Computers and Mathematics with Applications 59 (2010) 2628-2635

Contents lists available at ScienceDirect

Computers and Mathematics with Applications Z

journal homepage: www.elsevier.com/locate/camwa

C-hypergroupoids obtained by special binary relations

S. Spartalis **, M. Konstantinidou-Serafimidou b A. Taouktsoglou®

2 Department of Production Engineering and Management, Faculty of Engineering, Democritus University of Thrace, University Library Building,
Kimmeria GR-67 100 Xanthi, Greece
b Department of Mathematics, Physics and Computer Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, GR-54 124 Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Article history: In this paper we deal with the partial or non-partial C-hypergroupoids which are associated
Received 2 June 2009 with special binary relations defined on H, such as Reflexive, Symmetric, Cyclic and
Received in revised form 13 January 2010 Transitive. Basic properties are investigated and various characterizations are given. The

Accepted 13 January 2010 main tool to study the previous special classes of hypergroupoids is the fundamental

relation 8* (i.e. the smallest equivalence relation such that the quotient of a hypergroupoid
(partial or not) is a groupoid (partial or not))

Keywords:

Partial hypergroupoids
Hypergroupoids
Hy-semigroups

Binary relation
Hyperoperation relation

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Given a partial or non-partial hypergroupoid (H, %), thatis, H # @ and x: H x H - p(H): (x,y) — X * y (where
AxB = Ugeapepa * b, A, B € p(H)), the hyperoperation relation R, [1] can be defined on H in the following way:

(i)x,ye H,zexxy # o iffxR.z, zR,y, (ii)HxH =2 iffR, = @.

On the other hand, connections between hyperstructures and binary relations have been analyzed by many researchers,
such as Rosenberg [2], Corsini [3-6], Chvalina [7,8], Konstantinidou-Serafimidou [9], Leoreanu [10,11], Serafimidis [12],
DeSalvo and LoFaro [13,14], Hort [15], Kehagias [16], Spartalis [ 17,18,1] and so on. More precisely, given a binary relation R
defined on a non-empty set H (i.e. R € H x H), several hyperoperations can be obtained in many different ways [2,7,8,11,
13,15,17]. In the present paper we deal with the Corsini’s hyperoperation [3] defined in the following way:

¥g:HXH— @(H): (X,y) — x xgy = {z € H | xRz, zZRy}.

Since the previous hyperproduct is not always non-empty, the hyperstructure (H, *g) is a partial hypergroupoid, called
“partial Corsini’s hypergroupoid associated with the binary relation R” (briefly, partial C-hypergroupoid), denoted by Hp. It is
clear that a partial C-hypergroupoid Hy is a C-hypergroupoid (i.e. non-partial), if and only if Ro R = H x H [3].

Moreover, letH # @, Ry = {R; | Ry € H x H}, H be the set of all partial or non-partial hypergroupoids defined on H and
Hy = {Hg; | R; € %y} C H. Notice that, ifcardH = n, n > 1, then, card Hy, < 2" and card H = (2")"™ = 2" The following

Propositions are valid:

Proposition 1 ([1]). For each partial or non-partial hypergroupoid, a C-hypergroupoid (partial or not) exists that includes it.
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Proposition 2 ([1]). Let R, be the hyperoperation relation of a partial or non-partial hypergroupoid H, = (H, x), H # @, and
¢ : Ry — H : Ry = ¢(R;) = Hg;. Then the following hold:
(i) If the Hg, is a partial C-hypergroupoid, then
R, = minimum{R; € Ny | R; € ga’l(HR*)}.
(ii) If the Hg, is a C-hypergroupoid (non-partial), then

@ '(Hg,) = {R}.

Lemma 1.1. Let (H, *g) be a C-hypergroupoid (partial or not) defined on H # @. Then, for all A, B, C, D € p(H) — {2},
A*RBHC*RD =A*RDHC*RB

Proof. Let Axg BN C#xD # @ and w € AxgB N C*gD. Then, there exista € A,b € B,c € Candd € D such that
w € a*gb N c*gd. According to Proposition 2.1 [1],

weaxgbNckgd=a*rdNc*gb CAxg DN C*gB,

thatis,A*g DNC#gB # @and Axg BN Cxg D C A*g DN C *g B. Similarly, if Axg DN C g B # &, then Axg BN C g D # &
andA*RDﬁC*RBgA*RBOC*RD,andsoA*RBﬂC*RD:A*RDOC*RB.
In the case that Axgr BN C g D = @ or A%z D N C %z B = & the statement is obvious. O

In this paper we deal with the partial or non-partial C-hypergroupoids which are associated with special binary
relations defined on H, such as Reflexive, Symmetric, Cyclic and Transitive. Basic properties are investigated and various
characterizations are given. The main tool to study the previous special classes of hypergroupoids is the fundamental relation
B* (i.e. the smallest equivalence relation such that the quotient of a hypergroupoid (partial or not) is a groupoid (partial or
not)).

2. Partial or non-partial C-hypergroupoids defined by reflexive binary relations

Let ?}if_,eﬂ = {R € Ny | xRx, for all x € H} € Ny. Then, Ay = ﬂRemgﬂ R and for all C-hypergroupoids (H, *g) (partial or
not), x € x*g x, for allx € H.

Proposition 2.1. Let (H, xg) be a C-hypergroupoid (partial or not) and R € m;j“. Then, the following hold:

(i) Foralla,b € H, aRb < {a, b} C agb.
(ii) The class R = {R; € Ry | Hr = Hg,} is a singleton.
(iii) Themap @ : fﬁ,rjﬂ — H: R — ¢@(R) is an injection.

Proof. (i) Let aRb. Since aRa, bRb, it follows that {a, b} C a*g b. The converse is obvious.
(ii) Let Hr = Hg;, R; € Ny.Since a € a*xga = ax*g;a,foralla € H, it follows that R; € i}tf_,eﬂ. Therefore, for each R; € {R, R;},
from (i) we obtain that

aRib & {a,b} C a*gb = ax*g; b, andsoR CR;,R; CR.

Therefore, R = R;, that is, R = {R}. L
(iii) LetR,R; € St}fﬂ, R # Ri. If (R) = @(Ry), that is, Hr = Hy,, then, from (ii) it follows that R = R; = {R}. Hence, R; = R,
which is a contradiction. Consequently, Hg # Hg,, i.e. (R) # @(R;)). O

Proposition 2.2. Let (H, %) be a C-hypergroupoid (partial or not) and R € Sﬁ}jﬂ. Then, for all a, b, x € H, the following hold:

(i) x e a*gb < x € axgx NX*gb.
(ii) be axgra < {a,b} CaxgbNbxga.

Proof. (i) Let x € a*g b. Then, from Proposition 2.1 [1] we have that
X € a*sgbNxkprXx = axgXx N x*gb.

Conversely, let x € a*gx N x g b. Then, aRx, xRb, and so x € a *y b.
(ii) Let b € a =g a. Since aRb, bRa, Proposition 2.1(i) of this issue follows that

{a,b} CaxgbNb=xga.

Conversely, let {a, b} CaxgrbNb*gra=axgaNb*gb.Then,b € axga. O
3. Partial or non-partial C-hypergroupoids defined by transitive binary relations

Let 7™ = {R € Ny | xRy, yRz = xRz, forallx,y,z € H} € Ny and (H, *), R € RI™, be a C-hypergroupoid (partial
or not). Then, x %g y # &, x, y € H, implies that there exists w € H such that xRw, wRy, and so xRy. Therefore, the following
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hold:
(H, *g) is a C-hypergroupoid iff R is total. (3.1)

Proposition 3.1. Let (H, *g) be a partial C-hypergroupoid and R € R}}*™. Then, for all x, y, z € H the following hold:

(i) XRy = x*xgx Uy *gy C X*p}y.

(ii) (x*gry)*gz C X*gz D X *g(y *g 2).

Proof. (i)Ifx*gx = @ = y gy, then the statement is obvious. Let w € x xz x # &. Then, xRw, wRx and since xRy, it follows
that wRy. Therefore, w € x*gy. Hence, x xgx C x*gy. Similarly, yxgy # @ implies that y gy C x*gy. Consequently,
X*kpXUYspy C X*xgy.

(ii) In the case that (x *g y) xgz = @ = x *g(y *g z), the statement is obvious. Let w € (x*gy) *gz # @. Then, there exists
a € x*gy such that w € a gz, which means that xRa, aRy, aRw, wRz. Therefore, xRw, wRz implies that w € x % z, and so
(X xgy) *rz C X *g z. Similarly, can be proved that x #g(y xgz) C x*gz. O

Proposition 3.2. Let (H, *g) be a partial C-hypergroupoid and R € R[™™. Then, for all x, y, z € H the following hold:

() x*%gY # T A Yy*prZ =y €X*kgz N ﬂ w kg U and (x*gy) *g(Y*grz) Ux*xgyUy*pz C X*gz.
4
(i) x *g(Y *r2) # @ # (X*gY) *RZ = X *g(Y *grZ) N (X *gY) *gZ = (X %R ¥) *r (¥ % 2) # 2.
Proof. (i) From the hypothesis we obtain that xRy, yRz, which means that y € xxgz. Moreover, let (x *gy) *g(y *gz) =

(Jwexsgy w g u. Then, for all w € x*gy and for all u € y xg z the following hold:
uey*pz

XRw, wRy and yRu, uRz.
Since wRy, yRu, it follows thaty € w sz u, and soy € [ |wersgy w *g U. Hence,
uey*pz

yeExkgzN | | w kg U
WEX*RY
UEy*Rz

According to the previous, (x *gy) *xr(y *rz) # @ and let a € (xxgy) *g(y¥ *gz). Then,a € w*gu, w € X*gY, U € y*g 2,
which means that wRa, aRu. Therefore, xRw, wRa = xRa and aRu, uRz = aRz,and so a € x g z, thatis, (x %z ¥) *g(y *g 2) C
X kR Z.

Moreover, wRy, yRz = wRz and xRy, yRu = xRu. Therefore, xRw, wRz = w € x#*gz and XRu, uURz = u € x*gz.
Consequently,

(x*%gy) *g(Y*pz2) Uxxgy Uy *pz C X*gZ.
(ii) From Lemma 1.1 of this issue and for A = {x}, B = y gz, C = x*zy, D = {z} it follows that
X*kp(Y*RrZ) N (XkgY) *gZ = X*%gZ N (X %R Y) *g (¥ *g Z).
Moreover, from the hypothesis it is obtained that x xg y # @ # y *g z. Then, according to (i),
x#p(Y*p2) N (X*gY) *pZ = (X*gY) *r(Y #r2) # @. O

Corollary 3.3. Let (H, *g) be a partial C-hypergroupoid, R € R}}* and x, y, z € H such that x € xxgy, z € y *g z. Then,
(x*RY) *rZ = X *r(y *Rr Z) # 2.
Proof. From the hypothesis it is obtained that x xgz C (x g y) *gz N X *g(y *g z). According to Proposition 3.1(ii) of this
issue, we have the following
XxkpZ C (X*kgy)*gZ C x#gz and xxgpz C X*p(y*grz) C X*gZ.

Therefore, (x *gy) *rz = x*gz = x*g(¥ *gz). Moreover, since xxgry # & # y*gz, Proposition 3.2(ii) of this issue
follows that y € x*g z, and so

(x*%rY) #rZ = X*g(Y*2) # @. O

Proposition 3.4. Let (H, *g) be a partial C-hypergroupoid, R € R}™ and x € H such that x g x # @. Then, the following hold:
(i) Forallw € x *gx,
{X, W} SX*pX =X*kgW = WHgX = WHkg W = (X kg X) *g X = X k(X *g X).
(ii) Forallw,u € x*gx,a,b € H, w*ga =uxgaand b *gw = b g u.
(iii) Foralla €e H,x*gxNa*pad = & = X*gad = T Or A kg X = O.
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Proof. (i) Let w € x g x. Then, xRw, wRx and according to Proposition 5.2(i) of this issue,
XxpXU wxpgw C Xkgw MNw kg X.
On the other hand, Lemma 1.1 of this issue implies that
XkpW MNW*kpX = X*kg XN W kg w.

Therefore, x #g x = w %z w = X *g w N w *g X. Moreover, leta € x*xz w, b € w *g X, that is, xRa, aRw, wRb, bRx. Hence,
aRw, wRx = aRx and XxRw, wRb = xRb, and so {a, b} C x *g x. Therefore, x kg w C X kg X D w *g X, which means that

X¥pX = X¥pW = W *pX = W *p W.
Furthermore, since xRx and wRw, we obtain that x € x xz x, w € w %z w, and so
{x, W} SX*kpX =X*kpW = W*kgX = W *g W.

In addition, since x € x*gx, Corollary 3.3 of this issue implies that (x %z X) kg X = Xx*xg(x *gX). Moreover, X kg X C
(x*%g x) *g X. Let a € (x*gx) *g Xx. Then, there exists w € x*gx such that a € w *gx and since w kg X = x *z X, it follows
that a € x xg x. Therefore, (x g X) g X C X *g X, and SO (X kg X) ¥g X = X *g X.

(ii) According to (i), w, u € x xg x implies that wRu, uRw. Let e € w *g a. Then, wRe, eRa and since uRw, we obtain that uRe.
Therefore, e € ux*ga, thatis, w %z a C u*g a. Conversely, let e € u %y a. Then, uRe, eRa and since wRu, we obtain that wRe.
Therefore, e € w *g a, that is, u *ga C w *g a, and so w *g a = u g a. Similarly, b *g w = b *g u.

(iii) Let x kg ¥y # @ # y xg X. Then, Proposition 5.2(i) of this issue implies that a € x *g x, and according to (i), X *g x = a *gq,
which is a contradiction. Therefore, x xpa = oraxpx = @. 0O

Proposition 3.5. Let H # @, R € E)%;fﬂ N R and (H, *g) be the associated C-hypergroupoid. The following hold:

(i) If H is a non-partial C-hypergroupoid, then it is total. ~
(ii) If H is a partial C-hypergroupoid, then the fundamental equivalence relation 8* is the transitive closure of the relationR € Ny
defined for all x, y € H as follows

XRy < xRy or yRx.
Moreover, (H/B*, -) is a partial groupoid where
Brx), if B*(x)=p"y).x,yeH

a, elsewhere

B x) - B () :{

Proof. (i)Let (H, *g) be a C-hypergroupoid (non-partial),i.e.x xgy 7# @ forallx, y € H.Then, since R is a transitive relation,
(3.1) of this issue implies that R is total, and so His total. B
(ii) Let (H, *g) be a partial C-hypergroupoid and R be the transitive closure of the relation R. Then, for all x, y €H,

xB*y implies that 3z, 2, ...,2zy41 € H, 2y = X,2,4,1 =y and JujeHand3l,ie(1,2,...,n}
finite sets of indices such that

{zi, ziz1} < *Rl_[uff’ ie{l,2,...,n}.
J€li

Since the expression g ]_[jeli u;; is a finite “product” with respect to the hyperoperation *“xg”, Proposition 3.1(ii) of this
issue implies for alli € {1, 2, ..., n} the following:

%R 1_[ Wjj = Ujp g Ui %R - -« g Ujj; S Uni *g Uij;-
Jeli

In addition, we set for alli € {1, 2, ..., n},

Ujp = di—q and  wj; = ay;.

Therefore,
{zi,zig1} C Goi1#paz, 1€{1,2,...,n}
Hence,
zZiRay, 2z Ray i€f{l,2,...,n},
and so
z Ray;, aZiI_in+1, ie{l,2,...,n}.

Consequently, x = z;R Zy41 = y, which means that 8* C R'.
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Conversely, letx,y € H, xﬁ*y. Then, there exist by, by, ..., byt1 € H, by = X, by = y such that
biRbiy1, i€{1,2,...,n} < biRbiy or biRb;, ie{1,2,...,n}.

Propositions 2.1(i) and 3.1(i) of this issue follow that
{bi, bit1} S bi#gbiy1 or {bi, biy1} S bi1xgbi, i€{1,2,...,n}.

Therefore, x = b18*b,+1 =y, and so R c B*. Consequently, 8* = R

Let now, in the quotient set H/8*, B*(x) - B*(y) = {B*(2) | z € B*(x) g B*(¥)} be the usual multiplication of the classes.

Let x, y be two arbitrary elements of H such that 8*(x) # B*(y). Then, obviously 8*(x) N 8*(y) = @. So, if there exists
Z € H such that 8*(z) € B*(x) - B*(y), thenz € B*(x) g B*(y). Thus, there exist a € 8*(x), b € B*(y) such thatz € a*gb.
So aRz, zRb, and so z € 8*(x) N B*(y) = @, which is a contradiction. Hence, 8*(x) - 8*(y) = @.

On the other hand, 8*(x) - B*(x) = {B*(2) | z € B*(X) *x B*(x)}. But for all z € H such that 8*(z) € B*(x) - B*(x)
holds z € B*(x)xz 8*(x). Then, z € B*(x). That is, 8*(z) = B*(x), and so B*(x) - B*(x) < {B*(x)}. Obviously,
B*(x) C B*(x) xg f*(x).So B*(x) - B*(x) = {B*(x)}. Hence, we can denote 8*(x) - B*(x) = B*(x). O

Example 36. LetH = {1,2,3,4,5,6,7}andR = {(x,x) | x € H} U {(1,6), (2,6), (4,5), (5,4), (7,4), (7,5)}.
Then, (H, *g) is the partial C-hypergroupoid

¢ 1 2 3 4 5 6 7
1 {1} ¢ 9 o %} {1,6} o
2 o {2} o o %} 2,6} o
3 o 9 {3} 2 %} %} %}
4 o o @ {4,5} {4,5} %} %}
5 o o o {45} {4,5} %} %}
6 o 9 o o %} {6} %}
7 o o9 o {457 {457} o {7}

and H/B* = {B*(1), B*(3), B*(4)}, where B*(1) = {1, 2,6}, B*(3) = {3}, B*(4) = {4, 5, 7} such that
(1) B*3)  B*4)

g1y pr(1) @ %

B*3) @ B*(3) o

B(4) o ) B*(4)
Remark 3.7. In the case that R € S)t;fﬂ N RI"S, the equivalence class B*(x) of an arbitrary element x € H can also be
constructed in the following way: If Aj(x) = xx*x and A 1(X) = Ugsgbynae @%b (@ = 1,2,...), then obviously
A1 € Ay € A3 C --- and there exists a positive integer k = k(x) such that Ay = A1 = - - -. Then, Ay = B*(X).

4. Partial or non-partial C-hypergroupoids defined by cyclic binary relations

Let Ry = {R € My | xRy, yRz = zRx, forall x,y,z € H} C Ny and (H, *g), R € N, be a C-hypergroupoid (partial or
not). Then, x#gy # @, X,y € H implies that there exists w € H such that xRw, wRy, and so yRx. Therefore, the following
holds:

(H, xg) is a C-hypergroupoid iff R is total (4.1)

Proposition 4.1. Let (H, xg) be a partial C-hypergroupoid and R € ?)t,zyc. Then, for all x, y, z € H the following hold:
(i) xeyxpz =y €z*gxandz € x*gy
(ii) X%gYy # D £ Yy*RZ => Yy € (mwee;*Ry wHgU) NZ*g X

u *RZ

Proof. (i) Let x € y xg z. Then, yRx, xRz implies that zRy. Moreover, zRy, yRx = y € zxgx and xRz, ZRy = z € x g }.
(ii) Since x xgy # @ # y*gz, then, for all w € x*ry and for allu € y gz (i) implies that y € w *g x N z *g u. Moreover,
according to Lemma 1.1 of this issue, y € w g u N z xg x and therefore, y € ([\wexsgy WxgU) NZxgx. O

uey*pz

Proposition 4.2. Let (H, xg) be a partial C-hypergroupoid and R € 9?,?’6. Then, for all x,y, z € H the following hold:
(i) x*xgx £ @ = forallw, u € x*gX,
{x, w,u} Cxxpx = w*gu
(ii) X kg X # & = (X *gX) kg X = X *g(X *g X) = X kg X
(iii) xRy and (X *gX £ T Or Y *gYy # &) = Y € X*g X
(iv) (X*RY) *RZ # @ # X*p(Y*gZ) = (X*RY) *RZ = X kg X = X *g(¥ *g Z).
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Proof. (i) Let w € xxgx # @. According to Proposition 4.1(i) of this issue, we obtain that
X EXkpW NWskpX = X*kg XN W kg W.
In the same way, since x € w g w, we obtain that
W E WHRXMNX*kpW = W kg W N X*kg X.

And so {x, w} C xxgxand X kg x C Xx*xg w, X kg X C w xg w (I).

Conversely, let v € x*g w. Then, x € w *g v, butalsox € x kg X.S0Xx € wxg v N X*gX = W *gx N X*xg v. Thus, x € x*xg v
implies that v € x *g x, that is, x xg w C x *g x. Hence, x xg x = x *g w (II).

Since x € w *g w, we similarly obtain that w %z w = w *gx and w *g w C X xg x. Considering also (I) and (II), we finally
obtain that

forallw € x*gx # @ holds {x, w} C x*xpw = x*kg X = w kg w = w *g x (III).

Let also u € x*gpx # <. Then according to (Ill), we have {x, u} C x*gpx = w *g w. But, since u € w *g w, (IlI) implies
again that w kg U = w kg w = U kg U = Uk w. So, for all w, u € x kg x holds {x, w, u} C x*gx = w *g .
(ii) Since x *g x % @, we have x € xxgx,and so X kg x C (X *g X) *kgx and X g X C X xg(X *g x). Conversely, let @ € (X *g X) *g X
(resp. o € xxgp(x *g X)), then there exists w € x*gx such that @ € w xg X (resp. & € X *g w). Since w kg X = X *g W = X *g X,
we have that o € x #gx, and so (x *g X) kg X C X xg x (resp. X xg(x *g x) C X *xg X). Hence, (X xg X) *g X = X kg X = X *g(X *g X).
(iii) Let now xRy and x g X # @. From (i) we have x € x g X, so xRx. But then, x € x*gy and according to Proposition 4.1(i)
of this issue, also y € x *g x. Then, (IIl) implies that

{X, ¥} S Xy = X*pX =y *rY =y *g X.

In the case xRy and y *g y # &, the proof is similar.
(iv) (x *gY) *rz # @ # X *g(y *g z) implies that there exist w, k, v € H suchthat w € x*gy, k € w*rz, v € y*gz. Then,
wEXkRYNzkgk =xxgkNz*gy,andsoy € w *gz.

Furthermore,z € k*xgw Nv*gy = k*xgy Nuvsgw,andsoy € zxgk. Thus,y € w*gz Nz*xgk = w*gk N z *g z, but
since y € z *g z, we obtain through (III) that

Z%RZ = Z%RY = Y *RZ = Y *RY.

Moreover, since x*gy # & F Y=gz, we have that y € zs#gx, and so X € y#*gpz = z#*gz = Ysgy. Hence,
Z¥RZ = Z¥RX = X¥RZ = X*gpX = Y*rX = X*gp).Then, (X*py) *gz = (x*gx)*grX = Xx*gx (according to (ii)) and
also x #g (Y kg z) = X *g(X *g x) = X *g X. Consequently, (x kg y) kg z = x*g(y *gz). O

Proposition 4.3. let H # o,R € mff and Hpg be the associated partial C-hypergroupoid. Then, for all x, y € H the following
hold:

(i) X*kpXNY*krY = T Or X% X = Y *g Yy
(ii) xxgx # @ = forally € H, X gy = DO X*kgy = X*gX = Y *py = Y *g X

Proof. (i) Let xxgx Ny *gy # . Then, there exists w € H such that w € x g x Ny *gy. So, according to Proposition 4.2(i)
of this issue, x kg X = w kg W = y *g Y.

(ii) Let x *g x # @ and y be an arbitrary element of H. If x g y £ &, there exists w € H such that w € x*zy. Then, since
R e Sﬁgc, YRx and according to Proposition 4.2(iii) of this issue, we obtain that x € y g y. So, Proposition 4.2(i) of this issue
implies that X kg y = x*g X = y*kpy = y*gx. O

Proposition 4.4. Let H # @, R € Ny and Hy be the associated partial C-hypergroupoid. Let R, be the hyperoperation relation
of Hg. Then, the following hold:

(i) Re RY" & Ry, € RY°
(i) If R € N, thenR = R,, & y#*px # &, forall (x,y) € R.

Proof. (i) Let R € My“. For all (x,y), (,z) € Ry, holds that (x,y), (y,z) € R, since R,, C R.Then, (z,x) € R But
(,2), (z,x) € Rimplies that z € y#gX. SO YR.Z, ZR,zX. SO (z,X) € R,,. Thatis, R,, € N“. Conversely, let R,, € Ry".
For all (x,y), (v, z) € Rholds thaty € x#gz.5S0 (x,¥), (,2) € Ry, Since R,, € N7", (z,x) € Ry, € RS0 (z,x) € R. This
means that R € Ry".

(i) R = Ry, & forall(x,y) € R there exists z7 € H such that (y,z;) € R, or there exists z; € H such that
(z2,x) € R & forall (x,y) € Rthere exists z; € H such thaty € x#gz;, or there exists z; € H such thatx € z; *z}y.
SinceR € ﬂigc, according to Proposition 4.1(i) of this issue, we have R = R,, < forall (x,y) € R there exists z; € H such
that z; € y g x, or there exists z, € H such thatz, € yxpx < y*sgx # o forall (x,y) e R. O

Proposition 4.5. Let H # @, R € S}%};,e" N 9%,3” and Hg be the associated partial C-hypergroupoid. Then, for all x,y,z € H the
following hold:

(XxpY)*pZ £ & or X*p(Y*rZ) # S = (X*gY) *gZ = X*g X = X *g(Y *g 2).
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Proof. Let (x*py) *gz # @.Then, there exist a, b € H such thata € x*gy and b € a=gz. So xRa, aRy. Since R € m;yf, we
have yRx and since R € %", we have xRx. So xRy. This means y € x s x, and according to Proposition 4.2(i) of this issue, we
have x gy = x *g X. But then, a € x g x, SO X kg X = a *g a. Similarly, b € axgz implies thatb € a*grz = a*gra = x *g Xx. So
b € xxgx. Thatis, (x *gy) *gz < x *g X (I). Notice that, since b € x *g X = a =gz, we have xRb and bRz. So zRx. But also xRx.
So xRz.

Now, let ¢ € x*gx. Then, cRx and xRz. So zRc. Also zRz. So cRz. But then, XxRc and cRz. So ¢ € (x*gX) *gz. That is,
X*kpX C (x*gX) *gz = (x*xgy) *g z (II). (I) and (I) imply that x xg x = (X *xgy) *g Z.

Similarly it can be proved that x xg x = X *g(y *gz). O

Proposition 4.6. Let H # o,R € m;;ﬂ N S)ig'c and (H, *g) be the associated C-hypergroupoid. Then, the following hold:

(i) If H is a non-partial C-hypergroupoid, then it is total.
(ii) If H is a partial C-hypergroupoid, then the fundamental equivalence relation 8* is exactly the relation R. Moreover,
(a) B*(X) = x*gx, forallx € H,
(b) (H/B*, -) is a partial groupoid, where
* * Brx), if B*(x)=p"y).x,y €H
B () B7(y) = {@, elsewhere
(c) H is a complete partial hypergroupoid.

Proof. (i) Let (H, *g) be a non-partial C-hypergroupoid, i.e. x xgy # @ for allx, y € H. Then, since R is a cyclic relation, (4.1)
of this issue implies that R is total, and so H is total.
(ii) Let (H, xg) be a partial C-hypergroupoid. Since Proposition 4.5 of this issue implies that for alli € {1, 2, ..., n}

*R Huij = Uj1 *R Ujp *R -+ ¥R Ujj; = Ujq *g Ujq,
Jeli
then, according to Proposition 4.3(i) of this issue, for all x,y € H,xB*y leads finally to {x,y} C uj;*piU;; = X*gX.
Consequently, xRy, that is, 8* C R. Conversely, for all x, y € H, xRy implies, according to Proposition 4.2(iii) of this issue,
that {x, y} C x*gx.Sox8*y. Thatis,R C B*.So f* =R.

For the equivalence class of an arbitrary element x € H holds R(x) = {y € H | xRy} = xx*gx, according to
Proposition 4.2(iii) of this issue. Let now, in the quotient set H/R, R(x) - R(y) = {R(z) | z € R(x) *g R(y)} be the usual
multiplication of the classes. Let x, y be two arbitrary elements of H such that xRy, that is, R(x) # R(y), according to
Proposition 4.3(i) of this issue. Then, R(x) xR R(y) = (x*gX) *zr(y *gY) = @. S0 R(x) - R(y) = @. In the case that xRy,
according to Proposition 4.2(iii) and 4.2(i) of this issue, we have R(x) = R(y) and according to Proposition 4.2(ii) of this
issue, R(x) xg R(X) = (X *g x) *g(X kg x) = x*g X = R(x).So R(x) - R(x) = {R(x)}. Hence, we can denote R(x) - R(x) = R(x).

Furthermore, B*(x g ¥) = R(x*rY) = Usexupy R(2) = {';(":*i 225 XHRY i;ﬁ%’, Consequently, (H, sg) is a complete partial
hypergroupoid. O

Proposition 4.7. Let (H, x) be a partial hypergroupoid, in which the following hold

(i)x e xxx, forallx e H
(i)xxxNyxy=oorxxx=yx*xy forallx,y e H
and (iii)x*y=@orxxy=x%xx=yxy=y*Xx forallx,y € H.

Then, there exists a binary relation R € ER;,eﬂ N Stff such that (H, ) identify with the partial C-hypergroupoid (H, g). R is
exactly the hyperoperation relation R, of (H, *).

Proof. Let R, be the hyperoperation relation of (H, %). According to condition (i), R, is reflexive. Furthermore, for all
X,y € H, xR,y < (there exists w; € H such thatx € w; * y) or (there exists w, € H such thaty € x % w,). According to
condition (iii), it holds xR,y < x € y x yory € x % x. This means x x x Ny x y # &. So, according to condition (ii), we have
that xR,y < X * x = y *x y. Then, R, is obviously cyclic.

Let (H, *g,) be the partial C-hypergroupoid defined by R,. It is known that (H, %) < (H, *g,). (See Proposition 3.2 [1].
See also [19]) Conversely, letx *g, y # @,x,y € H and z € x *g,y. Then, xR,z, zR,y. This means x * x = z x z = y x y. Then,
zezxz=x%x=Xx%Y.50 (H, *g,) < (H, %). Finally, (H, ) identify with (H, *g,), where R, € m;;ﬂ N Sﬁgc. So there is a
binary relation R = R, € Wi N MY such that (H, *) = (H, *g). O

5. Partial or non-partial C-hypergroupoids defined by symmetric binary relations

Let Ny™ = {R € Ny | xRy = yRx Vx, y € H}. Since for all R € R™, R = R~1, Corollary 2.6 [1] implies that

the associated (partial or not) C-hypergroupoid Hy is strong commutative (5.1)

Moreover, since Hg is strong commutative, for all a,b € H,axgb = a*gb N b*ga and according to Lemma 1.3 [1],
a*Rb :a*Raﬁb*Rb.
Therefore, we set the following proposition:
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Proposition 5.1. Let H # @ and R € Ry. Then, the following hold:
(i) If the associated C-hypergroupoid Hy is non-partial, then,
Hg is strong commutative < R € Ry
(ii) If the associated C-hypergroupoid Hy is partial, then,

Hg is strong commutative < Ry, € Ry

symm
H .

(iii) If (H, %) is a strong commutative hypergroupoid (partial or not), then R, € N

Proof. (i) Let Hg be strong commutative and a, b € H, aRb. Moreover, for all x € a*g b = bz a # @ we have bRx, xRa, and
so b € axgx = x g a. Therefore, bRa. This means thatR € Eﬁzymm. The converse is implied from (5.1) of this issue.

(ii) Let Hg be strong commutative and a R, b. Then, there existx,y € H, a € x#gbor b € a g y. Therefore, also a € b *g x or

b € y*g a. So bR, a. This means that R,, € %}y The converse is implied from (4.1) of this issue.

(iii) Let a R.b. Then, there existx,y € H,a € xxborb € axy. Since (H, %) is strong commutative, alsoa € bxxorb € y xa.
So bR.a, thatis, R, € RY™. O

ASymm

Proposition 5.2. Let H # @, R € W7 and Hy, be the associated partial C-hypergroupoid. Then, the following hold:

(i) R,, =R ]
(ii) The map @: N7™ — H : R — @(R) = Hg is an injection.

Proof. (i) Let aRb. Then, bRa, and so b € a * a. Therefore, aR,,b. This means R C R,,. But then, R = R, (see Proposition
1.2[1]).
(ii) It is obvious from (i). O

6. Concluding comment

In this paper we deal with the partial or non-partial C-hypergroupoids which are associated with special binary relations
defined on H. Especially we deal with Reflexive, Symmetric, Cyclic and Transitive binary relations. Basic properties are
investigated and various characterizations are given. Using the fundamental relation B* it is proved that in the case
R € §Rf§ﬂ N RIS (or respectively R € §R{§ﬂ N S}igc) the smallest groupoid that hides in a partial C-hypergroupoid is the
one of the Proposition 3.5 of this issue (respectively 4.6 of this issue). We investigated Reflexive, Symmetric, Cyclic and
Transitive binary relations, since they are the most common binary relations which do not necessarily lead to a total C-
hypergroupoid. Partial or non-partial C-hypergroupoids which are associated with other special binary relations defined on
H will be the aim of a further investigation.
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