NOTE

A MAXMIN PROBLEM ON FINITE AUTOMATA*

J.-M. CHAMPARNAUD and J.-E. PIN
L.I.T.P, Universites Paris 6 et 7, Jour 55-65, 4 Place Jussieu, 75252 Paris Cedex 05, France

Received 23 December 1987

Abstract

We solve the following problem proposed by Straubing. Given a two-letter alphabet A, what is the maximal number of states $f(n)$ of the minimal automaton of a subset of $A^{\prime \prime}$, the set of all words of length n. We give an explicit formula to compute $f(n)$ and we show that $1=$ $\liminf _{n \rightarrow \infty} n f(n) / 2^{n} \leq \limsup \operatorname{sum}_{n \rightarrow \infty} n f(n) / 2^{n}=2$.

The purpose of this note is to solve the following question, raised by Straubing. Let $A=\{a, b\}$ be a two-letter alphabet. For each finite language L, denote by $s(L)$ the number of states of the minimal (deterministic) automaton of L, and put

$$
f(n)=\max \left\{s(L) \mid L \subset A^{n}\right\}
$$

The problem is to compute $f(n)$ and to give, if possible, an asymptotic equivalent. We first recall some definitions (see [1] for more details.) An automaton $\mathscr{A}=$ $\left(Q, A, \cdot q_{0}, F\right)$ consists of a (finite) set of states Q, a finite set of letters A, an initial state $q_{0} \in Q$, a set of final states $F \subset Q$, and a partial function $Q \times A \rightarrow Q$ denoted by $(q, a) \rightarrow q \cdot a$. This function is extended to a (partial) function $Q \times A^{*} \rightarrow Q$, called the transition function, by the rules:
(a) for every $q \in Q, q \cdot 1=q$,
(b) for every $q \in Q, u \in A^{*}$ and $a \in A, q \cdot(u a)=(q \cdot u) \cdot a$ if $(q \cdot u)$ and $(q \cdot u) \cdot a$ are defined, and $q \cdot(u a)$ is undefined otherwise.

If the transition function is a total function, \mathscr{A} is a complete automaton and it is uncomplete otherwise. The language accepted by \mathscr{A} is the set

$$
L(\mathscr{A})=\left\{u \in A^{*} \mid q_{0} \cdot u \in F\right\} .
$$

A state q is accessible (respectively coaccessible) if $q_{0} \cdot u=q$ (respectively $q \cdot u \in$ F) for some word $u \in A^{*}$. Two states q and q^{\prime} are equivalent (in \mathcal{A}) if, for every word $u \in A^{*}, q \cdot u \in F$ is equivalent to $q^{\prime} \cdot u \in F$. An automaton is reduced if, for any $q, q^{\prime} \in Q, q$ equivalent to q^{\prime} implies $q=q^{\prime}$.

[^0]Let us mention a trivial, but useful, observation. If $\boldsymbol{q}_{9} \boldsymbol{q}^{\prime} \notin F$ are not equivalent, then there exists a letter $a \in A$ such that either $q \cdot a \neq q^{\prime} \cdot a$, or $q \cdot a$ is defined and $q^{\prime} \cdot a$ is undefined, or $q \cdot a$ is undefined and $q^{\prime} \cdot a$ is defined.

Finally, an automaton is minimal if it is reduced and if every state is both accessible and coaccessible. As is well known, every rational language is accepted by a (unique) minimal automaton.

We first establish some elementary facts about the minimal automaton $\mathscr{A}=$ (Q, A, \cdot, q_{0}, F) of a nonempty language $L \subset A^{n}$. Set, for $i \geq 0$,

$$
Q_{i}=\left\{q \in Q \mid \text { there exists } u \in A^{i} \text { such that } q_{0} \cdot u=q\right\} \text { and } k_{i}=\operatorname{Card} Q_{i}
$$

Then we can state:
Proposition 1. The following properties hold:
(1) the family $\left(Q_{i}\right)_{0 \leq i \leq n}$ is a partition of Q,
(2) $Q_{0}=\left\{q_{0}\right\}$ and $Q_{n}=\left\{q_{f}\right\}$, where q_{f} is the unique final state of \mathscr{A},
(3) for $0 \leq i \leq n-1, Q_{i+1}=Q_{i} \cdot a \cup Q_{i} \cdot b$,
(4) for $0 \leq i \leq n-1,\left(k_{i}+1\right) \leq\left(k_{i+1}+1\right)^{2}$.

Proof. (1) Since L is nonempty, it contains a word $u=a_{1} \ldots a_{n}$. Now, for $0 \leq i \leq n$, $q_{0} \cdot a_{1} \ldots a_{i} \in Q_{i}$, and hence Q_{i} is nonempty. Assume that $Q_{i} \cap Q_{j}$ is not empty and let $q \in Q_{i} \cap Q_{j}$. Then there exists a word u of length i and a word v of length j such that $q_{0} \cdot u=q$ and $q_{0} \cdot v=q$. Since \mathscr{A} is minimal, the state q is coaccessible, and hence there exists a word \boldsymbol{w} such that $\boldsymbol{q} \cdot \boldsymbol{w}$ is a final state. It follows that $u \boldsymbol{w}, \boldsymbol{v} \boldsymbol{w} \in \boldsymbol{L}$ and thus $|u w|=|v w|=n$. Therefore $i=|u|=|v|=j$ and the Q_{i} are pairwise disjoint.

We claim that Q_{i} is empty for $i>n$. Indeed, let $q \in Q_{i}$. Then by definition, $q=q_{0} \cdot u$ for some word u of length $>n$. Thus q is not coaccessible, a contradiction. Now $Q=\bigcup_{i \geq 0} Q_{i}$ and it follows that the family $\left(Q_{i}\right)_{0 \leq i \leq n}$ is a partition of Q.
(2) The equality $\mathcal{C}_{0}=\left\{q_{0}\right\}$ is clear. Let $q \in Q_{n}$. Then there exists a word u of length n such that $q_{0} \cdot u=q$ and a word w such that $q \cdot w \in F$ (since q is coaccessible). Thus $u w \in L$ and hence $|u w|=n$. It follows that $w=1, u \in L$ and $q \in F$. Let q^{\prime} be another final state. Then $q_{0} \cdot u^{\prime}=q^{\prime}$ for some $u^{\prime} \in L$. Let $v \in A^{*}$. Then $q \cdot v \in F$ (respectively $q^{\prime} \cdot v \in F$) if and only if $v=1$. It follows that $q=q^{\prime}$ since \mathscr{A} is reduced.
(3) Obvious.
(4) For a given $q \in Q_{i}$, either $q \cdot a \in Q_{i+1}$ or $q \cdot a$ is undefined; this gives $\left(k_{i+1}+1\right)$ possibilities. Similarly, there are ($k_{i+1}+1$) possibilities for $q \cdot b$. Furthermore, since q is coaccessible, either $q \cdot a$ or $q \cdot b$ is defined. Finally, this gives $\left(k_{i+1}+1\right)^{2}-1$ possibilities for the pair $(q \cdot a, q \cdot b)$. But since \mathscr{A} is reduced, two distinct states q and q^{\prime} cannot have the same image under a and b. Thus $k_{i} \leq\left(k_{i+1}+1\right)^{2}-1$.

Corollary 2. For $0 \leq i \leq n, k_{i} \leq \min \left(2^{i}, 2^{2^{n-i}}-1\right)$.

Proof. We make use of Proposition 1. By (2), $\boldsymbol{k}_{0}=1$ and by (3), $\boldsymbol{k}_{i+1} \leq 2 k_{i}$ for
$0 \leq i \leq n-1$. Thus $k_{i} \leq 2^{i}$ by induction on i. Similarly, $k_{n}=1$ by (2) and $k_{i} \leq\left(k_{i+1}+1\right)^{2}-1$ by (4). Thus $k_{i} \leq 2^{2^{n-i}}-1$ by induction on $n-i$.

Set $g(n)=\sum_{0 \leq i \leq n} \min \left(2^{i}, 2^{2^{n-i}}-1\right)$. Since the family $\left(Q_{i}\right)_{0 \leq i \leq n}$ is a partition of Q, we have

$$
\operatorname{Card} Q=\sum_{0 \leq i \leq n} \operatorname{Card} Q_{i} \leq g(n) .
$$

Therefore, we have proved:
Proposition 3. The minimal automaton of a language $L \subset A^{n}$ has at most $g(n)$ states. Therefore $f(n) \leq g(n)$.

Our main result states that the opposite inequality also holds.
Theorem 4. For every $n \geq 0, f(n)=g(n)$.
Proof. The result is trivial if $\boldsymbol{n}=0$. We assume now $\boldsymbol{n}>0$. By Proposition 3, it suffices to exhibit a minimal automaton with $g(n)$ states that accepts a language $L \subset A^{n}$. Let x be the unique positive real number such that $n=2^{x}+x$, and let $k=\left\lceil 2^{x}\right\rceil$. The following lemma gives the property for which k was selected.

Lemma 5. Let \boldsymbol{j} be a positive integer.
(1) If $j<k$, then $2^{j}<2^{2^{n-j}}-1$.
(2) If $j \geq k$, then $2^{j}>2^{2^{n-j}}-1$.

Proof. (1) If $j<k$, then $j<2^{x}$ and $x<n-j$ be the definition of x. Thus $j<2^{x}<2^{n-j}$ and hence $j+1 \leq 2^{n-j}$. Now if $j>0,2^{n-j} \geq j+1 \geq 2$ and if $j=0,2^{n-j}=2^{n} \geq 2$, since $n>0$. Thus $2^{n-j} \geq 2$ in any case and $2^{j} \leq 2^{2^{n-j}}-1<2^{2^{n-j}}-1$.
(2) If $j \geq k$, then $j \geq 2^{x}$ and $x \geq n-j$ by the definition of x. Thus

$$
2^{j} \geq 2^{2^{x}} \geq 2^{2^{n-j}}>2^{2^{n-j}}-1
$$

We now construct a complete automaton $\mathscr{A}=\left(Q, A, \cdot, q_{0},\left\{q_{f}\right\}\right)$ as follows. Q is the disjoint union of a sink state 0 and of $(n+1)$ sets $Q_{i}(0 \leq i \leq n)$ such that
(a) $Q_{0}=\left\{q_{0}\right\}$ and $Q_{n}=\left\{q_{f}\right\}$,
(b) for $0 \leq i<k$, Card $Q_{i}=2^{i}$,
(c) for $k \leq i \leq n$, Card $Q_{i}=2^{2^{n-i}}-1$,
and the transitions satisfy the following conditions
(d) $0 \cdot a=0$ and $0 \cdot b=0$,
(e) for $0 \leq i<k-1,\left\{q \cdot c \mid q \in Q_{i}\right.$ and $\left.c \in\{a, b\}\right\}=Q_{i+1}$
(since Card $Q_{i+1}=2^{\text {Card } Q_{i}}$, this implies that all the states $q \cdot c$, where $q \in Q_{i}$ and $c \in\{a, b\}$, are distinct).
(f) for $k-1 \leq i<n$ and $q, q^{\prime} \in Q_{i}$:
(f1) $(q \cdot a, q \cdot b) \in\left(\left(Q_{i+1} \cup\{0\}\right) \times\left(Q_{i+1} \cup\{0\}\right)\right) \backslash\{(0,0\}$,
(f2) $(q \cdot a, q \cdot b)=\left(\boldsymbol{q}^{\prime} \cdot a, q^{\prime} \cdot b\right)$ implies $q=q^{\prime}$,
(f3) for every $s \in Q_{i+1}$, there exists $t \in Q_{i}$ such that $t \cdot a=s$ or $t \cdot b=s$.
To ensure that condition (f) can be satisfied, it suffices to verify that, for $k-1 \leq i \leq n$,

$$
\operatorname{Card} Q_{i} \leq\left(1+\operatorname{Card} Q_{i+1}\right)^{2}-1 \text { and } \operatorname{Card} Q_{i+1} \leq 2 \operatorname{Card} Q_{i}
$$

Both conditions are trivially satisfied for $i \geq k$, and follow from Lemma 5 for $i=k-1$.

We derive from \mathscr{A} an uncomplete automaton \mathscr{B} by removing the sink state 0 and all the transitions of the form $q \cdot a=0$ or $q \cdot b=0 . \mathscr{B}$ is now an automaton with $g(n)$ states in which every state is accessible and coaccessible (by conditions (e) and (f3)). Furthermore \mathscr{B} is reduced (by conditions (e) and (f2)) and hence minimal. Finally, as required, every word accepted by \mathscr{B} has length n.

Example. Let $n=5$. Then $g(5)=1+2+4+8+3+1=19$ and $k=4$. An automaton with 19 states recognizing a set of words of length 5 is represented in Fig. 1.

Fig. 1.

The behaviour of $g(n)$ when n tends to the infinity is given by the following theorem.

Theorem 6. The following formula holds

$$
1=\liminf _{n \rightarrow \infty} n g(n) / 2^{n} \leq \limsup _{n \rightarrow \infty} n g(n) / 2^{n}=2
$$

Proof. It follows from Lemma 5 that

$$
g(n)=\sum_{0 \leq j \leq k-1} 2^{j}+\sum_{k \leq j \leq n}\left(2^{2^{n-j}}-1\right)=T_{1}+T_{2}
$$

where

$$
T_{1}=2^{k}+2^{2^{n-k}} \text { and } T_{2}=-2+\sum_{k+1 \leq j \leq n}\left(2^{2^{n-j}}-1\right)
$$

We first study T_{2}. If $j \geq k+1 \geq 2^{x}+1$, then $n-j \leq x-1$, whence $2^{n-j} \leq 2^{x-1}=$ $\frac{1}{2} \cdot 2^{x} \leq \frac{1}{2} n$, and therefore $2^{2^{n-j}}-1 \leq 2^{n / 2}$. Thus $-2 \leq T_{2} \leq n 2^{n / 2}$ and it follows that $\lim _{n \rightarrow \infty} n T_{2} / 2^{n}=0$.

We now come back to T_{1}. Put $d=x-\lfloor x\rfloor$. By the definition of $x, n=\lfloor x\rfloor+\left\lceil 2^{x}\right\rceil$ and hence $n-k=x-d$ and $k=2^{x}+d$. Therefore $T_{1}=2^{2^{x}+d}+2^{2^{x-d}}$ and

$$
n T_{1} / 2^{n}=\left(x+2^{x}\right) T_{1} / 2^{x} 2^{2^{x}}=\left(1+x 2^{-x}\right)\left(2^{d}+2^{\left(2^{-d}-1\right) 2^{x}}\right)
$$

Since $x+2^{x}=n \leq 2 \cdot 2^{x}$, we have $x \leq \log _{2} n$ and $2^{-x} \leq 2 / n$. Consequently, one has $1 \leq 1+x 2^{-x} \leq 1+2 \log _{2} n / n$, and thus $\lim _{n \rightarrow \infty}\left(1+x 2^{-x}\right)=1$. It remains to study the term $T(n)=2^{d}+2^{\left(2^{-d}-1\right) 2^{x}}$. To start with, since $0 \leq d<1$, we have $1 \leq 2^{d} \leq 2$, whence

$$
\liminf _{n \rightarrow \infty} n g(n) / 2^{n} \geq 1
$$

Let ε be a real number such that $0<\varepsilon<1$. We claim that the inequality $T(n) \leq 1+\varepsilon$ holds for infinitely many n. This will be a consequence of the following lemma.

Lemma 7. Let ε_{1} and ε_{2} be two real numbers such that $0<\varepsilon_{1}<\varepsilon_{2}<1$. Then there exists an integer r_{0} such that, for every $r \geq r_{0}$, there exists a real number δ such that:
(a) $\varepsilon_{1}<\delta<\varepsilon_{2}$, and
(b) $m=r+\delta+2^{r+\delta}$ is an integer.

Proof. We take $r_{0} \geq \log _{2}\left[\left(2-\left(e_{2}-\varepsilon_{1}\right)\right) /\left(2^{\varepsilon_{2}}-2^{\varepsilon_{1}}\right)\right]$, so that, for every $r \geq r_{0}$,

$$
\left(r+\varepsilon_{2}+2^{r+\varepsilon_{2}}\right)-\left(r+\varepsilon_{1}+2^{r+\varepsilon_{1}}\right) \geq 2
$$

Now, since the function $t \rightarrow r+t+2^{r+t}$ is monotone, there exists a real δ with $\varepsilon_{1}<\delta<\varepsilon_{2}$ such that $m=r+\delta+2^{r+\delta}$ is an integer.

To prove the claim, we apply the lemma with $\varepsilon_{1}=-\log _{2}\left(1-\frac{1}{3} \varepsilon\right)$ and $\varepsilon_{2}=$ $\log _{2}\left(1+\frac{1}{2} \varepsilon\right)$. One verifies easily that the condition $0<\varepsilon_{1}<\varepsilon_{2}<1$ is satisfied. Then,
for any large enough r, there exists an integer $m<r$ and a real δ with $\varepsilon_{1}<\delta<\varepsilon_{2}$ such that

$$
T(m)=2^{\delta}+2^{\left(2^{-\delta}-1\right) 2^{r}} \leq 2^{\varepsilon_{2}}+2^{\left(2^{-\varepsilon_{1}}-1\right) 2^{r}} \leq 1+\frac{1}{2} \varepsilon+2^{-(\varepsilon / 3) 2^{k}}
$$

Thus if $r \geq \log _{2}\left((3 / \varepsilon) \log _{2}(2 / \varepsilon)\right)$, then $2^{-(\varepsilon / 3) 2^{k}} \leq \frac{1}{2} \varepsilon$ and $T(m) \leq 1+\varepsilon$, proving the claim. It follows that

$$
\underset{n \rightarrow \infty}{\liminf } T(n) \leq 1, \quad \text { whence } \quad \liminf _{n \rightarrow \infty} n g(n) / 2^{n}=1
$$

On the other hand, $2^{-d}-1 \leq-1 / 3 d$ and thus $T(n) \leq 2^{d}+2^{-\left(d 2^{x}\right) / 3}$. Let $0<\varepsilon<\frac{1}{3}$. Then for $n>-6 \log _{2} \varepsilon$, we have

$$
-6 \log _{2} \varepsilon<n=x+2^{x}<2^{x}+2^{x}
$$

and hence $-(t) 2^{x}<\log _{2} \varepsilon$. Setting $y=2^{d}$, we obtain $T(n) \leq y+y^{\log _{2} \varepsilon}$, where $1 \leq y \leq$ 2. But a short calculation shows that, on this interval, the function $t \rightarrow t+t^{\log _{2} \varepsilon}$ reaches its maximum for $t=2$. Therefore $T(n) \leq 2+\varepsilon$ for every $\varepsilon>0$ and

$$
\limsup _{n \rightarrow \infty} n g(n) / 2^{n} \leq 2
$$

Finally, let $0<\varepsilon<1$ and put $\varepsilon_{1}=\log _{2}(2-\varepsilon)$ and $\varepsilon_{2}=\frac{1}{2}\left(1+\varepsilon_{1}\right)$. Then $0<\varepsilon_{1}<\varepsilon_{2}<$ 1 , and by Lemma 6 , there exists infinitely many integers m such that $m=r+\delta+2^{r+\delta}$ with $\varepsilon_{1}<\delta<\varepsilon_{2}$ and

$$
T(m)=2^{\delta}+2^{\left(2^{\delta}-1\right) 2^{\delta}} \geq 2^{\delta}>2^{\varepsilon_{1}}=2-\varepsilon
$$

Therefore $\lim \sup _{n \rightarrow \infty} T(n) \geq 2-\varepsilon$ for every $\varepsilon>0$ and hence

$$
\underset{n \rightarrow \infty}{\lim \sup } n g(n) / 2^{n}=2
$$

Reference

[1] S. Eilenberg, Automata, Languages and Machines, A (Academic Press, New York, 1974).

[^0]: * This research was supported by "Programme de Recherches Coordonnées"-Mathématiques et Informatique".

