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On the Complexity of Regulated 
Context-Free Rewriting 

A. B. CREMERS,* O. MAYER AND K. WEISS 

Department of Computer Science, University of Karlsruhe 

Some complexity measures which are well-known for context-free languages 
are generalized in order to classify matrix languages and programmed languages. 
It is shown that the complexity of some context-free languages decreases if 
they are generated by matrix grammars or programmed grammars. An arith- 
metic characterization is given for infinite languages generated by two matrices. 
The number of matrices (as a complexity measure) is shown to be independent 
from any other complexity measure regarded in this paper. 

1. INTRODUCTION 

Matrix grammars and programmed grammars are well-known general- 
izations of context-free grammars; they are defined as context-free grammars 
with certain restrictions on the use of productions. Such grammars are called 
regulated context-free rewriting devices. 

In Gruska (1969), several complexity criteria for context-free grammars 
have been investigated. Some of these criteria are generalized for matrix 
grammars and programmed grammars (Section 2). It is proved that certain 
context-free languages can be generated by such regulated rewriting devices 
with less variables or less productions or with a lower index as compared 
to their generation by ordinary context-free grammars (Section 3). 

In the rest of the paper, especially matrix grammars are considered. 
According to matrix grammars, rewriting is only by the application of 
entire matrices (strings of productions). The number of matrices is introduced 
as a complexity measure for matrix languages (Section 4). For infinite 
languages generated by two matrices, an arithmetic characterization is 
established. 

Finally, we show that there are languages which cannot be generated by 
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matrix grammars which are minimal both according to the number of 
matrices and according to any other complexity measure considered in this 
paper (Section 5). 

2 .  C O M P L E X I T Y  MEASURES 

In this section the definitions of matrix grammars (Abraham, 1965) and 
programmed grammars (Rosenkrantz, 1969) are given and then three 
criteria of grammatical complexity are introduced. These criteria are general- 
izations of well-known complexity measures for context-free grammars. 

For the basic notions and results of the theory of context-free languages, 
the reader is referred to Ginsburg (1966). 

DEFINITION. Let G ~ (N, T, R, S)  be a context-free grammar where N 
is the finite nonterminal alphabet, T is the finite terminal alphabet, R is a 
finite set of context-free productions, and S in N the start symbol. 

(a) Let M be a finite set of finite strings 

r i l r i 2  "'" 1"i~ ~ , I1 i ~ 1, 

of labels of productions r¢~ in R. These sequences are called matrices and 
the pair 

c.~ -= (a,  m)  

is called a context-free matrix grammar (rag). Derivations in mg's are 
defined as follows: 

The application of a mat r ix f  = r 1 "" r~ to a word w in ( N  u T)  +, denoted 
by w *~ •, is defined as a context-free derivation 

] 

go ~.~_ W0 =~ g01 ::: >- .o. =>- ~On ~_ ~ 
r 1 r 2 r .  

where wi-t ~ wi is realized by applying the production with label r i . (For 
an alphabet T, T + ~ T*--{e},  where e denotes the empty word.) The 
language generated by G~ exactly contains those words of L(G) which can be 
obtained by a successive application of entire matrices and is denoted by 
L(G~) • Md '~ denotes the family of languages generated by arbitrary mg's. 

(b) A programmed grammar (with empty failure fields in the sense of 
Rosenkrantz), shortly pg, is a pair 

a~ = (a,  ¢), 



12 CREMERS, MAYER AND WEISS 

where G ~- (N, T, R, S) is a context-free grammar and ~ is a mapping of 
the set F of production labels of G into the set of subsets of F. 

The language generated by G~,  denoted by L(G~), exactly contains those 
words of L(G) which possess a context-free derivation where for each pair 
of succeeding steps 

W i _  1 ::~ W i ~ Wi+ 1 
ri riW1 

the label ri+ 1 is in the s e t  ~(ri). 
The family of all languages generated by pg's (with empty failure fields) 

is denoted by ~ .  
By Salomaa (1970), ~ "  = ~ ' .  Clearly, each family properly includes the 

family of context-free languages. 
The generation of a language by such grammars is called a generation 

by regulated context-free rewriting. 

DEFINITION. For an mg Gm and a pg G~, we define 

(a) Varm(G,~ ) and Var~(G~) as the number of nonterminals of G., and 
G~, respectively; 

(b) Prodm(G~) and Prod~(G~) as the number of productions of G~ and 
G~, respectively. 

For a context-free grammar G, the measures Var(G) and Prod(G) are 
analogously defined. 

DEFINITION. Let F be a terminal derivation according to an nag G m = 
(G, M) = ((N, T, R, S), M): 

*~ w l *~ w e *~ " .  *~ w~ = w, w in T*,  F: S - -  wo 1q fi~ •i n 

where f~; in M for 1 ~< j ~< n. 
We define 

Ind,~(F) = max{l(d(w,) l O ~ i ~ n}, 

where d(w) is the word obtained from w by deleting all terminals, and for 
a word w, l(w) denotes the length of w; 

Ind.~(w) ~ min{Ind~.(F) [F is a derivation of w according to Gin}; 

Ind,dG~ ) ---- max{Ind.(w) I w in L(Gm)}. 
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I f  K~ is a complexity measure related to a class 7' of grammars and L a 
language which can be generated by a grammar in ~,, we define 

K~(L) ---- min{K~(G) f G in ~, L = L(G)}. 

The classes of context-free grammars, matrix grammars, and programmed 
grammars are denoted by c, m, and p, respectively. 

3. CONTEXT-FREE LANGUAGES GENERATED BY REGULATED REWRITING 

In  this section we show that for each of the three previously defined 
measures of complexity there exists a context-free language L such that the 
description of L by a context-free grammar is more complex than by a 
programmed grammar or a matrix grammar. 

THEOREM I. There is a context-free language L such that 

Var.m(L ) -(  Vare(L ). 

Proof. Consider the language 

L = {arabic% b~a~c ", b~c~a ~, a~c'~b ~, cnamb% cnbna~ I m, n ~ 1}. 

L is generated by an mg with 

M - {(S --~ A A A ,  A -~ bB, A --~ eC, A --~ aA), (B --~ bB, C --~ cC), 

thence, Var,~(L) ~ 4. 
I t  is easily verified that Var,(G) > 4 for each context-free grammar G 

generating L. 

LEM~A 1. Prodm(L) ~ 2 Var,,,(L) + # ( T )  + 1,for each matrix languageL. 

Proof. Let G~ = ((N, T, R, S), M)  be an mg generating L which is 
minimal according to Var m . I f  each production A ~ w 1 ' "  w~ occurring 
in a matrix f of M is replaced by the following sequence of productions 

A --,- X ,  X --,- wlX,  X --+ w2X,..., X ~ w~X, X --+ E, 
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we obtain an equivalent mg Gm generating L so that 

Prod,~(G,~) ~ 2 Var,,(L) + #(T)  + 1. 

A similar argument yields 

LEMMA 2. Prods(L) ~< 2 Vary(L) + #(T)  + 1 for each programmed 
language L over T. 

THEOREM 2. Let T = {a}. There is a finite language L over T such that 

Prodm(L) < Prods(L), 

Prods(L) < Prods(L). 

Proof. Let L = {a~]0 ~< i ~< 4}; by Gruska (1969), Prods(L) : 5; 
by Lemmas 1 and 2, Prods(L) ~< 4 and Prods(L) ~< 4. 

Remark. For arbitrary context-free languages L, the differences 
Prodc(L) -- Prod,~(L) and Prods(L) -- Prods(L) are not bounded. 

Next, we study the classification of languages according to the measure 
Vary. 

THEOREM 3. There is a linear language L such that 

Vary(L) < Varc(L). 

Proof. By Gruska (1969), there exists for each n ~> 1 a regular language 
L~ with Varc(L~)= n; on the other hand, Varg(L)= I for each linear 
language L. 

Remark. For each matrix grammar, an equivalent programmed grammar 
can be effectively constructed without increasing the number of variables. 
Thence, for each matrix language L, Vary(L) ~ Vary(L). Clearly, the linear 
language L used in the proof of Theorem 1 cannot be generated by a matrix 
grammar with only one variable. Consequently, there are languages L with 
Vary(L) < Vary(L). 

We now establish similar resuks for the complexity measure Indm. 

THEOREM 4. Indm(L) ~< Indc(L) for each context-free language L. There 
are languages with 

Ind.~(L) < Ind.(L). 
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Proof. The  first assertion is obvious; to prove the second, let us consider 
the Dyck-language L generated by the grammar with the productions 
S ~ aSh, S -+ SS ,  S -+ e. 

By Salomaa (1969), I n d c ( L ) =  co. But L is generated by the matrix 
grammar G~n with the matrices 

(S -~  AB) ,  (A -~  an,  B -+ bB), (A -+ a, B -~  bS), (A -+ a, B -~  Sb), 

(A - +  ~ s ,  B ~ b), (A - +  Sa, B - +  b), (A ~ ~, B - +  b), (A -- ,  ~, B ~ ~), 

( S  - ~  ~). 

Clearly, L(G~) = L and Indm(G~) = 2. 

Remark. The proofs of Theorems 3 and 4 show that the differences 
Vare(L ) --Var~(L) and I n d , ( L ) -  Indm(L ) are not bounded for arbitrary 
context-free languages L. Similar results can be obtained for the differences 
Ind,(L) --  Ind,(L)  for a suitable defined measure I n d , .  

4. THE COMPLEXITY MEASURE MAT 

Since in derivations according to matrix grammars entire matrices have 
to be applied, it makes sense to consider as a complexity measure not only 
the number  of productions but also the number  of matrices. 

DEFINITION. For  an mg G m =  (G, 114), we define Mat(G,~) as the 
number  of matrices in M. 

We now introduce a system of linear diophantine equations controlling 
the nonterminal balance in derivations according to matrix grammars. 

DEFINITION. Let G,,, = (G, M )  be an mg. Let G - - ( N ,  71, R, A1) 

with N = {A 1 ,..., An} and M = {fz ,...,f,~}, where f /  = ril --" ri,~ and 
rij : Ai j  --~ wi~ for 1 ~< i ~< m, 1 ~< j ~< n i . 

For each matrix f i  and each variable A i ,  we define 

kji = l&(wi~wi2 "'" w%) --  lAj(AilAi~ "" A%) ,  

where the number of occurrences of a symbol A in a word w is denoted by 
lA(w). 

Let K denote the matrix (kji) associated to G~ .  
Obviously, kj,- is the number of occurrences of the variable 3 j  " introduced" 

by the application of the matrix f i  ; ks~ < 0 means that the number  of 
occurrences of A 3 has decreased. 

643[z5/l-z 
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THEOREM 5. Let w in L(G~,) have the derivation % let xi be the number of 
applications of f i  in T, then x = (x I ,..., x~) ~ is a solution of the system of 
linear equations 

(+) Kx = - - e l ,  where e a - -  (1, 0, 0,..., 0) T. 

In  connection with matrix grammars, we are only interested in non- 
negative integer solutions of ( + ) .  Obviously, to each nonnegative integer 
solution x = (x 1 .... , xm) r of ( + )  corresponds a finite subset L(x) of L(G~),  
where 

L(x) = {w I w  in L(G~), a derivation of w contains X i applications of 

f i , 1  ~ i ~ m } .  

Note that L(x) may be empty for a nonnegative integer solution x of ( + ) .  

Let  k~ denote the lth row of K,  i.e., k~ = (k a , k~ 2 .... , k~ ) .  

LEMMA 3. Let G,~ = ( G, M)  be an mg with L( G~) ~ ~ . Let kl , k 2 .... , kn 
be the set of the rows of the matrix K associated to G,, .  Then k 1 is linearly 
independent from any subset of rows not containing k 1 . 

Proof. Assume that there are rows k~ ,..., k~ such that k 1 = ~ = ~  k~p~, 
where pj  are rational numbers  and (p~ ,..., p~) @ (0, 0,..., 0). 

Since L(G~) is not empty, there is a solution x = (x 1 ,..., x~) r of ( + ) .  
Thence,  ~[~n=~ k~ixi =- - -1 ;  on the other hand, 

~ klixi = ~ ~ kjiPjxi = ~ P~ ~, kjixl = O. 
i=1 i = l  j=2 j=2 i = l  

This  is a contradiction. 

THEOREM 6. Let G~ = (G, M)  be an mg and r the rank of the associated 
matrix K; then 

(1) Mat(G.~) < r implies L(G~,) -- ;~, 

(2) Mat(G~) = r implies L(G~,) is finite. 

Proof. (1) I f  Mat(G~)  < r, then the system ( + )  is overdetermined 
and therefore no solution exists. 

(2) I f  Mat(G~) = r, then there is at most one integer solution. 

Now, we discuss the conditions under  which L(Gm) is infinite provided 

that Mat(G,~) = 2. 



REGULATED CONTEXT-FREE REWRITING 17 

THEOREM 7. Let G~ be an mg with Mat(G,~) ~ 2; let K = (kji) be the 
matrix associated to Gm . Then L(Gm) is infinite iff L(G,,) contains two words" of 
different length and kl~ . k12 <~ O. 

Proof. (1) IfL(Gm) is infinite, then by Theorem 6 the rank of K equals 
1 and the first row of K is independent from the second. The existence of 
infinitely many solutions of (4-) kllx 1 @ kl~x 2 = --  1 implies that hi1" kl~ ~< 0. 

(2) Let G~ -= (({A~, A2,  .... Am), T, R, A~, {fl ,fz}). 

L(G~) ~ ;g implies that for at least one matrix, say f 2 ,  k~2 <~ 0 for all j ,  
1 ~<j ~< n. I t  is impossible that also kjl ~< 0 for all j, 1 ~<j ~< n; otherwise 
two words of different length can only be derived in G,~ if k n = --1 and 
kl2 ~ --1 which is a contradiction to k u - k12 ~< 0. 

Now let w' and w" be two words of different length inL(G~) with derivations 
z '  and ~-", which can be chosen in such a way that no application off1 is 
proceeded by an application of fz .  

Different word lengths of w' and w" can only be obtained by a different 
number of applications of f l  in the corresponding derivations T' and r". 
Let n' and n" be these numbers and n' < n". Clearly, for each p ~> 1, there 
is a terminal derivation in G~ starting with n' 4-p(n" --  n') applications of 
f l  and followed by a suitable number of applications off2.  These derivations 
generate words of increasing length. 

Remark. I t  has been shown by Maurer (1973) that there are noncontext- 
free languages generated by mg's with two matrices. An example is the 
language generated by the mg with the matrices 

(S  --~ S S S ,  S ~ Sa, S --~ Sb, S --* Sc) and (S --~ d), 

where a, b, c and d are terminals and S is the start symbol. 

5. THE INDEPENDENCE OF THE COMPLEXITY ~V~EASURE MAT 

In this section we show that the complexity measure Mat is independent 
of Prod, , ,  Var~,  and Ind~ in the sense of the following 

DEFINITION. Two complexity measures •1 and K 2 for a family of languages 
/~ are said to be independent iff there is a language L i n / "  which cannot be 
generated by a grammar which is minimal both according to ~:1 and K 2 . 

Notation. K-I(L) denotes the set of grammars which generate L and are 
minimal according to •. 
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THEOREM 8. The complexity measures 

(a) Mat andProd~ ,  

(b) Mat and Vary,  

(c) Mat and Ind~ 

are independent. 

Proof. The finite language L = {e, a, aa, aaa} is basic to all the parts of 
the proof. 

(a) Obviously, Prods(L) > 1. Prods(L) = 2 because L can be generated 
by the following grammar G m =  (G, M) with the matrices 

(S  --+ E), (S  --,- aS, S ~ E), (S  --,- aS, S -+ aS, S --,. c), 

(S  ~ aS, S -~ aS, S ~ aS, S -~ ~). 

Now we show that M a t ( G ~ ) =  4 for each Gm generating L with 
Prod~(G~) = 2. 

Let G~ have the productions 

(1) s - ,  w, 

(2) x - ~  ~. 

It is easily seen that these productions must be of the form 

(1) x - *  ~, 

(2) S --~ SkaS ~ with k -k j >~ 1. 

The finiteness of L implies that each w v6 S which is obtained from S by 
the application of entire matrices does not contain S. Therefore, Mat(G~) ~> 
card(L) = 4. 

On the other hand, L can be generated by a grammar with the following 
three matrices (S  -+ A A A ) ,  (A ~ ~), (A --~ a). Thence Mat(L) ~< 3; thus 
Prod~l(L) n Mat-l(L) is empty. 

(b) Trivially, Varm(L) = 1. For each grammar G~ in VarLI(L), we can 
conclude Mat(G,,~) = 4 by a similar argument as in the proof of part (a). 
Therefore, Var~l(L) c~ Mat-1(L) is empty. 

(c) Let G~ = (G, M) be in Mat-l(L). Each sentential form w @ S, 
which is obtained by the application of entire matrices, does not contain S; 
otherwise we have a contradiction either to the finiteness of L or to the 
assumption that G~ is in Matq(L). Obviously, M a t ( G ~ ) >  1. Assume 
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M =: {f l ,  f2}, and let f l  contain a production S --+ w. Since S is not a subword 
of u, where u is obtained from S by the application of f1  , u contains another 
nonterminal symbol A. Then all words of L are derived by applications off2 
to u. But this is impossible because of the different word lengths. Thence, 
together with part (a), Mat(L) = 3. 

It  remains to show that for each grammar G,,~ with Mat(G,~) = 3 holds 
Indm(G,n) > Ind , (L)  = 1. 

But this follows easily from the discussion of the two cases 

(i) (S --* e) in M, 

(ii) (A -+ ,) in M ,  _/I :/= S. 

In  both cases, the assumption Ind~(G,~) == 1 implies that there exists one 
matrix in 3//, by the application of which at least two words of different 
lengths can be obtained from S or _d. 

Thus, Ind , (G)  > 1; therefore, Ind~nl(L) ~ Mat-l(L) is empty. 

RECEIVED: March 8, 1973 
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