculations presented in this paper have been executed
using the finite element code Cast3M developed by the C.E.A.
(French Nuclear Agency) (Verpeaux et al., 1988), in which the
stress-based nonlocal method has been implemented.

3. Failure in mode I
3.1. Initiation phase
Mode I damage initiation is analyzed by means of the compact

tension specimen, with a preexisting crack of length h = 0.0005 m,
as shown in Fig. 4. This test, originally conducted by Simone et al.
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Fig. 5. CTS: original nonlocal model, (a) contour plot of the nonlocal equivalent strain; and, (b) evolution of the nonlocal equivalent strain along AB.
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Fig. 7. Force vs. crack opening for both nonlocal methods.

(2004), in order to study the location of damage initiation for the
regularized damage models has been reproduced with the stress-
based nonlocal method. Since our interest herein lies in describing
crack initiation and corroborating the work accomplished by Si-
mone et al., the notch has been described geometrically. Thanks
to symmetry, only half of the specimen needed to be meshed.

The following parameters for the material are used for the anal-
ysis: E=1000 MPa and v =0.2. Various characteristic lengths for
the nonlocal integral method were introduced for the calculations,
as a means of determining the influence on location of the maxi-
mum equivalent strain: [. = 0.0001, 0.0002 and 0.0005 m.

We verified the location of the damage initiation is not
influenced by the value of the Poisson’s ratio for both the original
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Fig. 9. Geometry and boundary conditions for the specimen under compression
(h =60 mm; weak area: h/10 x h/20).

nonlocal model and the stress-based nonlocal model. With a more
realistic value for a concrete-like material of the Poisson’s ratio
(v =0.2), we retrieve exactly the same position for the damage ini-
tiation than in Simone et al. (2004) with v = 0. The equivalent strain
as defined by de Vree (Eq. (3)) was calculated from the strain field
obtained under an imposed displacement. The nonlocal equivalent
strain could then be computed (Eq. (7)); the field value is plotted in
Fig. 5a. As pointed out by Simone et al. (2004), it can be observed
that the maximum value is reached ahead of the notch tip using
either gradient or nonlocal regularization methods. Furthermore,
Fig. 5b shows the value of the nonlocal equivalent strain projected
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Fig. 8. CTS: Damage field at peak force and at failure ((a) and (b): original nonlocal and (c) and (d): stress-based nonlocal).
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Fig. 10. Global behavior of the compression specimen for both regularization
methods.

along the line AB in front of the crack. Let’s note that the shift is
proportional to the internal length of the nonlocal method as also
mentioned in the previously cited work. In the original version the
interaction domain extends over the shadow zone of the notch
where strains are close to zero. Since the nonlocal equivalent strain
is a weighted summation, it proportionally reduces the impact of
the singular strain. Since the strain gradient is smaller in front of
the notch than at the back, the nonlocal equivalent strain is shifted
ahead of the notch front.

It is worth noting however that for the same test with the
stress-based nonlocal method, this shift is null regardless of the
characteristic length . (Fig. 6a and b). The points lying in the sha-
dow of the notch exposed to a small local equivalent strain also lie
in a low stress state. Consequently, their influence on the vicinity is
hardly nonexistent. This important result displays the capability of
the stress-based nonlocal method to correctly locate the initiation

of material nonlinearities in a mode I problem with a preexisting
crack. This issue is a key to the size effect analysis.

3.2. Propagation of damage

To illustrate the difference between both methods, the calcula-
tion has been performed up to failure. The following parameters
have been wused: E=1000MPa, v=0.2, I.=0.56mm, &, =
0.003, «=0.99, =100 and k=10. In Fig. 7, the crack opening
has been computed according to the method proposed by Dufour
et al. (2008). The point of the crack considered to compute the
crack opening is the one just in front of the notch tip. With the
same set of parameters, it can be observed, damage initiates earlier
with the stress based nonlocal model since the interaction domain
is smaller and the strain field is singular. Furthermore, the peak
force obtained is smaller with the stress based nonlocal method.
Regarding the damage field, with the original nonlocal model, the
shift in damage from the crack tip can still be observed at the peak
(Fig. 8(a)). This observation reinforces the previous remark regard-
ing size effect since the peak force is being directly used to for
these analyses.

After damage initiation, it can be observed that the stress-based
nonlocal model dissipates less energy than the original method.
Moreover, during the post-peak behavior, one can see that the
damage returns along the notch with the original nonlocal model.
This non-physical description of damage evolution has not been
obtained with the stress-based nonlocal given that the stress state
avoids interactions with points in back of the crack tip.

4. Damage characterization in shear band problems

Shear banding is a classical collapse mechanism undergone in
many engineering problems relative to geomaterials under

(a) (b)
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0 0.25 0.50
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Fig. 11. Shear band evolution: Contour plots of the damage field with the original nonlocal method ((a)-(d)) and the stress based nonlocal method ((e)-(h)). Displacement:

0.0065 mm; 0.015 mm; 0.02 mm; and, 0.08 mm.
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complex loading. Among the various case studies, we can highlight
some specimens under compressive loading that exhibit shear
bands. The main objective of the current analysis is to assess the
numerical results obtained in a specific problem involving shear
bands with both the original and stress-based nonlocal regulariza-
tion techniques. Simone et al. (2004) have shown the wrong pre-
diction of propagation for a shear band induced by a gradient-
enhanced continuum damage model.

4.1. Case study

A specimen under compressive loading has been studied to
illustrate shear band problems (Fig. 9). To describe the material,
the following parameters for the exponential evolution law pre-
sented in the first part (Eq. (6)) (Peerlings et al., 1998) and von
Mises equivalent strain (Eq. (3)) (de Vree et al., 1995) have been
used: E =20,000MPa, v=0.2, Ic =2.83 mm, &, =0.0001, o=
0.99, p=300and k=1.

The brittle behavior associated to the stress-strain law typically
induces snap-back responses, thus requiring arc-length control in
order to solve the nonlinear systems of equations. Furthermore,
with the stress-based nonlocal regularization, damage tends to
localize in a narrower band than with the original nonlocal model.
As stated by Rodriguez-Ferran and Huerta (2000), standard arc-
length techniques, such as spherical or cylindrical formulations
(Crisfield, 1991), are not suitable in this case since they provide a
measure of the increment of the solution that is too “global” in
contrast with the localized nature of the problem (Geers, 1999).

Alternatively, more “local” definitions of the arc-length parameter
s are needed, such as the maximum strain increment (Pegon and
Anthoine, 1997; Rodriguez-Ferran and Huerta, 2000).

As = max |Ag] (14)

For this test, the loading has been applied via an arc-length control.
In order to initiate damage in this homogeneous model, a weak area
is introduced with a lower damage threshold (gp, = 0.00005).

Fig. 10 exhibits the global behavior of the specimen under com-
pressive loading for both the original and stress-based nonlocal
regularization techniques with an element size equal to 0.001 m.
Fig. 11a-d show the damage field at different steps of the calcula-
tion using the original nonlocal regularization technique. After
damage initiation, we can observe a gradual shift in the shear band
along the boundary, as indicated in Simone et al. (2004). The inter-
nal length value influences the shift observed along the boundary.

Fig. 11e-h present the damage field at various steps of the cal-
culation with the stress-based nonlocal regularization technique.
The stress state undergone by the points with highest equivalent
strain (main stress intensity along the loading axis) avoids a redis-
tribution along the boundary and thus eliminates an incorrect
damage propagation. In addition, the highest damage points are
concentrated over a confined area that may be viewed as the slid-
ing plane between the two parts of the specimen.

Fig. 12 provides the evolution in the parameter p(X,6pin(s)) at
different steps of the calculation (displacement: 0.006 mm,
0.016 mm, 0.022 mm for three distinct locations: Point A
(0.03;0.005), Point B (0.03;0.02) and Point C (0.03; 0.04)). As stated
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Fig. 12. Evolution of p(X,6rin(s)) during the loading. (a) Point A; (b) Point B; and, (c) Point C.



3440 C. Giry et al./International Journal of Solids and Structures 48 (2011) 3431-3443

in Section 2.4, at s to be equal X, p is not defined and the weight
function is equal to one, which explains the hole at the location
of x in Fig. 12. The first step considered consists of representing
the p field close to the peak force, thus making it possible to
observe a maximum value for p along the loading direction. Since
the loading is unidirectional, the redistribution is highly oriented
with no influence in the x-direction. When damage propagates in-
side the specimen, stress intensity decreases as does the influence
of points on their vicinity. At complete failure, the p field for all
three points tends to zero. The points behave locally with no quan-
tity being redistributed.

The objectivity (Fig. 13) of this model is also verified using var-
ious mesh sizes (0.0015 and 0.00075 m), in addition to an unstruc-
tured mesh (with an average mesh size: 0.001 m). The global
behavior (force vs. displacement curves) and local behavior (loca-
tion, orientation and size of the shear band) are identical for all
cases. In Fig. 13a, we observe at complete failure (i.e. the shear
band has reached the opposite side of the specimen) a small corner
in the global response. At this step, the energy dissipation is almost
completed. Consequently, after this step, the displacement in-
creased with no discernible evolution in the force which is close
to zero, leading thus to a change of direction in the evolution of
the force vs. displacement curve. Close to complete failure, since
the maximum damage tends to be localized in one element with
the stress based nonlocal method, the ultimate variation of dissi-
pated energy depends on the size of the element. Consequently,
we observe a small discrepancy at failure between the different
mesh size without affecting the global amount of dissipated en-
ergy. However, as the element size tends to an infinitely small va-
lue, this variation between two different meshes becomes
insignificant.

The influence of plane stress or plane strain condition is dis-
cernible in Fig. 14. The damage field shown is the one obtained
for an imposed displacement of 0.08 mm. In accordance with Rizzi
et al. (1995) for the scalar damage model, the only noticeable
change between the plane strain conditions and the plane stress
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Fig. 13. (a) Global behavior. Damage field: (b) large mesh; (c) unstructured mesh;
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Fig. 14. Damage field: (a) plane strain condition; and, (b) plane stress condition.

conditions with the stress-based nonlocal model is an altered incli-
nation of the shear band.

This test has demonstrated the capability of the stress-based
nonlocal model to better reproduce both damage propagation
and shear band localization.

5. Conclusions

In this paper, we have proposed a modification to the nonlocal
integral model in order to adapt the regularization close to the free
boundaries as well as during the cracking process. The stress state
of each point is used during the calculation to create an evolution
of the interaction between points. Each point interacts with its
vicinity as a function of the intensity and direction of its principal
stresses. This modification has been presented for a 3D case and
has led to the retrieval of results relative to the boundary effects
given in a previous article by the 2nd author, yet without any spe-
cific treatment of boundaries.

The stress-based nonlocal approach yields a better solution for
modeling damage initiation and propagation of the localization
zone. Through two examples, we have shown that the proposed
approach is perfectly capable of locating damage initiation, which
is poorly estimated using any of the other regularization tech-
niques. This work has also concluded that the damage area does
not follow the boundary during its propagation. The stress-based
nonlocal method relies on reducing the principal stress perpendic-
ular to the crack. Initial simulations performed on mode II have
shown an improvement; however, further investigations are
underway for complex failure mode.

All these improvements are introduced with no additional
parameters, since this would be difficult to calibrate. Moreover,
this method can be easily implemented in any FE code that already
includes a nonlocal integral approach.

In future work, a loaded interface between two materials and
loaded boundaries will be investigated. Such an investigation will
be of great benefit for structural analysis with the interaction
between a concrete crack and rebar.
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Appendix A. Analysis of boundary effect: spalling test

In order to study the results given by the original and stress-
based nonlocal methods close to a free boundary, let’s start by
considering a one-dimensional dynamic tension test (i.e. the split
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Fig. A.16. Attraction of the maximum nonlocal equivalent strain by the boundary.
Influence of the location Iy of the tensile signal appearance.

Hopkinson bar test), as shown in Fig. A.15. This example allows to
initiating failure close to a free boundary. A square compression
signal is generated within the bar. Upon reflection at the end of
the bar, the compression signal transforms into a tensile signal that
gets added to the incoming compression. If the absolute amplitude
of the compression signal exceeds the tensile strength, then failure
is initiated at a distance from the boundary equal to half the signal
length. Depending on the compression signal duration, it is possi-
ble to initiate failure in the material at any location, either near the
boundary or far from it. Let’s first study this problem analytically in
order to illustrate the unintended attraction of damage by the
boundary using the original nonlocal model. Afterwards, a numer-
ical analysis will be performed to compare the capability of both
nonlocal methods in describing failure close to the free boundary.
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A.1. Analytical analysis

From an analytical perspective, let’s study the nonlocal equiva-
lent strain field regularized with the original nonlocal model at the
time when the tensile signal first appears. Let us assume the posi-
tive part of the strain field can be represented by a Dirac function 4:

(%) = £00(x — ) (A1)

with ¢g, the amplitude of the signal and [y the location of the Dirac.
The nonlocal equivalent strain is then computed according to Eq.

(7):

Foa(X) = &¢(x — o)

 fod(x—s)ds

with ¢ the Gaussian function defined in Eq. (8). To illustrate the
phenomenon of attraction by the boundary, let’s consider different
locations [y for the first appearance of the tensile signal. The bar
length 7 is set equal to 25 cm. The characteristic length of the origi-
nal nonlocal I is 3 cm. Fig. A.16 shows the nonlocal equivalent
strain field along the bar for various values of l,. In the middle,
the local and the nonlocal maximum equivalent strain are placed
at the same location. A shift between the maximum local equivalent
strain and the maximum nonlocal equivalent strain can be observed
close to the boundary. When [, becomes lower than the value of the
internal length I, of the original nonlocal model,then the maximum
is attracted by the boundary due to the truncated interaction vol-
ume, and this situation therefore leads to an incorrect damage
initiation.

(A2)

A.2. Numerical analysis

The parameters used in this example are: mass density p = 1 kg/
m>, Young’s modulus E =1 MPa and the velocity boundary condi-
tion 7o =3.5 mm/s applied at the right bar end. The other model
parameters are listed as: o= 1; =2; &p, = 1 and the characteristic
length I is 3 cm (no damage is present in compression). A fixed
mesh of 250 constant strain elements has been adopted. Time inte-
gration is performed according to an explicit, central difference
scheme. The signal length is calculated as I = tyc and its amplitude
is £ where c is \/E/p.

Let’s study the evolution of damage from initiation until failure
with both nonlocal formulations. The chosen length [ of the signal
leads to a damage initiation close to the boundary at a distance of
1.5 cm (the signal length is 3 cm).

According to the original formulation (Fig. A.17(a)), damage is
maximum at the bar extremity once it has sufficiently developed.
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Fig. A.17. Damage profile when damage initiates nearby the extremity of the bar: (a) original nonlocal model; and, (b) stress-based nonlocal model.
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We can observe a damage attraction by the boundary with a grad-
ual shift of the maximum. According to the stress-based formula-
tion (Fig. A.17(b)), damage is maximum inside the bar, where
tension is initiated and where the extremity displays no damage.
Let’s now define the thickness of the spall as the distance between
the left-hand side extremity of the bar and the closest point at
which damage is equal to 1 (i.e. complete failure). This thickness
is infinitesimally small according to the original nonlocal approach
because maximum damage occurs at the bar extremity. Conse-
quently, it is impossible to obtain a spall on the order of the
characteristic length of the material or less using the original
nonlocal formulation. Damage initially develops with a maximum
inside the bar, but as it expands, the maximum damage is attracted
towards the bar extremity. In contrast, such is not the case with the
stress-based nonlocal formulation mainly because interactions de-
crease near the bar extremity as stresses decrease with increased
damage.

Appendix B. Influence of the minimum value of p

The influence of the prescribed minimum value for coefficient p
is studied with a simple example of a 2D bar under tension and a
1D loading (i.e. no Poisson’s effect). In this application, due to zero
stress in the Y-direction, a minimum value of p is prescribed dur-
ing the loading.

With a regular mesh describing the bar, we obtain an alignment
of Gauss points parallel to the loading direction. As a result, the
interactions between nearby points are maintained even with a
very small prescribed value for p. Let’s consider this solution as
the reference and focus on the influence of the minimum value
of p with an unstructured mesh (Fig. B.18).

The bar is 1 m long and 0.1 m high; it is fixed at one end. The
following parameters have been set for the damage model describ-
ing concrete (see Eq. (6)): E,=33.7 GPa, «=0.99, v=0, f=1000
and [, =0.18 m.

Five prescribed minimum values for p have been tested with
the unstructured mesh: | 2nin  din - O3hin g 92hnin with dpyin
being a characteristic size of the element (\/area).

The loading has been applied via an arc-length control. The
mesh is composed of bilinear quadrilateral elements for the refer-
ence solution and constant-strain triangular elements for the
unstructured mesh. The central band of elements is weakened by
a lower Young’s modulus (Ep,,, = 31 GPa) in order to initiate dam-
age in the bar. Fig. B.19 shows the evolution in force vs. displace-
ment for the various minimum values of p. The response
obtained is similar at the beginning of the post-peak behavior for
the minimum values greater or equal to %. Once the minimum
value of p has been reached however, the size of the localization
area is imposed. With a value above d,;;, the maximum damage
can no longer be localized within a bandwidth of an element at
complete failure, and we obtain greater energy dissipation, which
in turn leads to differences relative to the global response. For
% we observe a response similar to the reference solution. In
this case however, some points behave locally even at high stress
since they lie outside the area of influence of neighboring points.
This tendency is amplified in the unstructured mesh, as the mini-
mum imposed value tends to decrease. When the width of the
interaction domain becomes too small, the number of integration
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Fig. B.18. Bar under tension. Unstructured mesh.
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Fig. B.19. Comparison of the global response with different minimum values
imposed for p.

points influenced heavily depends on their alignment. For the
unstructured mesh, this situation leads to a non-physical response
with oscillations.

Compared to the reference solution, a minimum value of p
equal to d,L allows localizing maximum damage within a band-
width of one element without loosing the nonlocal interactions be-
tween close points at high loading levels. This value has been
selected for the range of tests proposed in this paper.
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