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main tool to study the previous special classes of hypergroupoids is the fundamental
relation β∗ (i.e. the smallest equivalence relation such that the quotient of a hypergroupoid
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1. Introduction

Given a partial or non-partial hypergroupoid (H, ∗), that is, H 6= ∅ and ∗: H × H → ℘(H): (x, y) 7→ x ∗ y (where
A ∗ B = ∪a∈A,b∈B a ∗ b, A, B ∈ ℘(H)), the hyperoperation relation R∗ [1] can be defined on H in the following way:

(i) x, y ∈ H, z ∈ x ∗ y 6= ∅ iff xR∗z, zR∗y, (ii) H ∗ H = ∅ iff R∗ = ∅.

On the other hand, connections between hyperstructures and binary relations have been analyzed by many researchers,
such as Rosenberg [2], Corsini [3–6], Chvalina [7,8], Konstantinidou-Serafimidou [9], Leoreanu [10,11], Serafimidis [12],
DeSalvo and LoFaro [13,14], Hort [15], Kehagias [16], Spartalis [17,18,1] and so on. More precisely, given a binary relation R
defined on a non-empty set H (i.e. R ⊆ H × H), several hyperoperations can be obtained in many different ways [2,7,8,11,
13,15,17]. In the present paper we deal with the Corsini’s hyperoperation [3] defined in the following way:

∗R : H × H → ℘(H) : (x, y) 7→ x ∗R y = {z ∈ H | xRz, zRy}.

Since the previous hyperproduct is not always non-empty, the hyperstructure (H, ∗R) is a partial hypergroupoid, called
‘‘partial Corsini’s hypergroupoid associated with the binary relation R’’ (briefly, partial C-hypergroupoid), denoted by HR. It is
clear that a partial C-hypergroupoid HR is a C-hypergroupoid (i.e. non-partial), if and only if R ◦ R = H × H [3].
Moreover, let H 6= ∅,<H = {Ri | Ri ⊆ H ×H}, H̃ be the set of all partial or non-partial hypergroupoids defined on H and

H̃< = {HRi | Ri ∈ <H} ⊆ H̃ . Notice that, if cardH = n, n ≥ 1, then, card H̃< ≤ 2n
2
and card H̃ = (2n)n

2
= 2n

3
. The following

Propositions are valid:

Proposition 1 ([1]). For each partial or non-partial hypergroupoid, a C-hypergroupoid (partial or not) exists that includes it.
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Proposition 2 ([1]). Let R∗ be the hyperoperation relation of a partial or non-partial hypergroupoid H∗ = (H, ∗),H 6= ∅, and
ϕ : <H → H̃ : Ri → ϕ(Ri) = HRi. Then the following hold:
(i) If the HR∗ is a partial C-hypergroupoid, then

R∗ = minimum{Ri ∈ <H | Ri ∈ ϕ−1(HR∗)}.
(ii) If the HR∗ is a C-hypergroupoid (non-partial), then

ϕ−1(HR∗) = {R∗}.

Lemma 1.1. Let (H, ∗R) be a C-hypergroupoid (partial or not) defined on H 6= ∅. Then, for all A, B, C,D ∈ ℘(H)− {∅},

A ∗R B ∩ C ∗R D = A ∗R D ∩ C ∗R B.

Proof. Let A ∗R B ∩ C ∗R D 6= ∅ and w ∈ A ∗R B ∩ C ∗R D. Then, there exist a ∈ A, b ∈ B, c ∈ C and d ∈ D such that
w ∈ a ∗R b ∩ c ∗R d. According to Proposition 2.1 [1],

w ∈ a ∗R b ∩ c ∗R d = a ∗R d ∩ c ∗R b ⊆ A ∗R D ∩ C ∗R B,

that is, A ∗R D∩ C ∗R B 6= ∅ and A ∗R B∩ C ∗R D ⊆ A ∗R D∩ C ∗R B. Similarly, if A ∗R D∩ C ∗R B 6= ∅, then A ∗R B∩ C ∗R D 6= ∅
and A ∗R D ∩ C ∗R B ⊆ A ∗R B ∩ C ∗R D, and so A ∗R B ∩ C ∗R D = A ∗R D ∩ C ∗R B.
In the case that A ∗R B ∩ C ∗R D = ∅ or A ∗R D ∩ C ∗R B = ∅ the statement is obvious. �

In this paper we deal with the partial or non-partial C-hypergroupoids which are associated with special binary
relations defined on H , such as Reflexive, Symmetric, Cyclic and Transitive. Basic properties are investigated and various
characterizations are given. Themain tool to study the previous special classes of hypergroupoids is the fundamental relation
β∗ (i.e. the smallest equivalence relation such that the quotient of a hypergroupoid (partial or not) is a groupoid (partial or
not)).

2. Partial or non-partial C-hypergroupoids defined by reflexive binary relations

Let <reflH = {R ∈ <H | xRx, for all x ∈ H} ⊆ <H . Then, ∆H = ∩R∈<reflH R and for all C-hypergroupoids (H, ∗R) (partial or
not), x ∈ x ∗R x, for all x ∈ H .

Proposition 2.1. Let (H, ∗R) be a C-hypergroupoid (partial or not) and R ∈ <reflH . Then, the following hold:
(i) For all a, b ∈ H, aRb⇔ {a, b} ⊆ a ∗R b.
(ii) The class R = {Ri ∈ <H | HR = HRi} is a singleton.
(iii) The map ϕ : <reflH → H̃ : R→ ϕ(R) is an injection.

Proof. (i) Let aRb. Since aRa, bRb, it follows that {a, b} ⊆ a ∗R b. The converse is obvious.
(ii) Let HR = HRi , Ri ∈ <H . Since a ∈ a ∗R a = a ∗Ri a, for all a ∈ H , it follows that Ri ∈ <

refl
H . Therefore, for each Rj ∈ {R, Ri},

from (i) we obtain that

aRjb⇔ {a, b} ⊆ a ∗R b = a ∗Ri b, and so R ⊆ Ri, Ri ⊆ R.

Therefore, R = Ri, that is, R = {R}.
(iii) Let R, Ri ∈ <reflH , R 6= Ri. If ϕ(R) = ϕ(Ri), that is, HR = HRi , then, from (ii) it follows that R = Ri = {R}. Hence, Ri = R,

which is a contradiction. Consequently, HR 6= HRi , i.e. ϕ(R) 6= ϕ(Ri). �

Proposition 2.2. Let (H, ∗R) be a C-hypergroupoid (partial or not) and R ∈ <reflH . Then, for all a, b, x ∈ H, the following hold:
(i) x ∈ a ∗R b⇔ x ∈ a ∗R x ∩ x ∗R b.
(ii) b ∈ a ∗R a⇔ {a, b} ⊆ a ∗R b ∩ b ∗R a.

Proof. (i) Let x ∈ a ∗R b. Then, from Proposition 2.1 [1] we have that

x ∈ a ∗R b ∩ x ∗R x = a ∗R x ∩ x ∗R b.

Conversely, let x ∈ a ∗R x ∩ x ∗R b. Then, aRx, xRb, and so x ∈ a ∗R b.
(ii) Let b ∈ a ∗R a. Since aRb, bRa, Proposition 2.1(i) of this issue follows that

{a, b} ⊆ a ∗R b ∩ b ∗R a.

Conversely, let {a, b} ⊆ a ∗R b ∩ b ∗R a = a ∗R a ∩ b ∗R b. Then, b ∈ a ∗R a. �

3. Partial or non-partial C-hypergroupoids defined by transitive binary relations

Let <transH = {R ∈ <H | xRy, yRz ⇒ xRz, for all x, y, z ∈ H} ⊆ <H and (H, ∗R), R ∈ <transH , be a C-hypergroupoid (partial
or not). Then, x ∗R y 6= ∅, x, y ∈ H , implies that there existsw ∈ H such that xRw,wRy, and so xRy. Therefore, the following
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hold:
(H, ∗R) is a C-hypergroupoid iff R is total. (3.1)

Proposition 3.1. Let (H, ∗R) be a partial C-hypergroupoid and R ∈ <transH . Then, for all x, y, z ∈ H the following hold:
(i) xRy⇒ x ∗R x ∪ y ∗R y ⊆ x ∗R y.
(ii) (x ∗R y) ∗R z ⊆ x ∗R z ⊇ x ∗R(y ∗R z).
Proof. (i) If x ∗R x = ∅ = y ∗R y, then the statement is obvious. Letw ∈ x ∗R x 6= ∅. Then, xRw,wRx and since xRy, it follows
that wRy. Therefore, w ∈ x ∗R y. Hence, x ∗R x ⊆ x ∗R y. Similarly, y ∗R y 6= ∅ implies that y ∗R y ⊆ x ∗R y. Consequently,
x ∗R x ∪ y ∗R y ⊆ x ∗R y.
(ii) In the case that (x ∗R y) ∗R z = ∅ = x ∗R(y ∗R z), the statement is obvious. Let w ∈ (x ∗R y) ∗R z 6= ∅. Then, there exists
a ∈ x ∗R y such that w ∈ a ∗R z, which means that xRa, aRy, aRw,wRz. Therefore, xRw,wRz implies that w ∈ x ∗R z, and so
(x ∗R y) ∗R z ⊆ x ∗R z. Similarly, can be proved that x ∗R(y ∗R z) ⊆ x ∗R z. �

Proposition 3.2. Let (H, ∗R) be a partial C-hypergroupoid and R ∈ <transH . Then, for all x, y, z ∈ H the following hold:

(i) x ∗R y 6= ∅ 6= y ∗R z ⇒ y ∈ x ∗R z ∩

 ⋂
w∈x ∗R y
u∈y ∗R z

w ∗R u

 and (x ∗R y) ∗R(y ∗R z) ∪ x ∗R y ∪ y ∗R z ⊆ x ∗R z.

(ii) x ∗R(y ∗R z) 6= ∅ 6= (x ∗R y) ∗R z ⇒ x ∗R(y ∗R z) ∩ (x ∗R y) ∗R z = (x ∗R y) ∗R(y ∗R z) 6= ∅.

Proof. (i) From the hypothesis we obtain that xRy, yRz, which means that y ∈ x ∗R z. Moreover, let (x ∗R y) ∗R(y ∗R z) =⋃
w∈x ∗R y
u∈y ∗R z

w ∗R u. Then, for allw ∈ x ∗R y and for all u ∈ y ∗R z the following hold:

xRw,wRy and yRu, uRz.

SincewRy, yRu, it follows that y ∈ w ∗R u, and so y ∈
⋂

w∈x ∗R y
u∈y ∗R z

w ∗R u. Hence,

y ∈ x ∗R z ∩

 ⋂
w∈x ∗R y
u∈y ∗R z

w ∗R u

 .
According to the previous, (x ∗R y) ∗R(y ∗R z) 6= ∅ and let a ∈ (x ∗R y) ∗R(y ∗R z). Then, a ∈ w ∗R u,w ∈ x ∗R y, u ∈ y ∗R z,

whichmeans thatwRa, aRu. Therefore, xRw,wRa⇒ xRa and aRu, uRz ⇒ aRz, and so a ∈ x ∗R z, that is, (x ∗R y) ∗R(y ∗R z) ⊆
x ∗R z.
Moreover, wRy, yRz ⇒ wRz and xRy, yRu ⇒ xRu. Therefore, xRw,wRz ⇒ w ∈ x ∗R z and xRu, uRz ⇒ u ∈ x ∗R z.

Consequently,

(x ∗R y) ∗R(y ∗R z) ∪ x ∗R y ∪ y ∗R z ⊆ x ∗R z.

(ii) From Lemma 1.1 of this issue and for A = {x}, B = y ∗R z, C = x ∗R y,D = {z} it follows that

x ∗R(y ∗R z) ∩ (x ∗R y) ∗R z = x ∗R z ∩ (x ∗R y) ∗R(y ∗R z).

Moreover, from the hypothesis it is obtained that x ∗R y 6= ∅ 6= y ∗R z. Then, according to (i),

x ∗R(y ∗R z) ∩ (x ∗R y) ∗R z = (x ∗R y) ∗R(y ∗R z) 6= ∅. �

Corollary 3.3. Let (H, ∗R) be a partial C-hypergroupoid, R ∈ <transH and x, y, z ∈ H such that x ∈ x ∗R y, z ∈ y ∗R z. Then,

(x ∗R y) ∗R z = x ∗R(y ∗R z) 6= ∅.

Proof. From the hypothesis it is obtained that x ∗R z ⊆ (x ∗R y) ∗R z ∩ x ∗R(y ∗R z). According to Proposition 3.1(ii) of this
issue, we have the following

x ∗R z ⊆ (x ∗R y) ∗R z ⊆ x ∗R z and x ∗R z ⊆ x ∗R(y ∗R z) ⊆ x ∗R z.

Therefore, (x ∗R y) ∗R z = x ∗R z = x ∗R(y ∗R z). Moreover, since x ∗R y 6= ∅ 6= y ∗R z, Proposition 3.2(ii) of this issue
follows that y ∈ x ∗R z, and so

(x ∗R y) ∗R z = x ∗R(y ∗R z) 6= ∅. �

Proposition 3.4. Let (H, ∗R) be a partial C-hypergroupoid, R ∈ <transH and x ∈ H such that x ∗R x 6= ∅. Then, the following hold:
(i) For allw ∈ x ∗R x,

{x, w} ⊆ x ∗R x = x ∗Rw = w ∗R x = w ∗Rw = (x ∗R x) ∗R x = x ∗R(x ∗R x).
(ii) For allw, u ∈ x ∗R x, a, b ∈ H, w ∗R a = u ∗R a and b ∗Rw = b ∗R u.
(iii) For all a ∈ H, x ∗R x ∩ a ∗R a = ∅⇒ x ∗R a = ∅ or α ∗R x = ∅.
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Proof. (i) Letw ∈ x ∗R x. Then, xRw,wRx and according to Proposition 5.2(i) of this issue,

x ∗R x ∪ w ∗Rw ⊆ x ∗Rw ∩ w ∗R x.

On the other hand, Lemma 1.1 of this issue implies that

x ∗Rw ∩ w ∗R x = x ∗R x ∩ w ∗Rw.

Therefore, x ∗R x = w ∗Rw = x ∗Rw ∩ w ∗R x. Moreover, let a ∈ x ∗Rw, b ∈ w ∗R x, that is, xRa, aRw,wRb, bRx. Hence,
aRw,wRx⇒ aRx and xRw,wRb⇒ xRb, and so {a, b} ⊆ x ∗R x. Therefore, x ∗Rw ⊆ x ∗R x ⊇ w ∗R x, which means that

x ∗R x = x ∗Rw = w ∗R x = w ∗Rw.

Furthermore, since xRx andwRw, we obtain that x ∈ x ∗R x, w ∈ w ∗Rw, and so

{x, w} ⊆ x ∗R x = x ∗Rw = w ∗R x = w ∗Rw.

In addition, since x ∈ x ∗R x, Corollary 3.3 of this issue implies that (x ∗R x) ∗R x = x ∗R(x ∗R x). Moreover, x ∗R x ⊆
(x ∗R x) ∗R x. Let a ∈ (x ∗R x) ∗R x. Then, there exists w ∈ x ∗R x such that a ∈ w ∗R x and since w ∗R x = x ∗R x, it follows
that a ∈ x ∗R x. Therefore, (x ∗R x) ∗R x ⊆ x ∗R x, and so (x ∗R x) ∗R x = x ∗R x.
(ii) According to (i),w, u ∈ x ∗R x implies thatwRu, uRw. Let e ∈ w ∗R a. Then,wRe, eRa and since uRw, we obtain that uRe.
Therefore, e ∈ u ∗R a, that is, w ∗R a ⊆ u ∗R a. Conversely, let e ∈ u ∗R a. Then, uRe, eRa and since wRu, we obtain that wRe.
Therefore, e ∈ w ∗R a, that is, u ∗R a ⊆ w ∗R a, and sow ∗R a = u ∗R a. Similarly, b ∗Rw = b ∗R u.
(iii) Let x ∗R y 6= ∅ 6= y ∗R x. Then, Proposition 5.2(i) of this issue implies that a ∈ x ∗R x, and according to (i), x ∗R x = a ∗R a,
which is a contradiction. Therefore, x ∗R a = ∅ or a ∗R x = ∅. �

Proposition 3.5. Let H 6= ∅, R ∈ <reflH ∩ <
trans
H and (H, ∗R) be the associated C-hypergroupoid. The following hold:

(i) If H is a non-partial C-hypergroupoid, then it is total.
(ii) If H is a partial C-hypergroupoid, then the fundamental equivalence relationβ∗ is the transitive closure of the relation R̄ ∈ <H
defined for all x, y ∈ H as follows

xR̄y⇔ xRy or yRx.

Moreover, (H/β∗, ·) is a partial groupoid where

β∗ (x) · β∗(y) =
{
β∗(x), if β∗(x) = β∗(y), x, y ∈ H
∅, elsewhere

Proof. (i) Let (H, ∗R) be a C-hypergroupoid (non-partial), i.e. x ∗R y 6= ∅ for all x, y ∈ H . Then, since R is a transitive relation,
(3.1) of this issue implies that R is total, and so H is total.
(ii) Let (H, ∗R) be a partial C-hypergroupoid and R

∗
be the transitive closure of the relation R̄. Then, for all x, y ∈ H ,

xβ∗y implies that ∃z1, z2, . . . , zn+1 ∈ H, z1 = x, zn+1 = y and ∃uij ∈ H and ∃Ii, i ∈ {1, 2, . . . , n}

finite sets of indices such that

{zi, zi+1} ⊆ ∗R
∏
j∈Ii

uij, i ∈ {1, 2, . . . , n}.

Since the expression ∗R
∏
j∈Ii
uij is a finite ‘‘product’’ with respect to the hyperoperation ‘‘∗R’’, Proposition 3.1(ii) of this

issue implies for all i ∈ {1, 2, . . . , n} the following:

∗R

∏
j∈Ii

uij = ui1 ∗R ui2 ∗R · · · ∗R uiji ⊆ u1i ∗R uiji.

In addition, we set for all i ∈ {1, 2, . . . , n},

ui1 = a2i−1 and uiji = a2i.

Therefore,

{zi, zi+1} ⊆ a2i−1 ∗R a2i, i ∈ {1, 2, . . . , n}.

Hence,

zi R a2i, zi+1R a2i, i ∈ {1, 2, . . . , n},

and so

zi R̄ a2i, a2iR̄ zi+1, i ∈ {1, 2, . . . , n}.

Consequently, x = z1R
∗
zn+1 = y, which means that β∗ ⊆ R

∗
.
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Conversely, let x, y ∈ H, xR
∗
y. Then, there exist b1, b2, . . . , bn+1 ∈ H , b1 = x, bn+1 = y such that

bi R̄bi+1, i ∈ {1, 2, . . . , n} ⇔ biR bi+1 or bi+1R bi, i ∈ {1, 2, . . . , n}.

Propositions 2.1(i) and 3.1(i) of this issue follow that

{bi, bi+1} ⊆ bi ∗R bi+1 or {bi, bi+1} ⊆ bi+1 ∗R bi, i ∈ {1, 2, . . . , n}.

Therefore, x = b1β∗bn+1 = y, and so R
∗
⊆ β∗. Consequently, β∗ = R

∗
.

Let now, in the quotient set H/β∗, β∗(x) ·β∗(y) = {β∗(z) | z ∈ β∗(x) ∗R β∗(y)} be the usual multiplication of the classes.
Let x, y be two arbitrary elements of H such that β∗(x) 6= β∗(y). Then, obviously β∗(x) ∩ β∗(y) = ∅. So, if there exists

z ∈ H such that β∗(z) ∈ β∗(x) · β∗(y), then z ∈ β∗(x) ∗R β∗(y). Thus, there exist a ∈ β∗(x), b ∈ β∗(y) such that z ∈ a ∗R b.
So aRz, zRb, and so z ∈ β∗(x) ∩ β∗(y) = ∅, which is a contradiction. Hence, β∗(x) · β∗(y) = ∅.
On the other hand, β∗(x) · β∗(x) = {β∗(z) | z ∈ β∗(x) ∗R β∗(x)}. But for all z ∈ H such that β∗(z) ∈ β∗(x) · β∗(x)

holds z ∈ β∗(x) ∗R β∗(x). Then, z ∈ β∗(x). That is, β∗(z) = β∗(x), and so β∗(x) · β∗(x) ⊆ {β∗(x)}. Obviously,
β∗(x) ⊆ β∗(x) ∗R β∗(x). So β∗(x) · β∗(x) = {β∗(x)}. Hence, we can denote β∗(x) · β∗(x) = β∗(x). �

Example 3.6. Let H = {1, 2, 3, 4, 5, 6, 7} and R = {(x, x) | x ∈ H} ∪ {(1, 6), (2, 6), (4, 5), (5, 4), (7, 4), (7, 5)}.
Then, (H, ∗R) is the partial C-hypergroupoid

∗R 1 2 3 4 5 6 7

1 {1} ∅ ∅ ∅ ∅ {1, 6} ∅
2 ∅ {2} ∅ ∅ ∅ {2, 6} ∅
3 ∅ ∅ {3} ∅ ∅ ∅ ∅
4 ∅ ∅ ∅ {4, 5} {4, 5} ∅ ∅
5 ∅ ∅ ∅ {4, 5} {4, 5} ∅ ∅
6 ∅ ∅ ∅ ∅ ∅ {6} ∅
7 ∅ ∅ ∅ {4, 5, 7} {4, 5, 7} ∅ {7}

and H/β∗ = {β∗(1), β∗(3), β∗(4)}, where β∗(1) = {1, 2, 6}, β∗(3) = {3}, β∗(4) = {4, 5, 7} such that

· β∗(1) β∗(3) β∗(4)

β∗(1) β∗ (1) ∅ ∅
β∗(3) ∅ β∗ (3) ∅
β∗(4) ∅ ∅ β∗(4)

Remark 3.7. In the case that R ∈ <reflH ∩ <
trans
H , the equivalence class β∗(x) of an arbitrary element x ∈ H can also be

constructed in the following way: If A1(x) = x ∗R x and Ai+1(x) = ∪(a ∗R b)∩Ai 6=∅ a ∗R b (i = 1, 2, . . .), then obviously
A1 ⊆ A2 ⊆ A3 ⊆ · · · and there exists a positive integer k = k(x) such that Ak = Ak+1 = · · ·. Then, Ak = β∗(x).

4. Partial or non-partial C-hypergroupoids defined by cyclic binary relations

Let <cycH = {R ∈ <H | xRy, yRz ⇒ zRx, for all x, y, z ∈ H} ⊆ <H and (H, ∗R), R ∈ <
cyc
H , be a C-hypergroupoid (partial or

not). Then, x ∗R y 6= ∅, x, y ∈ H implies that there exists w ∈ H such that xRw,wRy, and so yRx. Therefore, the following
holds:

(H, ∗R) is a C-hypergroupoid iff R is total (4.1)

Proposition 4.1. Let (H, ∗R) be a partial C-hypergroupoid and R ∈ <
cyc
H . Then, for all x, y, z ∈ H the following hold:

(i) x ∈ y ∗R z ⇒ y ∈ z ∗R x and z ∈ x ∗R y
(ii) x ∗R y 6= ∅ 6= y ∗R z ⇒ y ∈ (

⋂
w∈x ∗R y
u∈y ∗R z

w ∗R u) ∩ z ∗R x

Proof. (i) Let x ∈ y ∗R z. Then, yRx, xRz implies that zRy. Moreover, zRy, yRx⇒ y ∈ z ∗R x and xRz, zRy⇒ z ∈ x ∗R y.
(ii) Since x ∗R y 6= ∅ 6= y ∗R z, then, for all w ∈ x ∗R y and for all u ∈ y ∗R z (i) implies that y ∈ w ∗R x ∩ z ∗R u. Moreover,
according to Lemma 1.1 of this issue, y ∈ w ∗R u ∩ z ∗R x and therefore, y ∈ (

⋂
w∈x ∗R y
u∈y ∗R z

w ∗R u) ∩ z ∗R x. �

Proposition 4.2. Let (H, ∗R) be a partial C-hypergroupoid and R ∈ <
cyc
H . Then, for all x, y, z ∈ H the following hold:

(i) x ∗R x 6= ∅⇒ for allw, u ∈ x ∗R x,

{x, w, u} ⊆ x ∗R x = w ∗R u

(ii) x ∗R x 6= ∅⇒ (x ∗R x) ∗R x = x ∗R(x ∗R x) = x ∗R x
(iii) xRy and (x ∗R x 6= ∅ or y ∗R y 6= ∅)⇒ y ∈ x ∗R x
(iv) (x ∗R y) ∗R z 6= ∅ 6= x ∗R(y ∗R z)⇒ (x ∗R y) ∗R z = x ∗R x = x ∗R(y ∗R z).
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Proof. (i) Letw ∈ x ∗R x 6= ∅. According to Proposition 4.1(i) of this issue, we obtain that

x ∈ x ∗Rw ∩ w ∗R x = x ∗R x ∩ w ∗Rw.

In the same way, since x ∈ w ∗Rw, we obtain that

w ∈ w ∗R x ∩ x ∗Rw = w ∗Rw ∩ x ∗R x.

And so {x, w} ⊆ x ∗R x and x ∗R x ⊆ x ∗Rw, x ∗R x ⊆ w ∗Rw (I).
Conversely, let v ∈ x ∗Rw. Then, x ∈ w ∗R v, but also x ∈ x ∗R x. So x ∈ w ∗R v ∩ x ∗R x = w ∗R x ∩ x ∗R v. Thus, x ∈ x ∗R v

implies that v ∈ x ∗R x, that is, x ∗Rw ⊆ x ∗R x. Hence, x ∗R x = x ∗Rw (II).
Since x ∈ w ∗Rw, we similarly obtain that w ∗Rw = w ∗R x and w ∗Rw ⊆ x ∗R x. Considering also (I) and (II), we finally

obtain that

for allw ∈ x ∗R x 6= ∅ holds {x, w} ⊆ x ∗Rw = x ∗R x = w ∗Rw = w ∗R x (III).

Let also u ∈ x ∗R x 6= ∅. Then according to (III), we have {x, u} ⊆ x ∗R x = w ∗Rw. But, since u ∈ w ∗Rw, (III) implies
again thatw ∗R u = w ∗Rw = u ∗R u = u ∗Rw. So, for allw, u ∈ x ∗R x holds {x, w, u} ⊆ x ∗R x = w ∗R u.
(ii) Since x ∗R x 6= ∅, we have x ∈ x ∗R x, and so x ∗R x ⊆ (x ∗R x) ∗Rx and x ∗R x ⊆ x ∗R(x ∗R x). Conversely, let α ∈ (x ∗R x) ∗R x
(resp. α ∈ x ∗R(x ∗R x)), then there exists w ∈ x ∗R x such that α ∈ w ∗R x (resp. α ∈ x ∗Rw). Sincew ∗R x = x ∗Rw = x ∗R x,
we have that α ∈ x ∗R x, and so (x ∗R x) ∗R x ⊆ x ∗R x (resp. x ∗R(x ∗R x) ⊆ x ∗R x). Hence, (x ∗R x) ∗R x = x ∗R x = x ∗R(x ∗R x).
(iii) Let now xRy and x ∗R x 6= ∅. From (i) we have x ∈ x ∗R x, so xRx. But then, x ∈ x ∗R y and according to Proposition 4.1(i)
of this issue, also y ∈ x ∗R x. Then, (III) implies that

{x, y} ⊆ x ∗R y = x ∗R x = y ∗R y = y ∗R x.

In the case xRy and y ∗R y 6= ∅, the proof is similar.
(iv) (x ∗R y) ∗R z 6= ∅ 6= x ∗R(y ∗R z) implies that there exist w, k, v ∈ H such that w ∈ x ∗R y, k ∈ w ∗R z, v ∈ y ∗R z. Then,
w ∈ x ∗R y ∩ z ∗R k = x ∗R k ∩ z ∗R y, and so y ∈ w ∗R z.
Furthermore, z ∈ k ∗Rw ∩ v ∗R y = k ∗R y ∩ v ∗Rw, and so y ∈ z ∗R k. Thus, y ∈ w ∗R z ∩ z ∗R k = w ∗R k ∩ z ∗R z, but

since y ∈ z ∗R z, we obtain through (III) that

z ∗R z = z ∗R y = y ∗R z = y ∗R y.

Moreover, since x ∗R y 6= ∅ 6= y ∗R z, we have that y ∈ z ∗R x, and so x ∈ y ∗R z = z ∗R z = y ∗R y. Hence,
z ∗R z = z ∗R x = x ∗R z = x ∗R x = y ∗R x = x ∗R y. Then, (x ∗R y) ∗R z = (x ∗R x) ∗R x = x ∗R x (according to (ii)) and
also x ∗R(y ∗R z) = x ∗R(x ∗R x) = x ∗R x. Consequently, (x ∗R y) ∗R z = x ∗R(y ∗R z). �

Proposition 4.3. Let H 6= ∅, R ∈ <cycH and HR be the associated partial C-hypergroupoid. Then, for all x, y ∈ H the following
hold:
(i) x ∗R x ∩ y ∗R y = ∅ or x ∗R x = y ∗R y
(ii) x ∗R x 6= ∅⇒ for all y ∈ H, x ∗R y = ∅ or x ∗R y = x ∗R x = y ∗R y = y ∗R x

Proof. (i) Let x ∗R x ∩ y ∗R y 6= ∅. Then, there exists w ∈ H such that w ∈ x ∗R x ∩ y ∗R y. So, according to Proposition 4.2(i)
of this issue, x ∗R x = w ∗Rw = y ∗R y.
(ii) Let x ∗R x 6= ∅ and y be an arbitrary element of H . If x ∗R y 6= ∅, there exists w ∈ H such that w ∈ x ∗R y. Then, since
R ∈ <cycH , yRx and according to Proposition 4.2(iii) of this issue, we obtain that x ∈ y ∗R y. So, Proposition 4.2(i) of this issue
implies that x ∗R y = x ∗R x = y ∗R y = y ∗R x. �

Proposition 4.4. Let H 6= ∅, R ∈ <H and HR be the associated partial C-hypergroupoid. Let R∗R be the hyperoperation relation
of HR. Then, the following hold:
(i) R ∈ <cycH ⇔ R∗R ∈ <

cyc
H

(ii) If R ∈ <cycH , then R = R∗R ⇔ y ∗R x 6= ∅, for all (x, y) ∈ R.

Proof. (i) Let R ∈ <cycH . For all (x, y), (y, z) ∈ R∗R holds that (x, y), (y, z) ∈ R, since R∗R ⊆ R. Then, (z, x) ∈ R. But
(y, z), (z, x) ∈ R implies that z ∈ y ∗R x. So yR∗Rz, zR∗Rx. So (z, x) ∈ R∗R . That is, R∗R ∈ <

cyc
H . Conversely, let R∗R ∈ <

cyc
H .

For all (x, y), (y, z) ∈ R holds that y ∈ x ∗R z. So (x, y), (y, z) ∈ R∗R . Since R∗R ∈ <
cyc
H , (z, x) ∈ R∗R ⊆ R. So (z, x) ∈ R. This

means that R ∈ <cycH .
(ii) R = R∗R ⇔ for all (x, y) ∈ R there exists z1 ∈ H such that (y, z1) ∈ R, or there exists z2 ∈ H such that
(z2, x) ∈ R ⇔ for all (x, y) ∈ R there exists z1 ∈ H such that y ∈ x ∗R z1, or there exists z2 ∈ H such that x ∈ z2 ∗R y.
Since R ∈ <cycH , according to Proposition 4.1(i) of this issue, we have R = R∗R ⇔ for all (x, y) ∈ R there exists z1 ∈ H such
that z1 ∈ y ∗R x, or there exists z2 ∈ H such that z2 ∈ y ∗R x⇔ y ∗R x 6= ∅ for all (x, y) ∈ R. �

Proposition 4.5. Let H 6= ∅, R ∈ <reflH ∩ <
cyc
H and HR be the associated partial C-hypergroupoid. Then, for all x, y, z ∈ H the

following hold:

(x ∗R y) ∗R z 6= ∅ or x ∗R(y ∗R z) 6= ∅⇒ (x ∗R y) ∗R z = x ∗R x = x ∗R(y ∗R z).
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Proof. Let (x ∗R y) ∗R z 6= ∅. Then, there exist a, b ∈ H such that a ∈ x ∗R y and b ∈ a ∗R z. So xRa, aRy. Since R ∈ <
cyc
H , we

have yRx and since R ∈ <reflH , we have xRx. So xRy. This means y ∈ x ∗R x, and according to Proposition 4.2(i) of this issue, we
have x ∗R y = x ∗R x. But then, a ∈ x ∗R x, so x ∗R x = a ∗R a. Similarly, b ∈ a ∗R z implies that b ∈ a ∗R z = a ∗R a = x ∗R x. So
b ∈ x ∗R x. That is, (x ∗R y) ∗R z ⊆ x ∗R x (I). Notice that, since b ∈ x ∗R x = a ∗R z, we have xRb and bRz. So zRx. But also xRx.
So xRz.
Now, let c ∈ x ∗R x. Then, cRx and xRz. So zRc. Also zRz. So cRz. But then, xRc and cRz. So c ∈ (x ∗R x) ∗R z. That is,

x ∗R x ⊆ (x ∗R x) ∗R z = (x ∗R y) ∗R z (II). (I) and (II) imply that x ∗R x = (x ∗R y) ∗R z.
Similarly it can be proved that x ∗R x = x ∗R(y ∗R z). �

Proposition 4.6. Let H 6= ∅, R ∈ <reflH ∩ <
cyc
H and (H, ∗R) be the associated C-hypergroupoid. Then, the following hold:

(i) If H is a non-partial C-hypergroupoid, then it is total.
(ii) If H is a partial C-hypergroupoid, then the fundamental equivalence relation β∗ is exactly the relation R. Moreover,
(a) β∗(x) = x ∗R x, for all x ∈ H,
(b) (H/β∗, ·) is a partial groupoid, where

β∗(x) · β∗(y) =
{
β∗(x), if β∗(x) = β∗(y), x, y ∈ H
∅, elsewhere

(c) H is a complete partial hypergroupoid.

Proof. (i) Let (H, ∗R) be a non-partial C-hypergroupoid, i.e. x ∗R y 6= ∅ for all x, y ∈ H . Then, since R is a cyclic relation, (4.1)
of this issue implies that R is total, and so H is total.
(ii) Let (H, ∗R) be a partial C-hypergroupoid. Since Proposition 4.5 of this issue implies that for all i ∈ {1, 2, . . . , n}

∗R

∏
j∈Ii

uij = ui1 ∗R ui2 ∗R · · · ∗R uiji = ui1 ∗R ui1,

then, according to Proposition 4.3(i) of this issue, for all x, y ∈ H, xβ∗y leads finally to {x, y} ⊆ u11 ∗R u11 = x ∗R x.
Consequently, xRy, that is, β∗ ⊆ R. Conversely, for all x, y ∈ H, xRy implies, according to Proposition 4.2(iii) of this issue,
that {x, y} ⊆ x ∗R x. So xβ∗y. That is, R ⊆ β∗. So β∗ = R.
For the equivalence class of an arbitrary element x ∈ H holds R(x) = {y ∈ H | xRy} = x ∗R x, according to

Proposition 4.2(iii) of this issue. Let now, in the quotient set H/R, R(x) · R(y) = {R(z) | z ∈ R(x) ∗R R(y)} be the usual
multiplication of the classes. Let x, y be two arbitrary elements of H such that x6Ry, that is, R(x) 6= R(y), according to
Proposition 4.3(i) of this issue. Then, R(x) ∗R R(y) = (x ∗R x) ∗R(y ∗R y) = ∅. So R(x) · R(y) = ∅. In the case that xRy,
according to Proposition 4.2(iii) and 4.2(i) of this issue, we have R(x) = R(y) and according to Proposition 4.2(ii) of this
issue, R(x) ∗R R(x) = (x ∗R x) ∗R(x ∗R x) = x ∗R x = R(x). So R(x) · R(x) = {R(x)}. Hence, we can denote R(x) · R(x) = R(x).
Furthermore,β∗(x ∗R y) = R(x ∗R y) = ∪z∈x ∗R y R(z) =

{
R(x ∗R x) = x ∗R y if xRy
∅ = x ∗R y if x6Ry . Consequently, (H, ∗R) is a complete partial

hypergroupoid. �

Proposition 4.7. Let (H, ∗) be a partial hypergroupoid, in which the following hold
(i) x ∈ x ∗ x, for all x ∈ H
(ii) x ∗ x ∩ y ∗ y = ∅ or x ∗ x = y ∗ y, for all x, y ∈ H

and (iii) x ∗ y = ∅ or x ∗ y = x ∗ x = y ∗ y = y ∗ x, for all x, y ∈ H.

Then, there exists a binary relation R ∈ <reflH ∩ <
cyc
H such that (H, ∗) identify with the partial C-hypergroupoid (H, ∗R). R is

exactly the hyperoperation relation R∗ of (H, ∗).

Proof. Let R∗ be the hyperoperation relation of (H, ∗). According to condition (i), R∗ is reflexive. Furthermore, for all
x, y ∈ H, xR∗y ⇔ (there existsw1 ∈ H such that x ∈ w1 ∗ y) or (there exists w2 ∈ H such that y ∈ x ∗ w2). According to
condition (iii), it holds xR∗y⇔ x ∈ y ∗ y or y ∈ x ∗ x. This means x ∗ x ∩ y ∗ y 6= ∅. So, according to condition (ii), we have
that xR∗y⇔ x ∗ x = y ∗ y. Then, R∗ is obviously cyclic.
Let (H, ∗R∗) be the partial C-hypergroupoid defined by R∗. It is known that (H, ∗) ≤ (H, ∗R∗). (See Proposition 3.2 [1].

See also [19]) Conversely, let x ∗R∗ y 6= ∅, x, y ∈ H and z ∈ x ∗R∗ y. Then, xR∗z, zR∗y. This means x ∗ x = z ∗ z = y ∗ y. Then,
z ∈ z ∗ z = x ∗ x = x ∗ y. So (H, ∗R∗) ≤ (H, ∗). Finally, (H, ∗) identify with (H, ∗R∗), where R∗ ∈ <

refl
H ∩ <

cyc
H . So there is a

binary relation R = R∗ ∈ <reflH ∩ <
cyc
H such that (H, ∗) ≡ (H, ∗R). �

5. Partial or non-partial C-hypergroupoids defined by symmetric binary relations

Let<symmH = {R ∈ <H | xRy⇒ yRx ∀x, y ∈ H}. Since for all R ∈ <
symm
H , R = R−1, Corollary 2.6 [1] implies that

the associated (partial or not) C-hypergroupoid HR is strong commutative (5.1)

Moreover, since HR is strong commutative, for all a, b ∈ H, a ∗R b = a ∗R b ∩ b ∗R a and according to Lemma 1.3 [1],
a ∗R b = a ∗R a ∩ b ∗R b.
Therefore, we set the following proposition:
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Proposition 5.1. Let H 6= ∅ and R ∈ <H . Then, the following hold:

(i) If the associated C-hypergroupoid HR is non-partial, then,

HR is strong commutative ⇔ R ∈ <
symm
H .

(ii) If the associated C-hypergroupoid HR is partial, then,

HR is strong commutative ⇔ R∗R ∈ <
symm
H .

(iii) If (H, ∗) is a strong commutative hypergroupoid (partial or not), then R∗ ∈ <
symm
H .

Proof. (i) Let HR be strong commutative and a, b ∈ H, aRb. Moreover, for all x ∈ a ∗R b = b ∗R a 6= ∅we have bRx, xRa, and
so b ∈ a ∗R x = x ∗R a. Therefore, bRa. This means that R ∈ <

symm
H . The converse is implied from (5.1) of this issue.

(ii) Let HR be strong commutative and a R∗Rb. Then, there exist x, y ∈ H, a ∈ x ∗R b or b ∈ a ∗R y. Therefore, also a ∈ b ∗R x or
b ∈ y ∗R a. So bR∗Ra. This means that R∗R ∈ <

symm
H . The converse is implied from (4.1) of this issue.

(iii) Let a R∗b. Then, there exist x, y ∈ H , a ∈ x ∗ b or b ∈ a ∗ y. Since (H, ∗) is strong commutative, also a ∈ b ∗ x or b ∈ y ∗ a.
So bR∗a, that is, R∗ ∈ <

symm
H . �

Proposition 5.2. Let H 6= ∅, R ∈ <symmH and HR be the associated partial C-hypergroupoid. Then, the following hold:

(i) R∗R = R
(ii) The map ϕ:<symmH → H̃ : R→ ϕ(R) = HR is an injection.

Proof. (i) Let aRb. Then, bRa, and so b ∈ a ∗R a. Therefore, aR∗Rb. This means R ⊆ R∗R . But then, R = R∗R (see Proposition
1.2 [1]).
(ii) It is obvious from (i). �

6. Concluding comment

In this paper we deal with the partial or non-partial C-hypergroupoids which are associated with special binary relations
defined on H . Especially we deal with Reflexive, Symmetric, Cyclic and Transitive binary relations. Basic properties are
investigated and various characterizations are given. Using the fundamental relation β∗ it is proved that in the case
R ∈ <reflH ∩ <

trans
H (or respectively R ∈ <reflH ∩ <

cyc
H ) the smallest groupoid that hides in a partial C-hypergroupoid is the

one of the Proposition 3.5 of this issue (respectively 4.6 of this issue). We investigated Reflexive, Symmetric, Cyclic and
Transitive binary relations, since they are the most common binary relations which do not necessarily lead to a total C-
hypergroupoid. Partial or non-partial C-hypergroupoids which are associated with other special binary relations defined on
H will be the aim of a further investigation.
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