IMPACT OF ALTERNATIVE TREATMENTS ON POST-TREATMENT COSTS FOR PATIENTS WITH BIPOLAR DISORDER

Ganapathy V1, McCombs JS2, Staflake-Maley D1, Kim E3, Pikalov A4
1University of Southern California School of Pharmacy, Los Angeles, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3University of Southern California School of Pharmacy, Los Angeles, CA, USA; 4Bristol-Myers Squibb, Plainsboro, NJ, USA

OBJECTIVE: To compare post-treatment costs across alternative antipsychotics in the treatment of bipolar disorder (BD).

METHODS: Data from a commercial health plan from July 1, 2003 to June 30, 2006 were used to identify non-institutionalized patients with bipolar disorder (ICD-9 296.4-296.8) but no history of schizophrenia (ICD-9 295.xx). Patients initiating treatment using a typical antipsychotic (TAP), atypical antipsychotic (AAP: aripiprazole, olanzapine, quetiapine, risperidone or ziprasidone), mood stabilizer or antidepressant were included. Episodes were divided into three categories: restarting treatment after a break in drug therapy >15 days with the drug used in the previous episode, switching therapy with or without a break in treatment, and augmentation therapy. First observed episodes were excluded from the analysis due to uncertainty concerning the patient’s prior treatment history. A total of 106,447 episodes were included in the analyses using ordinary least squares (OLS) regression models of post-treatment cost adjusting for age, gender, geographic region, drug use history, prior medical care use, bipolar disorder diagnosis and co-morbid medical conditions. RESULTS: Average total post-treatment cost measured across all episode types ranged from $17,837 (olanzapine) to $22,292 (ziprasidone). OLS results found augmentation episodes to be significantly more costly than restart episodes ($21,817, p < 0.0001) for olanzapine ($4,4109, p < 0.001). AAs were found to be more costly relative to TAP in patients restarting therapy and these estimates were significant for quetiapine ($3,126, p < 0.01) and ziprasidone ($4,811, p < 0.05). Patients initiating augmentation episodes with an AAP were also consistently more costly relative to TAP, again significantly so for quetiapine ($2,534, p < 0.05) and ziprasidone ($2,846, p < 0.05). However, most AAs achieved significantly lower total costs relative to TAP for switching episodes ranging from -$1,817 for ziprasidone (p > 0.05) to -$7,632 (p < 0.0001) for olanzapine. CONCLUSION: In a commercially-insured population, AAs are only associated with lower total post-treatment costs in patients with bipolar disorder who switch therapies.

COST ESTIMATION OF PSYCHIATRIC CARE IN THE JAPANESE HOSPITAL USING SYSTEM DYNAMICS SIMULATION

Nakahara N1, Kobayashi M2, Kamae I3, Inagaki A1
1Eli Lilly Japan, K.K., Kobe, Japan; 2Crecon Research and Consulting Inc, Shibuya-ku, Tokyo, Japan; 3Keio University Graduate School of Health Management, Fujisawa, Kanagawa-ken, Japan

OBJECTIVE: Long hospital-stay of psychiatric patients is recognized as a problem in Japan compared with the western countries. In order to address this issue, the Japanese government initiated a reform plan in 2004 to make the beds largely downsized in the next decade, and raised the official fees of hospitalization to make a shift from out-patient to in-patient care. The aim of our study is to estimate how much a shift can affect and project the total costs of psychiatric care in a hospital when the hospital complies with the government new plan. METHODS: A system dynamics model for computing simulation was developed to estimate the total medical costs per hospital over a three-year period, employing the data from the published literature such as The 2006 Comprehensive Survey Report of the Japanese Association of Psychiatric Hospitals, etc. The model consists of four compartments for one out-patient care unit and three types of in-patient units such as short-term, mid-term and long-term care. The flows of patients and the relevant costs were analyzed and figured out alongside the compartments in the model. Hypothetical scenarios were simulated, assuming different rates of in- and out-patients flows. RESULTS: The simulated estimation resulted in the highest cost, $27,933,166, of one scenario with maximizing both a discharge rate of long-hospitalized patients and an acquisition rate of new out-patients. On the contrary, the lowest cost, $22,789,521, was identified in another scenario with no acceleration for discharge of long-hospitalized patients and no acquisition of new out-patients. CONCLUSION: A system dynamics simulation suggested that the government new policy for psychiatric care does not lead to cost-saving in a hospital perspective, but could be cost-increasing against the government intention to control the increasing cost. The evaluation of incremental cost-effectiveness ratio is the next step for further assessment.