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a b s t r a c t

Eukaryotic/archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that plays a key
role in selection of the correct start codon on messenger RNA. This review integrates structural and
functional data to discuss the involvement of the three subunits in initiator tRNA binding. A possible
role of the peripheral subunits in modulating the guanine nucleotide cycle on the core subunit is
also addressed.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Eukaryotic/archaeal initiation factor 2 (e/aIF2) has been charac-
terized 30 years ago as a protein which forms a ternary complex
with GTP and methionylated initiator tRNA, and subsequently
binds to the small ribosomal subunit (e.g. [1–7]). eIF2 is composed
of three subunits called a, b and c [5,7], coded by SUI2 [8,9], SUI3
[10] and GCD11 [11] genes, respectively. SUI1 (coding for eIF1),
SUI2 and SUI3 were first identified using a genetic reversion analy-
sis of initiation codon mutations at the HIS4 gene in yeast. This
selection procedure was aimed at identifying specific interactions
between pre-initiation complex and mRNA that mediate ribosomal
recognition of a start codon [12]. Mutations in GCD11 (GCD: gen-
eral control derepressed) were first isolated because they alter
translation efficiency at the transcription activator GCN4 (GCN:
general control non-inducible) AUG codon [11,13]. Later, a gcd11
mutant was shown to suppress a mutant his4 allele that lacks a
functional AUG start codon [14]. Therefore, in addition to their role
in delivering Met-tRNAMet

i to the ribosome, the three subunits of
eIF2 also function in selecting the correct translational start site.

A 43S complex, comprising a ribosomal 40S subunit, eukaryotic
initiation factors, 1, 1A, 3, 5 and eIF2:GTP: Met-tRNAMet

i binds to
the 50-capped end of mRNA with the help of eIF4s and scans down-
stream to the initiation codon to form a 48S complex. When the cor-
rect pairing between the initiation codon and the initiator tRNA
anticodon is checked, GTP-bound to eIF2 is irreversibly hydrolyzed.
eIF2–GDP then dissociates from the initiator tRNA and from the ribo-
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some. Initiator tRNA lies in the P-site and after joining with the 60S
ribosomal subunit catalyzed by eIF5B, the ribosome is committed to
the elongation step. Therefore, irreversible GTP hydrolysis on eIF2
controls the accuracy of the translation initiation process, prevent-
ing initiation at non-AUG codons [15]. eIF1 and the GTPase activating
protein (GAP) eIF5 participate in the control of this checking step
[16–19]. After release from the ribosome, eIF2–GDP is further regen-
erated in eIF2–GTP through the action of a heteropentameric guan-
ine nucleotide exchange factor, eIF2B. The exchange reaction is an
important target for the control of translation. Indeed, inhibition of
eIF2B activity prevents eIF2 recycling, thereby reducing rates of
translation initiation and cell growth.

2. Eukaryotic and archaeal structural characteristics of e/aIF2

The genes coding for each subunit of eIF2 were shown to be
essential for yeast cell viability [8,10,11]. These three subunits
have orthologs in archaea, and the corresponding heterotrimeric
factor was therefore named aIF2 [20,21]. However, archaea have
no equivalent of the catalytic subunit of eIF2B (eIF2Be and of
eIF5). Therefore, GTP hydrolysis on aIF2 is likely to occur without
GAP assistance, and the recycling of aIF2–GDP into aIF2–GTP is
thought to be spontaneous.

2.1. The a subunit

Structural organization of a is conserved in eukaryotes and
archaea, except that eukaryotic a subunits possess an acidic exten-
sion at the C-terminus of the protein (Fig. 2A). The structure of iso-
lated domains of e/aIF2a and that of the entire protein were
determined [22–26]. e/aIF2a is composed of three domains: an
lsevier B.V. All rights reserved.
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N-terminal b-barrell, followed by a helical domain, and by an a�b
domain (Fig. 1A). Domains 1 and 2 form a rigid body linked to a
mobile third domain. In eukaryotes, a serine residue (S51 in yeast)
within a loop of domain 1 is the target of many types of kinases. As
we will see below, phosphorylation of this residue is crucial for
translational control. In archaea, the serine residue equivalent to
S51 is not conserved. However, possible phosphorylation of a
neighbor serine residue was proposed [27].

2.2. The b subunit

eIF2b and aIF2b differ in the presence of two additional do-
mains in the eukaryotic version. At the N-terminus of the protein,
a domain containing three lysine-rich boxes was shown to be in-
volved in the binding to the C-terminal domains of two eIF2 part-
ners, eIF5 and eIF2Be [28,29]. Therefore, the absence of the N-
terminal domain in archaea is likely to be related to the absence
of eIF2Be and eIF5 orthologues. The eukaryotic C-terminal exten-
sion is short (about 15 residues). So far, no role was assigned to
this part of the protein. The 3D structure of aIF2b was solved by
NMR and X-ray crystallography [30–33]. In the crystalline struc-
tures, b is bound to c [32,33]. The conserved core of the b subunit
is composed of three parts. An N-terminal a-helix (h1) is con-
nected by a flexible linker to a central a�b domain, followed by
a C-terminal zinc-binding domain. The N-terminal a-helix does
not interact with the two other domains. The ZBD is packed onto
the central a�b domain, with which it forms a rigid body
(Fig. 1C).

2.3. The c subunit, core of the heterotrimer

Two-hybrid interaction studies and GST pull down assays have
shown that, in yeast, a and b are bound to the c subunit but do not
interact together [34,35]. Using purified archaeal versions of the
three subunits, it was shown by in vitro assembly tests that c is
the core of the heterotrimeric protein, binding a and b which do
not interact together [25,36,37]. Crystallographic studies of archa-
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eal heterotrimeric proteins have confirmed this quaternary organi-
zation [33,38] (Fig. 2). Recent studies of human eIF2 have however
reported interaction between a and b subunits [39,40].

eIF2c and aIF2c are homologous, except that the eukaryotic
version contains an N-terminal domain that varies in length
depending on the species (up to 90 residues). In Saccharomyces
cerevisiae, this domain is not essential for function. However, a
missense mutation in this domain has been reported to confer a
slow growth phenotype [41]. In the rest of the protein, some se-
quence specificities of eukaryotic or archaeal IF2c were noticed
[37]. The sequence of eIF2c contains all of the elements required
for nucleotide binding. Therefore, it was proposed early that this
subunit was sufficient for GDP and GTP binding. Moreover, se-
quence similarities between EF-Tu and eIF2c have suggested that
the c subunit of eIF2 may also interact directly with the initiator
tRNA [11,42].

2.4. Structure of aIF2c, free or bound to guanine nucleotides

Structural homology between elongation factor Tu and eIF2c
was directly demonstrated by determination of the 3D structures
of apo-aIF2c from Pyrococcus abyssi (Pa-aIF2) [37], of apo-aIF2c
from Methanococcus jannaschii (Mj-aIF2) [43] and of apo-aIF2c
from Sulfolobus solfataricus (Ss-aIF2) [44].

aIF2c shows three domains (Fig. 2B). Domain I (in yellow) con-
tains the guanine nucleotide binding pocket delineated by the re-
gions specifically encountered in all G-proteins (GKT loop, switch
1 and switch 2 regions, QNKIE and SALH sequences; Fig. 2). Switch
1 and switch 2 correspond to mobile regions. In all G-proteins, con-
formational changes of these two switch regions control the tran-
sition from an active GTP-bound state of the protein (‘‘switch on”)
to an inactive GDP-bound state (‘‘switch off”) [45]. Domains II and
III (in pale yellow and in orange, Fig. 2B) are b-barrels. These three
domains are closely similar to those found in EF-Tu or eEF1A [46–
49]. Superimposition of EF-Tu on aIF2c has also allowed to evi-
dence structural specificities of the initiation factor with regards
to elongation factors (Fig. 2B, [37]). Hence, a zinc-binding domain
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inserted within domain I, and protruding loops in domains II and III
typify the initiation factor.

Crystal soaking experiments have allowed the determination of
the 3D structures of Pa-aIF2c complexed to GDP-Mg2+ or
Gpp(NH)p-Mg2+ (a non-hydrolysable analogue of GTP) [37]. More-
over, the structure of GDP-Mg2+ bound to Ss-aIF2c was obtained by
co-crystallization [44]. In aIF2c, the arrangement of the three
domains is similar to that found in the active form of EF-Tu, bound
to Gpp(NH)p-Mg2+ and aminoacylated tRNA [49]. The closed
domain configuration is observed in all structures solved, thereby
excluding the possibility that this conformation is due to lattice
packing effects. Hence, this resemblance strongly argued in favor
of the ability of isolated c subunit to bind methionylated tRNA.
However, only subtle conformational changes were observed when
comparing the aIF2c:GDP and GTP-bound forms to the apo form of
the factor [37]. In particular the conformation of the two switch
regions did not change but remained in the ‘‘off” state. Therefore,
it appeared difficult to explain the GTP dependence of tRNA bind-
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ing by an e/aIF2 trimer [1,4,42,50]. This raised the question of the
possible roles of a and b subunits in tRNA binding.

3. tRNA binding by e/aIF2

By using archaeal aIF2 (Pa-aIF2 or Ss-aIF2), it was possible to
easily purify individual subunits (a, b and c) as well as heterodi-
mers ac, bc and the heterotrimer abc. Protection-based assays
were used to measure aminoacyl-tRNA binding to various forms
of aIF2 [51]. Hence, it was shown that the isolated c subunit of
Pa-aIF2 is indeed able to bind methionylated initiator tRNA. More-
over, site-directed mutagenesis studies argue in favor of a binding
mode of the tRNA molecule similar to that observed with the elon-
gation factor [42,43,52]. The measured tRNA binding affinity for
the isolated aIF2c subunit is however highly reduced when com-
pared to that obtained with the complete Pa-aIF2 heterotrimer
(dissociation constants of 5 lM with c alone and of 120nM with
Pa-aIF2) [52]. Using Ss-aIF2c alone, only a very weak protection
was observed (Kd > 100 lM) whereas a Kd value of 1.5 nM is mea-
sured with complete Ss-aIF2. This difference in the behavior of the
two archaeal versions of aIF2c remains intriguing and may reflect
the different conditions of growth of these two organisms [36,52].
Nevertheless, using Pa or Ss-aIF2 it was shown that the b subunit
has only a small contribution whereas the a subunit provides the
heterotrimer with almost its full tRNA binding affinity. Further-
more, the isolated C-domain of aIF2a, a3, responsible for binding
to c, is enough to retrieve the same binding affinity of tRNA as full
aIF2 [25,52].

In eukaryotes, Met-tRNAMet
i Kd values for eIF2–GTP, determined

by using nitrocellulose-binding assays, are in the 10 nM range
[42,50,53]. The role of eIF2a and eIF2b subunits in tRNA binding
remains controversial. Rabbit reticulocytes eIF2ac heterodimers
were shown to be unable to bind initiator tRNA therefore suggest-
ing a crucial role of b in tRNA binding [54]. However, a number of
earlier studies found little or no difference in Met-tRNAMet

i binding
properties of mammalian eIF2 containing or lacking the b subunit
[55–57]. In all cases, preparations lacking eIF2b were obtained as
side-products during purification of eIF2, or were generated from
purified eIF2 factor after proteolytic degradation of the b subunit.
In the study of [54], the absence of b was checked using eIF2b anti-
bodies from different sources. On another hand, isolation of bc het-
erodimer during purification of rabbit reticulocyte eIF2 also
suggested that a is not strictly required for Met-tRNAMet

i binding
[58,59]. Finally, the construction of a yeast strain completely lack-
ing eIF2a, allowed purification of eIF2bc heterodimer. Therefore, it
was shown that a contributes only slightly to tRNA binding affinity
(no more than a factor of 5) [60]. b would then have an important
role in tRNA binding.

In summary, a ‘‘eukaryotic behavior”, with a major role for the b
subunit in the binding of the tRNA and a minor role for the a sub-
unit would be opposed to an ‘‘archaeal behavior” in which a has
the major contribution.

The main nucleotidic identity element of eukaryotic and
archaeal initiator tRNAs consist of an A1:U72 base pair in the
acceptor stem, as opposed to a G1:C72 base pair found in most
elongator tRNAs [50,52,61–63]. Moreover, the presence of a
methionine group esterified to the tRNA is essential for its inter-
action with the initiation factor [50,52,64]. It was proposed that
the A1:U72 base pair is critical for positioning the methionine
moiety on the CCA end of the tRNA in its recognition pocket in
eIF2 [50]. Other important characteristics of eukaryotic initiator
tRNA correspond to the presence of a C3–G70 base pair within
the acceptor stem, A54 and A60 in the NWC loop (instead of
T54 and pyrimidine 60 found in virtually all elongator tRNAs)
and three consecutive GC base pairs within the anticodon stem
[65]. The alteration of either one or both of the initiator-specific
G:C base pairs at positions 29:41 and 31:39 in the anticodon stem
of tRNAi, or alteration of positions 54 and 60 in the T-loop had
virtually no effect on the affinity of the resultant tRNAis for yeast
eIF2:GTP [66].

4. The ‘‘on conformation of aIF2c is observed in the structure of
aIF2ac heterodimer

The crystallographic structure of an Ss-aIF2ac heterodimer
bound to Gpp(NH)p-Mg2+, able to bind Met-tRNAMet

i with almost
full affinity, was refined at 3.0 Å resolution. The C-terminal domain
of aIF2a (a3) interacts with domain II of aIF2c. Two loops of a3 are
buried in two pockets at the surface of c domain II. One of these
two pockets is bordered by the specific L1 loop (Figs. 1 and 2)
[25]. Hence, the structure of the interface between the two sub-
units convincingly explains the behavior of mutants of a and c
subunits [43,52].

On another hand, in the c subunit, the two switch regions
involved in the binding of Gpp(NH)p-Mg2+ are in the ‘‘on” confor-
mation, like in the structure of EF-Tu:Gpp(NH)p:Phe-tRNAPhe [49].
Therefore, from the superimposition of aIF2c on the active form of
EF-Tu, a tight docking model of Met-tRNAMet

i binding to aIF2 was
deduced. In particular, the altered position of switch 1 opens a
channel between the G domain and domain II of the c subunit to
accommodate the methionyl group esterified to tRNA [25]. Accord-
ing to this model, the terminal A76 base is in a pocket formed by
strands at the surface of domain II of aIF2c. Y51, which belongs
to switch 1, is stacked against the methionine group and residues
R219, G239 and A296 contribute to the binding of the methionine
and to that of the terminal adenosine (Fig. 2). These residues corre-
spond to Y142, R319, G339 and G397 in yeast. Y142, R319 and
G397 were indeed shown to be important for tRNA binding
[14,42,43].

In order to bind Met-tRNAMet
i efficiently, eIF2 must be in the

GTP-bound state [1,4,42,50]. Indeed, in yeast and in S. solfataricus
the eIF2: Met-tRNAMet

i binding affinity is respectively 20 and 80
times larger in the presence of GTP than GDP [25,50]. In agreement
with these results, in the Ss heterodimer, formation of a precise
tRNA site is likely to result from the movement of the two switch
regions also involved in the binding of Gpp(NH)p [25]. This con-
vincingly explains the observed GTP dependence of Met-tRNAMet

i

binding. Nevertheless, it should also be noted that the GTP depen-
dence of Met-tRNAMet

i binding for e/aIF2 is less pronounced than
that observed for EF-Tu. In this view, in the case of yeast eIF2,
the GTP-bound state was proposed to allow positive interactions
with the methionine group, whereas the binding site correspond-
ing to the body of the tRNA was supposed to remain accessible
in the two nucleotidic states [50]. This contrasts with EF-Tu, in
which the GDP-bound state would not contain a binding site for
the aminoacylated tRNA [67].

The EF-Tu based docking mode shows no direct contact be-
tween the a subunit and the tRNA molecule. Therefore, the partic-
ipation of aIF2a in tRNA affinity is thought to be indirect. Indeed, a
direct contact between a and the tRNA would require a large dis-
tortion of the ac interface. Such a distortion seems unlikely, given
the apparent rigidity of this interface. Rather, one possibility would
be that the aIF2a subunit helps aIF2c to maintain the switch in the
‘‘on” conformation. Several observations favor this idea. (i) The
mutation (Y227A) of an aIF2a residue located at the interface with
aIF2c has a weak but significant negative effect on tRNA binding
affinity. (ii) An of aIF2c mutant, deleted of loop 1, becomes unable
to bind aIF2a or tRNA. (iii) The only structure of aIF2c showing the
switch ‘‘on” conformation when Gpp(NH)p is bound is that of c
bound to a [25]. Moreover, it was observed that GTP binding affin-
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ity is greater for aIF2 than for the c subunit alone [36]. Finally, a
recent thermodynamic study showed that the interactions
between the a and c subunits varied in the presence of Gpp(NH)p
[68].

It should however be noted that an alternative docking model
for the binding of the tRNA molecule on Ss-aIF2c was proposed
[44]. This model relies on the identification of two PPi sites within
domain II of aIF2c that would mimic the end of the acceptor stem
of the tRNA. The acceptor stem of the initiator tRNA would be per-
pendicular to that of tRNA in the EF-Tu–Gpp(NH)p–Phe-tRNAPhe

complex. The elbow and T stem of Met-tRNAMet
i in this position

would make extensive contact with the a subunit of aIF2. Up to
now, no experimental data have been added in favor of such a
model.

5. b Subunit lies on the side of the nucleotide binding pocket

Recently, three crystallographic structures in which the b sub-
unit is bound to c were obtained: that of aIF2bc heterodimer
from P. furiosus (Pf-aIF2bc in the apo form or bound to GDP)
[32], that of aIF2a3bc from S. solfataricus obtained in the presence
of GDP (Ss-aIF2a3bc) [33] and that of the entire abc heterotrimer
from S. solfataricus (Ss-aIF2abc) [38]. In the three structures, the
N-terminal a-helix of b is wedged between two a helices of the
G-domain of c (Figs. 1 and 3). This interaction is sufficient to in-
sure tight binding of b to c, consistently with site-directed muta-
genesis in yeast [34]. In Ss-aIF2abc, the rest of the b subunit has a
highly flexible structure and does not contact eIF2c [38]. How-
ever, comparison of the structures of Ss-aIF2a3bc with that of
Pf-aIF2bc indicates two modes of binding of the b subunit onto
the c one (Fig. 2). In Pf-aIF2bc, the central domain of b is packed
onto c with the ZBD exposed to the solvent and making no con-
tact with c. In the Ss-aIF2a3bc structure, the central domain of b
has no contact with c whereas the ZBD is close to the nucleotide
binding site on c. In the two structures, the b subunit is in contact
with c through switch 1 (Fig. 2). Therefore, even if it cannot be
excluded that these two modes of binding are induced by the
crystallization conditions, it is worth considering the possibility
that the two resulting structures of aIF2b reflect snapshots of
Fig. 3. Scheme of the nucle
the aIF2b conformations in aIF2 at different steps of the nucleo-
tide cycle. An important contribution of b to the function of yeast
eIF2 is indicated by analysis of mutations that allow translation
initiation at non-AUG codons [34,69,70]. Functionally important
mutations in b map to the vicinity of the zinc-binding region,
within the C-terminus of the protein, or in the a1 helix [15,35].
Among these, two mutations increase the intrinsic GTPase activity
of eIF2, independently of the presence of eIF5 or of that of the
ribosome [15]. These mutations, L254P and S264Y, affect residues
that correspond to aIF2b-S122 and aIF2b-A132. In the structure of
Ss-aIF2a3bc, these two residues are at the surface of b, close to
the nucleotide binding site of c [33]. This argues in favor of the
idea that the conformation of b observed in Ss-aIF2a3bc has func-
tional significance.

In Ss-aIF2a3bc structure, the ZBD directly contacts the switch 1
region. As a result, switch 1 adopts a novel conformation. More-
over, unexpectedly for a GDP bound state, switch 2 has the ‘‘on”
conformation (Fig. 2). The stability of the switch 1 novel conforma-
tion is accounted for by a ligand, most probably a phosphate ion,
bound near the nucleotide binding site. The structure suggests that
this novel GDP-Pi bound state of aIF2 may be proficient for tRNA
binding. Transient occurrence of a distinct phosphate binding site
on eIF2c has already been predicted in the case of eukaryotes.
The prediction was gained based on a biochemical analysis show-
ing that Pi release from eIF2, and not GTP hydrolysis itself, was the
actual step triggered by recognition of an AUG start codon [71]. The
novel nucleotide state identified in aIF2 is indicative of a similar
mechanism in archaea.

Finally, in the two structures, aIF2b is bound to aIF2c far away
from the putative tRNA binding site and no direct contact between
b and the tRNA is predictable. In the case of aIF2, b has only a minor
role in tRNA binding affinity. However, the contribution of this
subunit is thought to be important in eukaryotes (see above). In
this view, it should be reminded that eIF2b presents two additional
domains as compared to aIF2b. Notably, the presence of the three
lysine boxes in the N-terminal part of the b subunit does not influ-
ence the GTP-dependent initiator Met-tRNAMet

i binding by the eIF2
complex [72]. Therefore, the way by which eIF2b influences tRNA
binding on eIF2c remains to be determined.
otide cycle on e/aIF2.
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6. Role of eIF2 in translational control

One of the best characterized mechanisms of translational con-
trol in eukaryotic cells is associated with phosphorylation of Ser51
in the a subunit of eIF2. Following phosphorylation, the affinity of
eIF2–GDP for eIF2B is much increased, and eIF2 is converted from a
substrate to an inhibitor of the exchange factor. As a consequence,
the pool of eIF2–GTP is rapidly depleted, and, on the whole, trans-
lation is inhibited in the cell. Because the intracellular concentra-
tion of eIF2B is small regarding that of eIF2, phosphorylation of a
fraction of eIF2 is sufficient to inhibit protein synthesis.

The increased affinity of eIF2 for eIF2B has generally been inter-
preted to reflect very slow dissociation of the eIF2–eIF2B complex,
resulting in the sequestering of eIF2B (e.g. [73]). Alternatively, it
has been proposed that phosphorylation of eIF2a increases the rate
of association of eIF2 with eIF2B, in such a way that phosphory-
lated eIF2 becomes a competitive, rather than an irreversible,
inhibitor of the nucleotide exchange reaction [74]. This mechanism
is further supported by in vivo overproduction experiments in
yeast cells [75]. Notably, since Ser51 is likely to be in contact with
eIF2B, the latter competitive mechanism allows for rapid reversion
of translation inhibition upon production of an eIF2 phosphatase.
Two such phosphatase activities, one constitutive (termed CReP)
and the other inducible (PP1c-GADD34), have been evidenced in
mammals [76].

Up to now, four types of kinases able to specifically phosphory-
late Ser51 of eIF2a have been identified [77]. These proteins share
a conserved kinase domain insuring high specificity for eIF2a [78].
These four kinases however respond to different stimuli. The most
widespread one, GCN2, is controlled by uncharged tRNA that accu-
mulates in case of shortage of any amino acid. The kinase activity
of GCN2 is indeed triggered upon naked tRNA binding thanks in
particular to a histidyl-tRNA synthetase-like domain [79]. PKR
(for Protein Kinase RNA-dependent [80,81]), present in vertebrates,
is induced by interferon and is activated upon double-stranded
RNA binding. Such an activator frequently appears in the cell upon
viral infection. Therefore, by inhibiting protein synthesis, the ac-
tion of PKR participates in cell defense against viral propagation.
The third kinase, PERK (for PKR-like Endoplasmic Reticulum Kinase
[82], also called PEK for Pancreatic eIF2a Kinase [83]) is present in
animals. PERK is activated in response to an ER stress, occurring in
case of an imbalance in the lumen between unfolded proteins and
chaperones. This allows coupling of the rate of protein synthesis in
the cytoplasm to the folding capacity in the lumen [82]. Finally, the
HRI (Heme Regulated Inhibitor) kinase [84] exists in vertebrates,
and in a few other organisms such as Schizosaccharomyces pombe
and Bombyx mori. HRI is activated upon heme deprivation in eryth-
rocytes, as well as upon various oxidative stresses in other cell
types.

Most interestingly, phosphorylation of eIF2a can also positively
regulate translation of specific genes. This positive control was
extensively studied in the case of S. cerevisiae GCN4 (reviewed in
[85]), a gene whose translation is induced upon the activation of
GCN2. The GCN4 protein is a transcriptional activator of many
genes encoding amino acid biosynthetic enzymes, aminoacyl-tRNA
synthetases and pathway-specific activators [86]. In this way,
phosphorylation of eIF2a triggers a global cellular response in
yeast [87], reorienting the protein synthesis capacity toward pro-
duction of charged tRNAs. The mechanism for GCN4 translational
control involves four short open-reading frames (uORF1-4; 2–3
sense codons each) upstream from that encoding GCN4 on the
mRNA. Initiating 40S subunits scan the messenger RNA and trans-
late uORF1. However, after translation termination, the 40S sub-
units can resume scanning with high frequency, thanks to
specific features of uORF1 [88]. If the availability of eIF2–GTP-ini-
tiator tRNA ternary complex is high, such 40S subunits will rebind
a ternary complex and translate one of the uORF2, uORF3 or
uORF4. Because ribosomes do not resume scanning after having
translated the latter ORFs, translation of the GCN4 ORF is inhibited.
On the contrary, in the presence of low amounts of ternary com-
plex, after translation of uORF1, many 40S subunits will bind a ter-
nary complex only after having bypassed the inhibitory uORF2-4,
thereby reinitiating at the GCN4 start codon.

Essentially the same mechanism has also been evidenced in
higher eukaryotes in at least one case, that of the Activating Tran-
scription Factor 4 (ATF4) [89,90]. This transcription factor may be
considered as the metazoan counterpart of GCN4, and controls
an ‘‘integrated stress response” including the expression of genes
involved in amino acid metabolism and transport, as well as resis-
tance to oxidative stress [91]. The function of ATF4 is however not
limited to the stress response. A striking example is its clear
involvement in the synaptic switch to the late phase of long-term
potentialisation and long-term memory [92]. Indeed, ATF4 is a
repressor of the cAMP response element binding protein-mediated
gene expression, which is critical for long-term synaptic plasticity
and memory [93].

More generally, an increasing number of important biological
responses, such as the sensing of amino acid deficiency for dietary
selection [94,95], are associated with eIF2a phosphorylation. This
renders likely that beyond ATF4, other transcription factors may
be activated by this phosphorylation, which clearly has broad bio-
logical consequences [96,97].

7. Conclusion and perspectives

Control of the nucleotide cycle of e/aIF2 is crucial for the accu-
racy of the initiation of translation. In eukaryotes, eIF5 and eIF2Be,
the catalytic subunit of eIF2B, modulate the nucleotide state of the
heterotrimeric protein eIF2 (Fig. 3). Recent biochemical and struc-
tural data have given new ideas to explain how the control of the
nucleotide cycle may occur.

Beside their ability to bind eIF2b, eIF5 and eIF2Be are also able
to contact the G-domain of eIF2c [98,99]. Binding of eIF5 to c
involves its N-terminal part. This part comprises an a-b domain
and a ZBD one homologous to those of aIF2b and probably adopting
the same relative orientation [100]. In addition, eIF1, the other key
factor involved in the nucleotide cycle of eIF2, also displays a struc-
ture similar to that of the a�b domain in e/aIF2b [101]. All these
observations give credit to the idea that the three factors, eIF2b,
eIF5 and eIF1, play concerted roles during the nucleotide cycle of
eIF2 [33,100]. Indeed, because of their structural similarities, the
factors may target the same region on the G domain of eIF2c.
Archaea possess an equivalent of eIF1. Thus, in the context of the
above idea, one can imagine that, either in eukaryotes or in
archaea, e/aIF1 release will be sufficient to trigger rearrangement
of the full eIF2 structure leading to release of Pi and making codon
selection irreversible.

e/aIF2 consists of a rigid central part, formed by the c subunit,
domain 3 of the a subunit and the h1 helix of the b subunit. Two
mobile ‘‘wings” formed by domains 1 and 2 of the a subunit, and
by domains a–b and ZDB of the b subunit, are appended to this
central core. The mobility of the wings is probably crucial for the
interaction of e/aIF2 with the ribosome, with the mRNA and/or
with e/aIF2 partners. Results of UV cross-linking experiments and
of assays of 48S complex formation done using a-deficient eIF2
indicate that eIF2a is involved in recognition of initiation codon
context, probably by interacting with nucleotide [�3] (with respect
to AUG codon) of the mRNA. The resulting stabilization of the 48S
complex is dependent on the presence of eIF1 [102]. On another
hand, eIF2b interacts directly or indirectly with eIF5 and eIF1.
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These two factors are essential for the control of the nucleotide
cycle. The network of interactions depicted in Fig. 2C indicates that
the switch 1 region may use the a and b subunits as relays to
exchange information with the ribosome, with mRNA, and with
eIF1 and eIF5. In addition to biochemical and genetic studies,
structural studies of translation initiation complexes are required
to understand the central function played by e/aIF2 in faithfully
deciphering the start codon on mRNA.
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