brought to you by CORE

Discrete Applied Mathematics 23 (1989) 91-96 North-Holland 91

NOTE

A MAXMIN PROBLEM ON FINITE AUTOMATA*

J.-M. CHAMPARNAUD and J.-E. PIN

L.I.T.P, Universités Paris 6 et 7, Your 55-65, 4 Place Jussieu, 75252 Paris Cedex 05, France

Received 23 December 1987

We solve the following problem proposed by Straubing. Given a two-letter alphabet A, what is the maximal number of states f(n) of the minimal automaton of a subset of A^n , the set of all words of length n. We give an explicit formula to compute f(n) and we show that $1 = \lim \inf_{n \to \infty} nf(n)/2^n \le \limsup_{n \to \infty} nf(n)/2^n = 2$.

The purpose of this note is to solve the following question, raised by Straubing. Let $A = \{a, b\}$ be a two-letter alphabet. For each finite language L, denote by s(L) the number of states of the minimal (deterministic) automaton of L, and put

$$f(n) = \max\{s(L) \mid L \subset A^n\}.$$

The problem is to compute f(n) and to give, if possible, an asymptotic equivalent. We first recall some definitions (see [1] for more details.) An automaton $\mathcal{A} = (Q, A, \cdot q_0, F)$ consists of a (finite) set of states Q, a finite set of letters A, an initial state $q_0 \in Q$, a set of final states $F \subset Q$, and a partial function $Q \times A \to Q$ denoted by $(q, a) \to q \cdot a$. This function is extended to a (partial) function $Q \times A^* \to Q$, called the transition function, by the rules:

(a) for every $q \in Q$, $q \cdot 1 = q$,

(b) for every $q \in Q$, $u \in A^*$ and $a \in A$, $q \cdot (ua) = (q \cdot u) \cdot a$ if $(q \cdot u)$ and $(q \cdot u) \cdot a$ are defined, and $q \cdot (ua)$ is undefined otherwise.

If the transition function is a total function, \mathcal{A} is a *complete* automaton and it is *uncomplete* otherwise. The *language* accepted by \mathcal{A} is the set

$$L(\mathcal{A}) = \{ u \in A^* \mid q_0 \cdot u \in F \}.$$

A state q is accessible (respectively coaccessible) if $q_0 \cdot u = q$ (respectively $q \cdot u \in F$) for some word $u \in A^*$. Two states q and q' are equivalent (in \mathscr{A}) if, for every word $u \in A^*$, $q \cdot u \in F$ is equivalent to $q' \cdot u \in F$. An automaton is reduced if, for any $q, q' \in Q$, q equivalent to q' implies q = q'.

^{*} This research was supported by "Programme de Recherches Coordonnées"—Mathématiques et Informatique".

Let us mention a trivial, but useful, observation. If $q_iq' \notin F$ are not equivalent, then there exists a letter $a \in A$ such that either $q \cdot a \neq q' \cdot a$, or $q \cdot a$ is defined and $q' \cdot a$ is undefined, or $q \cdot a$ is undefined and $q' \cdot a$ is defined.

Finally, an automaton is *minimal* if it is reduced and if every state is both accessible and coaccessible. As is well known, every rational language is accepted by a (unique) minimal automaton.

We first establish some elementary facts about the minimal automaton $\mathcal{A} = (Q, A, \cdot, q_0, F)$ of a nonempty language $L \subset A^n$. Set, for $i \ge 0$,

 $Q_i = \{q \in Q \mid \text{there exists } u \in A^i \text{ such that } q_0 \cdot u = q\}$ and $k_i = \text{Card } Q_i$.

Then we can state:

Proposition 1. The following properties hold:

- (1) the family $(Q_i)_{0 \le i \le n}$ is a partition of Q,
- (2) $Q_0 = \{q_0\}$ and $Q_n = \{q_f\}$, where q_f is the unique final state of \mathcal{A} ,
- (3) for $0 \le i \le n-1$, $Q_{i+1} = Q_i \cdot a \cup Q_i \cdot b$,
- (4) for $0 \le i \le n-1$, $(k_i+1) \le (k_{i+1}+1)^2$.

Proof. (1) Since L is nonempty, it contains a word $u = a_1 \dots a_n$. Now, for $0 \le i \le n$, $q_0 \cdot a_1 \dots a_i \in Q_i$, and hence Q_i is nonempty. Assume that $Q_i \cap Q_j$ is not empty and let $q \in Q_i \cap Q_j$. Then there exists a word u of length i and a word v of length j such that $q_0 \cdot u = q$ and $q_0 \cdot v = q$. Since \mathscr{A} is minimal, the state q is coaccessible, and hence there exists a word w such that $q \cdot w$ is a final state. It follows that $uw, vw \in L$ and thus |uw| = |vw| = n. Therefore i = |u| = |v| = j and the Q_i are pairwise disjoint.

We claim that Q_i is empty for i > n. Indeed, let $q \in Q_i$. Then by definition, $q = q_0 \cdot u$ for some word u of length > n. Thus q is not coaccessible, a contradiction. Now $Q = \bigcup_{i>0} Q_i$ and it follows that the family $(Q_i)_{0 \le i \le n}$ is a partition of Q.

(2) The equality $Q_0 = \{q_0\}$ is clear. Let $q \in Q_n$. Then there exists a word u of length n such that $q_0 \cdot u = q$ and a word w such that $q \cdot w \in F$ (since q is coaccessible). Thus $uw \in L$ and hence |uw| = n. It follows that w = 1, $u \in L$ and $q \in F$. Let q' be another final state. Then $q_0 \cdot u' = q'$ for some $u' \in L$. Let $v \in A^*$. Then $q \cdot v \in F$ (respectively $q' \cdot v \in F$) if and only if v = 1. It follows that q = q' since \mathcal{A} is reduced.

(3) Obvious.

(4) For a given $q \in Q_i$, either $q \cdot a \in Q_{i+1}$ or $q \cdot a$ is undefined; this gives $(k_{i+1}+1)$ possibilities. Similarly, there are $(k_{i+1}+1)$ possibilities for $q \cdot b$. Furthermore, since q is coaccessible, either $q \cdot a$ or $q \cdot b$ is defined. Finally, this gives $(k_{i+1}+1)^2-1$ possibilities for the pair $(q \cdot a, q \cdot b)$. But since \mathcal{A} is reduced, two distinct states q and q' cannot have the same image under a and b. Thus $k_i \leq (k_{i+1}+1)^2-1$. \Box

Corollary 2. For $0 \le i \le n$, $k_i \le \min(2^i, 2^{2^{n-i}} - 1)$.

Proof. We make use of Proposition 1. By (2), $k_0 = 1$ and by (3), $k_{i+1} \le 2k_i$ for

 $0 \le i \le n-1$. Thus $k_i \le 2^i$ by induction on *i*. Similarly, $k_n = 1$ by (2) and $k_i \le (k_{i+1}+1)^2 - 1$ by (4). Thus $k_i \le 2^{2^{n-i}} - 1$ by induction on n-i. \Box

Set $g(n) = \sum_{0 \le i \le n} \min(2^i, 2^{2^{n-i}} - 1)$. Since the family $(Q_i)_{0 \le i \le n}$ is a partition of O, we have

$$\operatorname{Card} Q = \sum_{0 \le i \le n} \operatorname{Card} Q_i \le g(n).$$

Therefore, we have proved:

Proposition 3. The minimal automaton of a language $L \subset A^n$ has at most g(n) states. Therefore $f(n) \leq g(n)$.

Our main result states that the opposite inequality also holds.

Theorem 4. For every $n \ge 0$, f(n) = g(n).

Proof. The result is trivial if n=0. We assume now n>0. By Proposition 3, it suffices to exhibit a minimal automaton with g(n) states that accepts a language $L \subset A^n$. Let x be the unique positive real number such that $n=2^x+x$, and let $k=\lceil 2^x\rceil$. The following lemma gives the property for which k was selected.

Lemma 5. Let j be a positive integer.

(1) If j < k, then $2^j < 2^{2^{n-j}} - 1$. (2) If $j \ge k$, then $2^j > 2^{2^{n-j}} - 1$.

Proof. (1) If j < k, then $j < 2^x$ and x < n-j be the definition of x. Thus $j < 2^x < 2^{n-j}$ and hence $j+1 \le 2^{n-j}$. Now if j > 0, $2^{n-j} \ge j+1 \ge 2$ and if j = 0, $2^{n-j} = 2^n \ge 2$, since n > 0. Thus $2^{n-j} \ge 2$ in any case and $2^j \le 2^{2^{n-j}} - 1 < 2^{2^{n-j}} - 1$.

(2) If $j \ge k$, then $j \ge 2^x$ and $x \ge n-j$ by the definition of x. Thus

 $2^{j} \ge 2^{2^{x}} \ge 2^{2^{n-j}} > 2^{2^{n-j}} - 1.$

We now construct a complete automaton $\mathcal{A} = (Q, A, \cdot, q_0, \{q_f\})$ as follows. Q is the disjoint union of a sink state 0 and of (n+1) sets Q_i $(0 \le i \le n)$ such that

(a) $Q_0 = \{q_0\}$ and $Q_n = \{q_f\}$, (b) for $0 \le i < k$, Card $Q_i = 2^i$, (c) for $k \le i \le n$, Card $Q_i = 2^{2^{n-i}} - 1$,

and the transitions satisfy the following conditions

- (d) $0 \cdot a = 0$ and $0 \cdot b = 0$,
- (e) for $0 \le i < k-1$, $\{q \cdot c \mid q \in Q_i \text{ and } c \in \{a, b\}\} = Q_{i+1}$

(since Card $Q_{i+1} = 2^{Card Q_i}$, this implies that all the states $q \cdot c$, where $q \in Q_i$ and $c \in \{a, b\}$, are distinct).

- (f) for $k-1 \le i < n$ and $q, q' \in Q_i$:
 - (f1) $(q \cdot a, q \cdot b) \in ((Q_{i+1} \cup \{0\}) \times (Q_{i+1} \cup \{0\})) \setminus \{(0, 0\},$
 - (f2) $(q \cdot a, q \cdot b) = (q' \cdot a, q' \cdot b)$ implies q = q',
 - (f3) for every $s \in Q_{i+1}$, there exists $t \in Q_i$ such that $t \cdot a = s$ or $t \cdot b = s$.

To ensure that condition (f) can be satisfied, it suffices to verify that, for $k-1 \le i \le n$,

Card
$$Q_i \leq (1 + \operatorname{Card} Q_{i+1})^2 - 1$$
 and Card $Q_{i+1} \leq 2 \operatorname{Card} Q_i$.

Both conditions are trivially satisfied for $i \ge k$, and follow from Lemma 5 for i = k - 1.

We derive from \mathcal{A} an uncomplete automaton \mathcal{B} by removing the sink state 0 and all the transitions of the form $q \cdot a = 0$ or $q \cdot b = 0$. \mathcal{B} is now an automaton with g(n)states in which every state is accessible and coaccessible (by conditions (e) and (f3)). Furthermore \mathcal{B} is reduced (by conditions (e) and (f2)) and hence minimal. Finally, as required, every word accepted by \mathcal{B} has length n.

Example. Let n = 5. Then g(5) = 1 + 2 + 4 + 8 + 3 + 1 = 19 and k = 4. An automaton with 19 states recognizing a set of words of length 5 is represented in Fig. 1.

The behaviour of g(n) when n tends to the infinity is given by the following theorem.

Theorem 6. The following formula holds

 $1 = \liminf_{n \to \infty} ng(n)/2^n \le \limsup_{n \to \infty} ng(n)/2^n = 2.$

Proof. It follows from Lemma 5 that

$$g(n) = \sum_{0 \le j \le k-1} 2^{j} + \sum_{k \le j \le n} (2^{2^{n-j}} - 1) = T_1 + T_2,$$

where

$$T_1 = 2^k + 2^{2^{n-k}}$$
 and $T_2 = -2 + \sum_{k+1 \le j \le n} (2^{2^{n-j}} - 1).$

We first study T_2 . If $j \ge k+1 \ge 2^x + 1$, then $n-j \le x-1$, whence $2^{n-j} \le 2^{x-1} = \frac{1}{2} \cdot 2^x \le \frac{1}{2}n$, and therefore $2^{2^{n-j}} - 1 \le 2^{n/2}$. Thus $-2 \le T_2 \le n2^{n/2}$ and it follows that $\lim_{n \to \infty} nT_2/2^n = 0$.

We now come back to T_1 . Put $d=x-\lfloor x \rfloor$. By the definition of x, $n=\lfloor x \rfloor + \lfloor 2^x \rfloor$ and hence n-k=x-d and $k=2^x+d$. Therefore $T_1=2^{2^x+d}+2^{2^{x-d}}$ and

$$nT_1/2^n = (x+2^x)T_1/2^x 2^{2^x} = (1+x2^{-x})(2^d+2^{(2^{-d}-1)2^x})$$

Since $x + 2^x = n \le 2 \cdot 2^x$, we have $x \le \log_2 n$ and $2^{-x} \le 2/n$. Consequently, one has $1 \le 1 + x2^{-x} \le 1 + 2\log_2 n/n$, and thus $\lim_{n \to \infty} (1 + x2^{-x}) = 1$. It remains to study the term $T(n) = 2^d + 2^{(2^{-d}-1)2^x}$. To start with, since $0 \le d < 1$, we have $1 \le 2^d \le 2$, whence

 $\liminf_{n\to\infty} ng(n)/2^n \ge 1.$

Let ε be a real number such that $0 < \varepsilon < 1$. We claim that the inequality $T(n) \le 1 + \varepsilon$ holds for infinitely many *n*. This will be a consequence of the following lemma.

Lemma 7. Let ε_1 and ε_2 be two real numbers such that $0 < \varepsilon_1 < \varepsilon_2 < 1$. Then there exists an integer r_0 such that, for every $r \ge r_0$, there exists a real number δ such that:

- (a) $\varepsilon_1 < \delta < \varepsilon_2$, and
- (b) $m = r + \delta + 2^{r+\delta}$ is an integer.

Proof. We take $r_0 \ge \log_2[(2 - (e_2 - \varepsilon_1))/(2^{\varepsilon_2} - 2^{\varepsilon_1})]$, so that, for every $r \ge r_0$,

$$(r+\varepsilon_2+2^{r+\varepsilon_2})-(r+\varepsilon_1+2^{r+\varepsilon_1})\geq 2.$$

Now, since the function $t \to r + t + 2^{r+1}$ is monotone, there exists a real δ with $\varepsilon_1 < \delta < \varepsilon_2$ such that $m = r + \delta + 2^{r+\delta}$ is an integer. \Box

To prove the claim, we apply the lemma with $\varepsilon_1 = -\log_2(1 - \frac{1}{2}\varepsilon)$ and $\varepsilon_2 = \log_2(1 + \frac{1}{2}\varepsilon)$. One verifies easily that the condition $0 < \varepsilon_1 < \varepsilon_2 < 1$ is satisfied. Then,

for any large enough r, there exists an integer m < r and a real δ with $\varepsilon_1 < \delta < \varepsilon_2$ such that

$$T(m) = 2^{\delta} + 2^{(2^{-\delta} - 1)2'} \le 2^{\varepsilon_2} + 2^{(2^{-\varepsilon_1} - 1)2'} \le 1 + \frac{1}{2}\varepsilon + 2^{-(\varepsilon/3)2^k}.$$

Thus if $r \ge \log_2((3/\varepsilon)\log_2(2/\varepsilon))$, then $2^{-(\varepsilon/3)2^k} \le \frac{1}{2}\varepsilon$ and $T(m) \le 1+\varepsilon$, proving the claim. It follows that

$$\liminf_{n\to\infty} T(n) \le 1, \quad \text{whence} \quad \liminf_{n\to\infty} ng(n)/2^n = 1.$$

On the other hand, $2^{-d} - 1 \le -1/3d$ and thus $T(n) \le 2^d + 2^{-(d2^x)/3}$. Let $0 < \varepsilon < \frac{1}{3}$. Then for $n > -6 \log_2 \varepsilon$, we have

$$-6\log_2\varepsilon < n = x + 2^x < 2^x + 2^x$$

and hence $-(\frac{1}{2})2^x < \log_2 \varepsilon$. Setting $y = 2^d$, we obtain $T(n) \le y + y^{\log_2 \varepsilon}$, where $1 \le y \le 2$. But a short calculation shows that, on this interval, the function $t \to t + t^{\log_2 \varepsilon}$ reaches its maximum for t=2. Therefore $T(n) \le 2 + \varepsilon$ for every $\varepsilon > 0$ and

$$\limsup_{n\to\infty} ng(n)/2^n \le 2.$$

Finally, let $0 < \varepsilon < 1$ and put $\varepsilon_1 = \log_2(2 - \varepsilon)$ and $\varepsilon_2 = \frac{1}{2}(1 + \varepsilon_1)$. Then $0 < \varepsilon_1 < \varepsilon_2 < 1$, and by Lemma 6, there exists infinitely many integers *m* such that $m = r + \delta + 2^{r+\delta}$ with $\varepsilon_1 < \delta < \varepsilon_2$ and

$$T(m) = 2^{\delta} + 2^{(2^{-\delta} - 1)2^{\ell}} \ge 2^{\delta} > 2^{\varepsilon_1} = 2 - \varepsilon.$$

Therefore $\limsup_{n\to\infty} T(n) \ge 2-\varepsilon$ for every $\varepsilon > 0$ and hence

$$\limsup_{n\to\infty} ng(n)/2^n = 2.$$

Reference

[1] S. Eilenberg, Automata, Languages and Machines, A (Academic Press, New York, 1974).