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1. Introduction

In this paper we are dealing with the class of degenerate second order elliptic differential operators

Adu(x) = 1

2

d∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u(x), x ∈ Sd, (1.1)

and mAd , where Sd = {x ∈ [0,1]d | ∑d
i=1 xi � 1} is the canonical simplex of R

d and m is a strictly positive function in
the space C(Sd) of all continuous functions on Sd . The operator (1.1) arises in the theory of Fleming–Viot processes as
a generator of a Markov C0-semigroup defined on C(Sd). Fleming–Viot processes are measure-valued processes that can be
viewed as diffusion approximations of empirical processes associated with some classes of discrete time Markov chains in
population genetics. We refer to [15,16,19] for more details on the topic. In particular, the operator (1.1) is the generator
corresponding to the diffusion model in population genetics in which neither mutation, migration, nor selection affects. This
is the simplest case of a Wright–Fisher model. Actually, the generators corresponding to more general diffusion models in
population genetics are of the following type

Au(x) = 1

2

d∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u(x) +
d∑

i=1

bi(x)∂xi u(x), x ∈ Sd, (1.2)

where the coefficients bi belong to the space C(Sd) and depend on factors as mutation, selection and migration. So, the
operators (1.2) are of degenerate elliptic type with the elliptic part as in (1.1).
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The operators (1.2) arising from Fleming–Viot processes have been largely studied using an analytic approach by sev-
eral authors in different settings, see [1–3,6,8–10,14,23,26–29] and the references quoted therein. The interest is that the
equations describing the diffusion processes are of degenerate type and hence, the classical techniques for the study of
(parabolic) elliptic operators on smooth domains cannot be applied. In particular, the difficulty in studying these operators
is twofold: the operators (1.2) degenerate on the boundary ∂ Sd of Sd in a very natural way and the domain Sd is not smooth
as its boundary presents sides and corners.

As it is shown in the Feller theory for the one-dimensional case, the behavior of the diffusion process on the boundary
constitutes one of its main characteristics. So, the appropriate setting for studying the equations describing the diffusion
process is the space of continuous functions on the simplex Sd .

In the one-dimensional case, the study of such type of degenerate (parabolic) elliptic problems on C([0,1]) started
in the fifties with the papers by Feller [17,18]. The subsequent work of Clément and Timmermans [11] clarified which
conditions on the coefficients of the operator mA, with A defined according to (1.2) and 0 < m ∈ C([0,1]), guarantee the
generation of a C0-semigroup in C([0,1]). The problem of the regularity of the generated semigroup in C([0,1]) has been
considered by several authors, [4,6,5,23]. In particular, Metafune [23] established the analyticity of the semigroup under
suitable conditions on the coefficients of the operator mA. Thus, he obtained the analyticity of the semigroup generated by
x(1 − x)D2 on C([0,1]), which was a problem left open for a long time. We refer to [7] for a survey on this topic.

In the d-dimensional case, the problem of generation of a C0-semigroup in C(Sd) has been studied by different authors.
In more generality, the problem was solved by Ethier [14]. Actually, Ethier [14] (see also [15, p. 375]) proved the existence
of a C0-semigroup of positive contractions on C(Sd) under mild conditions on the drift terms bi . In the following, we state
such a result in the case of our interest.

Theorem 1.1. (See Ethier [14].) The closure (Ad, D(Ad)) of (Ad, C2(Sd)) generates a positive and contractive C0-semigroup (T (t))t�0
on C(Sd). Moreover, the space Cn(Sd) is a core for the infinitesimal generator of (T (t))t�0 for every n � 2.

On the other hand, Shimakura [27] (see [28, Ch. VIII, p. 221]) gave concrete representation formulas for the semigroups
of diffusion processes associated to a class of Wright–Fisher models including the simplest case. In particular, Shimakura
[28, Ch. VIII, p. 221] showed that the eigenvalues of Ad are given by

λn = −n(n − 1)

2
, n ∈ N, (1.3)

and that the corresponding process is replicated on every face of Sd in the following way. Denote by Ad,F the restriction
of Ad to a face F of Sd and by F (V ) the face of Sd having V as a set of vertices. If V contains p + 1 vertices of Sd with
p < d, then F (V ) can be identified with the simplex S p and the differential operator Ad,F with the differential operator A p

on S p , i.e.,

Ad,F (V )u = A p(u|F (V )), u ∈ D(Ad). (1.4)

Moreover, in [28, Ch. VIII, p. 221] it was proved that the restriction of the semigroup (T (t))t�0 to every face F (V ) with
p + 1 vertices and p < d satisfies(

T (t) f
)∣∣

F (V )
= T F (V )(t)( f |F (V )), f ∈ C(Sd), (1.5)

where (T F (V )(t))t�0 denotes the semigroup on C(F (V )) generated by Ad,F (V ). As the process is preserved under restriction
to faces, Campiti and Rasa [8] pointed out that the domain D(Ad) can be described recursively as follows

D(Ad) =
{

u ∈ C(Sd)

∣∣∣ u ∈
⋂
q�1

W 2,q
loc ( S̊d), Adu ∈ C(Sd) and for every proper face

F ⊆ Sd: u|F ∈ D(Ad,F ) and Ad,F (u|F ) = (Adu)|F

}
. (1.6)

If Vd = {v0, . . . , vd} denotes the set of vertices of Sd , then (1.6) implies that Adu(vi) = 0 for every u ∈ D(Ad) and i =
0, . . . ,d.

There are few results about the regularity of the generated semigroup in C(Sd), [1,3]. In the papers [1,3] it was estab-
lished the differentiability and the compactness of the generated semigroups related to some classes of operators of type
mA in C(Sd), including the generators of diffusion processes associated to a class of Wright–Fisher models, but not the
generator (1.1) corresponding to the simplest case. The main aim of this paper is to prove the analyticity of the semigroup
generated by the closure of (Ad, C2(Sd)) on C(Sd) and hence, extending the result of Metafune to several variables. The
proof of the result is given by induction on the integer d. Actually, we provide a method which allows us to reduce the
proof to the one-dimensional case and which gives information on this particular class of operators.
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The paper is organized as follows. In Section 2 we consider the problem of the analyticity of the semigroup generated by
the closure of (A2, C2(S2)) on C(S2), deepening and solving the 2-dimensional case. The end of this is to clarify in details
the necessary techniques to give the inductive step. In Section 3 we prove the analyticity of the semigroup generated by
the closure of (Ad, C2(Sd)) on C(Sd) by induction. Finally, by using the method of approximate resolvents, we show the
analyticity of the semigroup generated by the closure of (mAd, C2(Sd)) on C(Sd).

1.1. Notation

The function spaces considered in this paper consist of complex-valued functions.
Let K ⊆ R

d be a compact set. Denote by Cn(K ) the space of all n-times continuously differentiable functions u on K such
that limx→x0 Dαu(x) exists and is finite for all |α| � n and x0 ∈ ∂ K . In particular, C(K ) denotes the space of all continuous
functions u on K . The norm on C(K ) is the supremum norm and is denoted by ‖ ‖K . The norm ‖ ‖n,K on Cn(K ) is defined
by ‖u‖n,K = ∑

|α|�n ‖Dαu‖K .
For easy reading, in some cases we will adopt the notation ‖ϕ(x)u‖K to still denote supx∈K |ϕ(x) u(x)|.
A bounded analytic semigroup of angle θ with 0 < θ � π/2 is an analytic semigroup defined in the sector Σθ = {z ∈ C |

|arg z| < θ}.
For other undefined notation and results on the theory of semigroups we refer to [13,22,25].
In the present paper we will use some results about injective tensor products. We refer to [20,21,30,24] for definitions

and basic results in this topic and for related applications.

2. The 2-dimensional case

2.1. Auxiliary results

We first consider the one-dimensional second order differential operator

Au(x) = m(x)xu′′(x), x ∈ [0,b], (2.1)

and suppose that b > 0 and m is a strictly positive function in C([0,b]). The operator A with domain D(A), defined by

D(A) =
{

u ∈ C
([0,1]) ∩ C2(]0,b]) ∣∣∣ lim

x→0+ Au = 0, u′(b) = 0
}
, (2.2)

generates a bounded analytic C0-semigroup (T (t))t�0 of angle π/2 on C([0,b]) which is contractive, [23,6,7,11].

Proposition 2.1. Let b > 0 and let m be a strictly positive function in C([0,b]). Then the operator A with domain D(A) defined
according to (2.2) satisfies the following properties:

(1) There exist εb > 0, Cb > 0 and Db > 0 such that, for every 0 < ε < εb and u ∈ C([0,b]) ∩ C2(]0,b]) with Au ∈ C([0,b]), we
have ∥∥√

xu′∥∥[0,b] � Cb

ε
‖u‖[0,b] + Dbε‖Au‖[0,b].

(2) There exist Kb > 0 and tb > 0 such that, for every 0 < t < tb , we have∥∥√
x
(
T (t)u

)′∥∥[0,b] � Kb√
t
‖u‖[0,b], u ∈ C[0,b],

and such that, for every t � tb , we have∥∥√
x
(
T (t)u

)′∥∥[0,b] � Kb‖u‖[0,b], u ∈ C[0,b].
(3) For each 0 < θ < π there exists a constant Cb > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > 1, we have∥∥√

x
(

R(λ, A)u
)′∥∥[0,b] � Cb√|λ| ‖u‖[0,b], u ∈ C

([0,b]).
Proof. Denote by m0 = minx∈[0,b] m(x). Then m0 > 0.

(1) Let u ∈ C([0,b]) ∩ C2(]0,b]) with Au ∈ C([0,b]). Then we have, for every z,h ∈]0,b/2], that

u(z + h) = u(z) + hu′(z) +
h∫
(h − s)u′′(z + s)ds. (2.3)
0
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Let 0 < ε <

√
b
2 and h = ε

√
z. Then h < b

2 and hence, from (2.3) it follows

√
zu′(z) = 1

ε

(
u(z + ε

√
z ) − u(z)

) − 1

ε

ε
√

z∫
0

ε
√

z − s

z + s
u′′(z + s)(z + s)ds,

where

ε
√

z∫
0

ε
√

z − s

z + s
ds � 1

z

ε
√

z∫
0

(ε
√

z − s)ds = ε2

2
.

Therefore∥∥√
zu′∥∥[0,b/2] � 2

ε
‖u‖[0,b] + ε

2

∥∥zu′′∥∥[0,b] � 2

ε
‖u‖[0,b] + ε

2m0
‖Au‖[0,b].

On the other hand, if z ∈ [b/2,b] and ε ∈]0,b/4] (and hence, z − ε ∈ [b/4,b[), there exists ξ ∈ [b/4,b] such that

u(z − ε) = u(z) − εu′(z) + ε2

2
u′′(ξ)

and hence,

u′(z) = 1

ε

(
u(z) − u(z − ε)

) + ε

2
u′′(ξ).

It follows that∣∣√zu′(z)
∣∣ � 2

√
b

ε
‖u‖[0,b] +

√
b

2
ε

4

b

∣∣ξu′′(ξ)
∣∣ � 2

√
b

ε
‖u‖[0,b] + 2ε√

b

∥∥zu′′∥∥[b/4,b]

� 2
√

b

ε
‖u‖[0,b] + 2ε√

bm0
‖Au‖[b/4,b].

So, ∥∥√
zu′∥∥[b/2,b] � 2

√
b

ε
‖u‖[0,b] + 2ε√

bm0
‖Au‖C[0,b].

We then obtain, for every 0 < ε < εb := min{
√

b
2 , b

4 ,1}, that

∥∥√
zu′∥∥[0,b] � 2 + 2

√
b

ε
‖u‖[0,b] + ε

m0

(
1

2
+ 2√

b

)
‖Au‖[0,b].

(2) Let u ∈ C([0,b]). Since (T (t))t�0 is a bounded analytic C0-semigroup in C([0,b]), we have T (t)u ∈ D(A) and there
exists M > 0 such that t‖AT (t)‖ � M for every t > 0. Applying the property (1) above, we then obtain∥∥√

x
(
T (t)u

)′∥∥[0,b] � Cb

ε

∥∥T (t)u
∥∥[0,b] + Dbε

∥∥AT (t)u
∥∥[0,b] � Cb

ε
‖u‖[0,b] + Dbε

M

t
‖u‖[0,b].

Set tb := ε2
b . Then there exists Kb = max{Cb + M Db,

√
tb(Cb + M Db)} > 0 such that we obtain, for every 0 < t < tb and taking

ε = √
t , that∥∥√

x
(
T (t)u

)′∥∥[0,b] � Kb√
t
‖u‖[0,b],

and such that, for every t � tb ,∥∥√
x
(
T (t)u

)′∥∥[0,b] � Kb‖u‖[0,b].

(3) By property (2) above the operator
√

xDT (t) is bounded on C([0,b]) with norm less or equal to Kb/
√

t if 0 < t < tb
and to Kb if t � tb . It follows, for every η > 1, u ∈ C([0,b]) and x ∈]0,b], that

√
xD

( +∞∫
e−ηt T (t)u dt

)
=

∞∫
e−ηt√x

(
T (t)u

)′
dt
0 0
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and hence,

∥∥√
x
(

R(η, A)u
)′∥∥[0,b] � Kb‖u‖[0,b]

( tb∫
0

t−1/2e−ηt dt +
+∞∫
tb

e−ηt dt

)
= Kb

(
C1√
η

+ C2

η

)
‖u‖[0,b] � Cb√

η
‖u‖[0,b].

Consequently, if v ∈ D(A) and η > 1, then∥∥√
xv ′∥∥[0,b] � Cb√

η
‖ηv − Av‖[0,b] � Cb

(√
η‖v‖[0,b] + 1√

η
‖Av‖[0,b]

)
.

Let 0 < θ < π be a fixed angle. If v = R(μ, A)u for some μ ∈ {z ∈ C | |arg z| < θ} with |μ| > 1 and u ∈ C([0,b]), then by the
sectoriality of A it follows∥∥√

x
(

R(μ, A)u
)′∥∥[0,b] � Cb

(√
η
∥∥R(μ, A)u

∥∥[0,b] + 1√
η

∥∥AR(μ, A)u
∥∥[0,b]

)
= Cb

(√
η
∥∥R(μ, A)u

∥∥[0,b] + 1√
η

∥∥μR(μ, A)u − u
∥∥[0,b]

)
� Cb M

(√
η

|μ| ‖u‖[0,b] + 1√
η

‖u‖[0,b]
)

,

where the constant M depends only on θ . By taking η = |μ|, we get the assertion. �
Remark 2.2. The inclusion (D(A),‖ ‖A) ↪→ C([0,b]) is compact and hence, (A, D(A)) has compact resolvent (here, ‖ ‖A
denotes the graph norm). Indeed, if u ∈ D(A), then via Proposition 2.1(1) we obtain, for every 0 < x, y � b, that

∣∣u(x) − u(y)
∣∣ =

∣∣∣∣∣
y∫

x

u′(t)dt

∣∣∣∣∣ =
∣∣∣∣∣

y∫
x

√
t

1√
t

u′(t)dt

∣∣∣∣∣ �
∣∣∣∣∣

y∫
x

1√
t

dt

∣∣∣∣∣∥∥√
su′∥∥[0,b] � C |√x − √

y|‖u‖A (2.4)

for some constant C > 0. Next, let (un)n ⊆ D(A) with supn∈N ‖un‖A = K < ∞. Then (2.4) implies that the sequence (un)n is
equicontinuous in C([0,b]). Since (un)n is also equibounded in C([0,b]), we can apply Ascoli–Arzelà theorem to conclude
that (un)n contains a subsequence (un′ )n′ converging to some u in C([0,b]). This proves the claim.

Since (A, D(A)) generates an analytic C0-semigroup (T (t))t�0 on C([0,b]) (and hence, a norm-continuous C0-semigroup)
and has compact resolvent, (T (t))t�0 is also compact.

We now consider the one-dimensional second order differential operator

A1u(x) = m(x)x(1 − x)u′′(x), x ∈ [0,1], (2.5)

with domain D(A1) defined by

D(A1) =
{

u ∈ C2(]0,1[) ∩ C
([0,1]) ∣∣∣ lim

x→0,1
A1u(x) = 0

}
. (2.6)

The operator (A1, D(A1)) generates a bounded analytic C0-semigroup (T (t))t�0 of angle π/2 on C([0,1]) which is posi-
tive and contractive, [6,23]. Using Proposition 2.1, we can show that the operator (A1, D(A1)) also satisfies the following
properties.

Corollary 2.3. Let m be a strictly positive function in C([0,1]). Let (A1, D(A1)) be the differential operator on [0,1] defined according
to (2.5). Then the differential operator (A1, D(A1)) satisfies the following properties:

(1) There exist ε > 0, C > 0 and D > 0 such that, for every 0 < ε < ε and u ∈ C([0,1]) ∩ C2(]0,1[) with A1u ∈ C([0,1]), we have∥∥√
x(1 − x)u′∥∥[0,1] � C

ε
‖u‖[0,1] + Dε‖A1u‖[0,1].

(2) There exist K > 0 and t > 0 such that, for every 0 < t < t, we have∥∥√
x(1 − x)

(
T (t)u

)′∥∥[0,1] � K√
t
‖u‖[0,1], u ∈ C

([0,1]),
and such that, for every t � t, we have∥∥√

x(1 − x)
(
T (t)u

)′∥∥[0,1] � K‖u‖[0,1], u ∈ C
([0,1]).
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(3) For each 0 < θ < π there exists a constant C > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > 1, we have∥∥√
x(1 − x)

(
R(λ, A1)u

)′∥∥[0,1] � C√|λ| ‖u‖[0,1], u ∈ C
([0,1]).

Proof. (1) Let b = 1
2 . Since m(x)(1 − x) is a strictly positive function in C([0,b]), the differential operator A1|[0,b] is of the

same type of (2.1) and hence, we can apply Proposition 2.1(1) to conclude that there exist ε1 > 0, C1 > 0 and D1 > 0 such
that, for every 0 < ε < ε1 and u ∈ C([0,b]) ∩ C2(]0,b]) with A1u ∈ C([0,b]), we have∥∥√

xu′∥∥[0,b] � C1

ε
‖u‖[0,b] + D1ε‖A1u‖[0,b]. (2.7)

Next, let A be the differential operator on [0,b] defined by Av(x) = m(1 − x)x(1 − x)v ′′(x) for x ∈ [0,b], and let
Φ : C([b,1]) → C([0,b]) be the surjective isometry defined by Φ(u)(x) := u(1 − x) for u ∈ C([b,1]). Then the differential
operator A is of the same type of (2.1). In particular, we have

(A ◦ Φ)(u)(x) = m(1 − x)x(1 − x)u′′(1 − x), x ∈ [0,b], u ∈ C
([0,b]) ∩ C2(]0,b]),

and hence,(
Φ−1 ◦ A ◦ Φ

)
(u)(x) = m(x)(1 − x)xu′′(x), x ∈ [b,1], u ∈ C

([b,1]) ∩ C2([b,1[).
Thus, we can apply again Proposition 2.1(1) to conclude that there exist ε2 > 0, C2 > 0 and D2 > 0 such that, for every
0 < ε < ε2 and u ∈ C([b,1]) ∩ C2([b,1[) with A1u ∈ C([b,1]), we have v = Φ(u) ∈ C([0,b]) ∩ C2(]0,b]) with Av ∈ C([0,b])
and ∥∥√

1 − xu′∥∥[b,1] = ∥∥√
xv ′∥∥[0,b] � C2

ε
‖v‖[0,b] + D2ε‖Av‖[0,b] = C2

ε
‖u‖[b,1] + D2ε‖A1u‖[b,1]. (2.8)

Combining (2.7) and (2.8) and setting ε = min{ε1, ε2}, we obtain, for every 0 < ε < ε and u ∈ C([0,1]) ∩ C2(]0,1[) with
A1u ∈ C([0,1]), that∥∥√

x(1 − x)u′∥∥[0,1] �
∥∥√

xu′∥∥[0,b] + ∥∥√
1 − xu′∥∥[b,1]

� C1

ε
‖u‖[0,b] + D1ε‖A1u‖[0,b] + C2

ε
‖u‖[b,1] + D2ε‖A1u‖[b,1]

� C1 + C2

ε
‖u‖[0,1] + (D1 + D2)ε‖A1u‖[0,1].

Then, the proof of property (1) is complete.
Properties (2) and (3) follow as in the proof of Proposition 2.1. �

2.2. Consequences for a class of two-dimensional elliptic differential operators

Using the previous results and some basic properties of injective tensor products in the setting of Banach spaces, [20,
21,30,24], in this subsection we are able to provide resolvent estimates for the two-dimensional second order differential
operators of the following type

A2u(x, y) = m1(x)x(1 − x)∂2
x u(x, y) + m2(y)y∂2

y u(x, y), (x, y) ∈ [0,1] × [0,b], (2.9)

with b > 0, m1 and m2 strictly positive functions in C([0,1]) and in C([0,b]), respectively. To this end, we proceed as
follows.

We consider the one-dimensional differential operators

B1u(x) = m1(x)x(1 − x)u′′(x), x ∈ [0,1], and B2 v(y) = m2(y)yv ′′(y), y ∈ [0,b],
with domains D(B1) and D(B2), where D(B1) is defined according to (2.6) and D(B2) is defined according to (2.2), re-
spectively. The operators (B1, D(B1)) and (B2, D(B2)) generate bounded analytic C0-semigroups of angle π/2 on C([0,1])
and on C([0,b]) respectively, which are both contractive. Denote such semigroups respectively by (S1(t))t�0 and (S2(t))t�0.
Then the injective tensor product (T (t))t�0 = (S1(t) ⊗̂ε S2(t))t�0 is also a bounded analytic C0-semigroup of angle π/2 on
C([0,1] × [0,b]) = C([0,1]) ⊗̂ε C([0,b]), which is contractive, [24]. Moreover, the infinitesimal generator of (T (t))t�0 is the
closure of the operator(

(B1 ⊗ I y) + (I y ⊗ B2), D(B1) ⊗ D(B2)
)
,

where Ix and I y denote the identity map on C([0,1]) and on C([0,b]) with respect to the variables x and y respectively,
and admits the space D(B1) ⊗ D(B2) as a core. Observing that
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A2u = (B1 ⊗ I y)u + (I y ⊗ B2)u, u ∈ D(B1) ⊗ D(B2),

we can denote such a closure by (A2, D(A2)). Since D(B1) ⊗ D(B2) is a core for (A2, D(A2)), we have C2([0,1] × [0,b]) ⊆
D(A2) ⊆ C([0,1] × [0,b]) ∩ C2(]0,1[×]0,b]), [30, Ch. 44].

Since the semigroups (S1(t))t�0 and (S2(t))t�0 are also compact, see [6,23] and Remark 2.2, their injective tensor prod-
uct (T (t))t�0 shares too the compactness property, [21, §44, p. 285]. Hence, its generator (A2, D(A2)) has compact resolvent
or equivalently, the canonical injection (D(A2),‖ ‖A2 ) ↪→ C([0,1]× [0,b]) is compact, where ‖ ‖A2 denotes the graph norm.

Next, setting T2,b = [0,1] × [0,b] and using Proposition 2.1 and Corollary 2.3, we obtain:

Proposition 2.4. Let b > 0 and let m1 and m2 be two strictly positive functions in C([0,1]) and in C([0,b]) respectively. Then the
operator (A2, D(A2)) defined according to (2.9) satisfies the following properties:

(1) There exist H > 0 and t > 0 such that, for every 0 < t < t and u ∈ C(T2,b), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� H√
t
‖u‖T2,b ,

∥∥√
y∂y

(
T (t)u

)∥∥
T2,b

� H√
t
‖u‖T2,b ,

and such that, for every t � t and u ∈ C(T2,b), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� H‖u‖T2,b ,
∥∥√

y∂y
(
T (t)u

)∥∥
T2,b

� H‖u‖T2,b .

(2) For each 0 < θ < π there exists a constant C > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > 1 and for every
u ∈ C(T2,b), we have∥∥√

x(1 − x)∂x
(

R(λ, A2)u
)∥∥

T2,b
� C√|λ| ‖u‖T2,b ,

∥∥√
y∂y

(
R(λ, A2)u

)∥∥
T2,b

� C√|λ| ‖u‖T2,b .

Proof. (1) By Proposition 2.1(2) and Corollary 2.3 the operators
√

x(1 − x)∂x S1(t) and
√

y∂y S2(t) are bounded on C([0,1])
and on C([0,b]) respectively, with norm less or equal to max{K , Kb}/

√
t if 0 < t < t := min{t, tb} and to max{K , Kb}/√t if

t � t . Then the operators (
√

x(1 − x)∂x S1(t))⊗̂ε S2(t) and S1(t)⊗̂ε(
√

y∂y S2(t)) are also bounded on C(T2,b) with norm less
or equal to max{K , Kb}/

√
t if 0 < t � t or to max{K , Kb}/√t if t � t , [20]. So, the thesis follows, after having observed that,

for every u ∈ C(T2,b), we have√
x(1 − x)∂x

(
T (t)u

) = ((√
x(1 − x)∂x S1(t)

)⊗̂ε S2(t)
)
(u),

√
y∂y

(
T (t)u

) = (
S1(t)⊗̂ε

(√
y∂y S2(t)

))
(u).

Property (2) follows analogously to the one-dimensional case, i.e., it suffices to repeat the argument already used in the
proof of Proposition 2.1(3). �

We now consider the more general case

m(y)A2u(x, y) = m(y)
[
m1(x)x(1 − x)∂2

x u(x, y) + m2(y)y∂2
y u(x, y)

]
, (x, y) ∈ T2,b,

and observe that:

Proposition 2.5. Let m be a strictly positive function in C([0,b]). Then the operator (m(y)A2, D(A2)) generates a contractive C0-
semigroup on C(T2,b) and has compact resolvent. In particular, D(B1) ⊗ D(B2) is a core for (m(y)A2, D(A2)).

Proof. Since (A2, D(A2)) generates a contractive C0-semigroup on C(T2,b) and m is a strictly positive function in C([0,b]),
we can apply a result of Dorroh [12, Theorem] to conclude that (m(y)A2, D(A2)) also generates a contractive C0-semigroup
on C(T2,b). Hence, the fact that (m(y)A2, D(A2)) has compact resolvent follows easily, after having observed that the norms
‖ ‖A2 and ‖ ‖mA2 are equivalent. �

Thanks to Propositions 2.4 and 2.5 we can use the method of approximate resolvents to prove the following result.

Proposition 2.6. Let m be a strictly positive function in C([0,b]). Then the operator (m(y)A2, D(A2)) generates an analytic C0-
semigroup of angle π/2 on C(T2,b). The semigroup is compact.

Proof. For the sake of simplicity, we suppose b = 1 and set m0 =: miny∈[0,1] m(y). Moreover, we denote by Q the square
T2,1.

For each n ∈ N let I i
n := [ i−1

n , i+1
n ], i = 1, . . . ,n − 1. Then we choose φi

n ∈ C∞(R) for all i = 1, . . . ,n − 1, such that

supp(φi
n) ⊆ I i

n and
∑n−1

(φi
n)2 = 1. We observe that, if vi ∈ C(Q ), for i = 1, . . . ,n − 1, and y ∈ [0,1], then there exists
i=1
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j ∈ {1, . . . ,n − 1} such that y ∈ I j
n and hence

n−1∑
i=1

φi
n(y)vi(x, y) = φ

j−1
n (y)v j−1(x, y) + φ

j
n(y)v j(x, y) + φ

j+1
n (y)v j+1(x, y).

Therefore, we have∥∥∥∥∥
n−1∑
i=1

φi
n vi

∥∥∥∥∥
Q

� 3 sup
i=1,...,n−1

∥∥φi
n vi

∥∥
Q . (2.10)

Since the operator (A2, D(A2)) generates a bounded analytic C0-semigroup of angle π/2 on C(Q ), for each λ ∈ C\ (−∞,0],
n ∈ N and i = 1, . . . ,n − 1, we can define

Rin(λ) =
(

λ − m

(
i − 1

n

)
A2

)−1

,

and hence, for a fixed angle 0 < θ < π , there exists M > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ}, n ∈ N and i =
1, . . . ,n − 1, we have

∥∥Rin(λ)
∥∥ =

[
m

(
i − 1

n

)]−1∥∥∥∥R

(
λ

m( i−1
n )

, A2

)∥∥∥∥ � M

|λ| . (2.11)

If we set μ = λ[m( i−1
n )]−1, then we also have

A2 Rin(λ) =
[

m

(
i − 1

n

)]−1

A2 R(μ, A2)

=
[

m

(
i − 1

n

)]−1(
(A2 − μ)R(μ, A2) + μR(μ, A2)

)
=

[
m

(
i − 1

n

)]−1(−I + λRin(λ)
)

and hence,

∥∥A2 Rin(λ)
∥∥ �

[
m

(
i − 1

n

)]−1

(1 + M) � 1 + M

m0
. (2.12)

We now consider the approximate resolvents of the operator mA2 defined by

Sn(λ)u =
n−1∑
i=1

φi
n · Rin(λ)

(
φi

nu
)
, u ∈ C(Q ).

Combining (2.11) with (2.10), we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} and n ∈ N, that∥∥Sn(λ)
∥∥ � 3M

|λ| . (2.13)

Since we have, for every φ,η ∈ D(A2), that

A2(φη) = ηA2(φ) + φ A2(η) + 2
[
m1(x)x(1 − x)∂xφ∂xη + m2(y)y∂yφ∂yη

]
,

the operators Sn(λ) satisfy, for every u ∈ C(Q ),

(λ − mA2)Sn(λ)u = (λ − mA2)

n−1∑
i=1

φi
n · Rin(λ)

(
φi

nu
)

=
n−1∑
i=1

φi
n · (λ − mA2)Rin(λ)

(
φi

nu
) −

n−1∑
i=1

mA2
(
φi

n

) · Rin(λ)
(
φi

nu
)

− 2m
n−1∑[

x(1 − x)m1(x)∂xφ
i
n∂x

(
Rin(λ)

(
φi

nu
)) + ym2(y)∂yφ

i
n∂y

(
Rin(λ)

(
φi

nu
))]
i=1



A.A. Albanese, E.M. Mangino / J. Math. Anal. Appl. 379 (2011) 401–424 409
= u +
n−1∑
i=1

φi
n ·

(
m

(
i − 1

n

)
− m

)
A2

(
Rin(λ)

(
φi

nu
))

−
n−1∑
i=1

mA2
(
φi

n

) · Rin(λ)
(
φi

nu
) − 2m

n−1∑
i=1

ym2(y)∂yφ
i
n∂y

(
Rin(λ)

(
φi

nu
))

=: (I + C1(λ) + C2(λ) + C3(λ)
)
u.

We now fix n ∈ N such that supI i
n
|m(y) − m( i−1

n )| � ε =: m0
6(1+M)

for i = 1, . . . ,n − 1. Then, from (2.10)–(2.12) and Proposi-

tion 2.4(2) it follows, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > 1 and u ∈ C(Q ), that∥∥C1(λ)u
∥∥

Q � 3ε sup
i=1,...,n−1

∥∥φi
n A2

(
Rin(λ)

(
φi

nu
))∥∥

Q � 3ε
1 + M

m0
‖u‖Q <

1

2
‖u‖Q ,

∥∥C2(λ)u
∥∥

Q =
∥∥∥∥∥

n−1∑
i=1

mA2
(
φi

n

) · Rin(λ)
(
φi

nu
)∥∥∥∥∥

Q

�
n−1∑
i=1

max
y∈[0,1]m(y)

∥∥A2
(
φi

n

)∥∥
Q

∥∥Rin(λ)
(
φi

nu
)∥∥

Q

� C max
y∈[0,1]m(y) sup

i=1,...,n−1

∥∥Rin(λ)
(
φi

nu
)∥∥

Q � K

|λ| ‖u‖Q ,

∥∥C3(λ)u
∥∥

Q � 6 max
y∈[0,1]m(y) sup

i=1,...,n−1

∥∥ym2(y)∂yφ
i
n∂y

(
Rin(λ)(φni u)

)∥∥
Q � H sup

i=1,...,n−1

∥∥√
y∂y

(
Rin(λ)(φni u)

)∥∥
Q

= H sup
i=1,...,n−1

[
m

(
i − 1

n

)]−1∥∥∥∥√
y∂y

(
R

(
λm

(
i − 1

n

)−1

, A2

)(
φi

nu
))∥∥∥∥

Q
� K ′

|λ| ‖u‖Q ,

for some positive constants K , K ′ independent of λ and u. Now, if |λ| � R for some R > 0 large enough, then we
get ‖C1(λ) + C2(λ) + C3(λ)‖ < 1 and hence, the operator B = (λ − mA2)Sn(λ) is invertible in L(C(Q )). So, there exists
R(λ,mA2) = Sn(λ)B−1 in L(C(Q )) and by (2.13)∥∥R(λ,mA2)

∥∥ = ∥∥S(λ)B−1
∥∥ � M ′

|λ| (2.14)

for some M ′ > 0 independent of λ, provided λ − m(y)A2 is injective and, in particular, for λ > 0 as m(y)A2 is dissipative by
Proposition 2.5.

Observing that if λ ∈ ρ(m(y)A2) and |μ − λ| � ‖R(λ,mA2)‖−1 then μ ∈ ρ(m(y)A2), it is not difficult to conclude via
(2.14) and an argument of connectness that

ρ
(
m(y)A2

) ⊇ {
z ∈ C

∣∣ |arg z| < θ, |z| > R
}
.

This fact together with (2.14) imply that mA2 generates an analytic semigroup of angle π/2.
Since the semigroup is analytic, hence norm-continuous, and the differential operator (mA2, D(A2)) has compact resol-

vent, the semigroup is also compact. �
Moreover, an analogous result of Proposition 2.4 holds in the case of the differential operator (mA2, D(A2)). Indeed, we

have:

Proposition 2.7. Let b > 0 and let m be a strictly positive function in C([0,b]). Then the operator (mA2, D(A2)) satisfies the following
properties:

(1) There exist Kb > 0 and tb > 0 such that, for every 0 < t < tb and u ∈ C(T2,b), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� Kb√
t
‖u‖T2,b ,

∥∥√
y∂y

(
T (t)u

)∥∥
T2,b

� Kb√
t
‖u‖T2,b

and such that, for every t � tb and u ∈ C(T2,b), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� Kb‖u‖T2,b ,
∥∥√

y∂y
(
T (t)u

)∥∥
T2,b

� Kb‖u‖T2,b .

(2) For each 0 < θ < π there exist two constants Cb > 0 and cb > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ |} with |λ| > cb and
u ∈ C(T2,b), we have∥∥√

x(1 − x)∂x
(

R(λ,mA2)u
)∥∥

T2,b
� Cb√|λ| ‖u‖T2,b ,

∥∥√
y∂y

(
R(λ,mA2)u

)∥∥
T2,b

� Cb√|λ| ‖u‖T2,b .
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Proof. We first prove property (2). Fixed an angle 0 < θ < π , let λ ∈ {z ∈ C | |arg z| < θ |} with |λ| > 1 and u ∈ D(mA2) =
D(A2). Then there exists v ∈ C(T2,b) such that R(λ, A2)v = u and hence, by Proposition 2.4(2) we have∥∥√

x(1 − x)∂xu
∥∥

T2,b
= ∥∥√

x(1 − x)∂x
(

R(λ, A2)v
)∥∥

T2,b
� C√|λ| ‖v‖T2,b = C√|λ| ‖A2u − λu‖T2,b . (2.15)

If |λ| is large enough, by Proposition 2.6 there exists also w ∈ C(T2,b) such that R(λ,mA2)w = u with ‖λR(λ,mA2)‖ � M
for some M > 0. We then obtain

A2u − λu = 1

m
(mA2u − λu) +

(
1

m
− 1

)
λu,

and hence,

‖A2u − λu‖T2,b � 1

m0
‖mA2u − λu‖T2,b +

(
1

m0
+ 1

)
|λ|‖u‖T2,b

= 1

m0
‖mA2u − λu‖T2,b +

(
1

m0
+ 1

)
|λ|∥∥R(λ,mA2)w

∥∥
T2,b

� 1

m0
‖mA2u − λu‖T2,b + M

(
1

m0
+ 1

)
‖w‖T2,b

� M ′
(

1

m0
+ 1

)
‖w‖T2,b , (2.16)

with M ′ = 2M( 1
m0

+ 1) (assuming that M � 1). Combining (2.15) with (2.16), we get

∥∥√
x(1 − x)∂xu

∥∥
T2,b

� K√|λ| ‖mA2u − λu‖T2,b .

The other inequality follows proceeding in analogous way.
(1) Fix 0 < θ < π . By property (2) above there exist Cb , cb > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > cb

and u ∈ C(T2,b),∥∥√
x(1 − x)∂x

(
R(λ,mA2)u

)∥∥
T2,b

� Cb√|λ| ‖u‖T2,b .

So, we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > cb and v ∈ D(A2), that∥∥√
x(1 − x)∂x v

∥∥
T2,b

� Cb√|λ| ‖λv − mA2 v‖T2,b � Cb√|λ| |λ|‖v‖T2,b + Cb√|λ| ‖mA2 v‖T2,b . (2.17)

Since (mA2, D(A2)) generates an analytic C0-semigroup (T (t))t�0 of angle π/2 on C(T2,b), for every u ∈ C(T2,b) we have
T (t)u ∈ D(A2) and there exist M > 0, w > 0 such that t‖mA2T (t)‖ � Mewt for t > 0. Applying (2.17) with v = T (t)u,
we then obtain that∥∥√

x(1 − x)∂x
(
T (t)u

)∥∥
T2,b

� Cb

√|λ|‖u‖T2,b + Cb√|λ| M
ewt

t
‖u‖T2,b . (2.18)

Set tb := 1
cb

> 0. Then there exists Kb = max{Cb(1 + Mewtb ),
Cb√

tb
(1 + M)} such that we get, for every 0 < t < tb and taking

λ = t−1, that∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� Cb√
t

(
1 + Mewtb

)‖u‖T2,b � Kb√
t
‖u‖T2,b ,

and such that, for every t � tb ,∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
T2,b

� Cb√
tb

(1 + M)ewt‖u‖T2,b � Kbewt‖u‖T2,b .

The other inequality follows proceeding in analogous way. �
We establish now the following notation: for every 0 < δ < 1 set

T2,1−δ = [0,1] × [0,1 − δ], T1−δ,2 = [0,1 − δ] × [0,1]. (2.19)
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Example 2.8. The above results apply to the following second order differential operators

A2,1u(x, y) = 1

1 − y

x(1 − x)

2
∂2

x u + y(1 − y)

2
∂2

y u

= 1

1 − y

(
x(1 − x)

2
∂2

x u + y(1 − y)2

2
∂2

y u

)
, (x, y) ∈ T2,1−δ, (2.20)

with domain D(B1) ⊗ D(B2), and

A2,2u(x, y) = x(1 − x)

2
∂2

x u + 1

1 − x

y(1 − y)

2
∂2

y u

= 1

1 − x

(
x(1 − x)2

2
∂2

x u + y(1 − y)

2
∂2

y u

)
, (x, y) ∈ T1−δ,2, (2.21)

with domain D(B2) ⊗ D(B1), where D(B1) and D(B2) are defined by

D(B1) :=
{

u ∈ C
([0,1]) ∩ C2(]0,1[) ∣∣∣ lim

x→0+,1− x(1 − x)u′′(x) = 0
}
,

D(B2) :=
{

u ∈ C
([0,1 − δ]) ∩ C2(]0,1 − δ]) ∣∣∣ lim

y→0+ yu′′(y) = 0, u′(1 − δ) = 0
}
.

Indeed, as δ � 1 − y � 1 for every y ∈ [0,1 − δ], by the previous considerations we can conclude that the closure
(A2,1, D(A2,1)) of (A2,1, D(B1)⊗ D(B2)) generates an analytic C0-semigroup of angle π/2 on C(T2,1−δ), which is contractive
and compact, and shares properties (1) and (2) in Proposition 2.7. Analogously, as δ � 1 − x � 1 for every x ∈ [0,1 − δ], the
closure (A2,2, D(A2,2)) of (A2,2, D(B2) ⊗ D(B1)) generates an analytic C0-semigroup of angle π/2 on C(T1−δ,2), which is
contractive and compact, and shares properties (1) and (2) in Proposition 2.7 with respect to y and x.

2.3. Analyticity of a class of degenerate evolution equations on the canonical simplex of R
2

Let S2 be the simplex of R
2 defined by

S2 = {
(x, y) ∈ R

2
∣∣ x, y � 0, x + y � 1

}
.

We are here concerned with the second order degenerate elliptic differential operator

A2u(x, y) = 1

2
x(1 − x)∂2

x u(x, y) + 1

2
y(1 − y)∂2

y u(x, y) − xy∂2
xyu(x, y), (x, y) ∈ S2. (2.22)

The aim of this subsection is to show the analyticity of the semigroup (T (t))t�0 generated by the closure (A2, D(A2))

of (A2, C2(S2)) on C(S2) (see Theorem 1.1). In order to prove this, we use suitable changes of coordinates as follows.
Fix 0 < δ < 1

2 . Then, we set

Ω1 := {
(x, y) ∈ S2

∣∣ 0 � y � 1 − δ
}
, Ω2 := {

(x, y) ∈ S2
∣∣ 0 � x � 1 − δ

}
. (2.23)

Then S2 = ⋃2
i=1 Ωi . Next, we introduce the maps

ϕ1 : T2,1−δ → Ω1, (r, s) → ϕ1(r, s) = (
r(1 − s), s

)
,

ϕ2 : T1−δ,2 → Ω2, (r, s) → ϕ2(r, s) = (
r, s(1 − r)

)
, (2.24)

where T2,1−δ and T1−δ,2 are defined as in (2.19).

Lemma 2.9. The map ϕi is bijective and a C∞-diffeomorphism for i = 1,2.

Lemma 2.10. Let Φ1 : C(Ω1) → C(T2,1−δ) and Φ2 : C(Ω2) → C(T1−δ,2) be the operators defined by

Φi(u) = u ◦ ϕi, u ∈ C(Ωi), i = 1,2.

Then Φi is a surjective isometry for i = 1,2. In particular, Φ1(Cn(Ω1)) = Cn(T2,1−δ) and Φ2(Cn(Ω2)) = Cn(T1−δ,2) for every n ∈ N.

For each i ∈ {1,2} we define

A2,i := Φ−1 ◦ A2,i ◦ Φi, D(A2,i) = Φ−1(D(A2,i)
)
, (2.25)
i i
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with (A2,i, D(A2,i)) the second order differential operators defined in Example 2.8. Then the operator (A2,i, D(A2,i)) gen-
erates an analytic C0-semigroup of angle π/2 on C(Ωi) (which is also contractive and compact) for every i ∈ {1,2}.
We observe that, for i = 1 and v = Φ1(u) for some u ∈ Φ−1

1 (D(A2,1)), we have

∂r v = (1 − s)∂xu, ∂2
r v = (1 − s)2∂2

x u,

∂s v = −r∂xu + ∂yu, ∂2
s v = r2∂2

x u − 2r∂2
xyu + ∂2

y u.

So, we obtain

A2,1
(
Φ1(u)

)
(r, s) = A2,1 v(r, s) = r(1 − r)(1 − s)

2
∂2

x u + s(1 − s)

2

(
r2∂2

x u − 2r∂2
xyu + ∂2

y u
)

= r(1 − s)[1 − r(1 − s)]
2

∂2
x u − rs(1 − s)∂2

xyu + s(1 − s)

2
∂2

y u, (r, s) ∈ T2,1−δ,

and hence,

A2,1(x, y) = x(1 − x)

2
∂2

x u(x, y) + y(1 − y)

2
∂2

y u(x, y) − xy∂xyu(x, y), (x, y) ∈ Ω1,

i.e., A2|Ω1 = A2,1.
On the other hand, for i = 2 and v = Φ2(u) for some u ∈ Φ−1

2 (D(A2,2)), we have

∂r v = ∂xu − s∂yu, ∂2
r v = ∂2

x u − 2s∂2
xyu + s2∂2

y u,

∂s v = (1 − r)∂yu, ∂2
s v = (1 − r)2∂2

y u.

So, we obtain

A2,2
(
Φ2(u)

)
(r, s) = A2,2 v(r, s) = r(1 − r)

2

(
∂2

x u − 2s∂2
xyu + s2∂2

y u
) + s(1 − s)(1 − r)

2
∂2

y u

= r(1 − r)

2
∂2

x u − rs(1 − r)∂2
xyu + s(1 − r)[1 − s(1 − r)]

2
∂2

y u, (r, s) ∈ T1−δ,2,

and hence,

A2,2(x, y) = x(1 − x)

2
∂2

x u(x, y) + y(1 − y)

2
∂2

y u(x, y) − xy∂xyu(x, y), (x, y) ∈ Ω2,

i.e., A2|Ω2 = A2,2.
We may now prove the main theorem of this section.

Theorem 2.11. The closure (A2, D(A2)) of (A2, C2(S2)) generates an analytic C0-semigroup (T (t))t�0 of angle π/2 on C(S2). The
semigroup is compact.

Proof. Fix 0 < δ < 1
2 . Let {ψi}i=1,2 ⊆ C∞

c (R2) be such that
∑2

i=1(ψi)
2 = 1 on S2 and

supp(ψ1) ⊆ {
(x, y) ∈ R

2
∣∣ y < 1 − δ

}
, supp(ψ2) ⊆ {

(x, y) ∈ R
2
∣∣ x < 1 − δ

}
.

For the sake of simplicity, we still denote by ψi the restriction of ψi to Ωi , for i = 1,2.
By Proposition 2.6 the operators A2,i generate analytic C0-semigroups of angle π/2. So, if 0 < θ < π is a fixed angle,

we can find two positive constants C and R such that, for |λ| � R with |argλ| < θ , the resolvents R(λ, A2,i) exist and satisfy∥∥R(λ, A2,i)
∥∥ � C

|λ| , i = 1,2. (2.26)

So, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R , we can define the operator S(λ) : C(S2) → C(S2) via

S(λ)u =
2∑

i=1

ψi R(λ, A2,i)(ψiu), u ∈ C(S2), (2.27)

and hence,∥∥S(λ)
∥∥ � 3C

|λ| .
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We observe that the previous considerations on the differential operators A2,i ensure, for every i = 1,2 and u ∈ C(S2), that

A2
(
ψi R(λ, A2,i)(ψiu)

) = A2,i
(
ψi R(λ, A2,i)(ψiu)

)
, (2.28)

and, for every f , g ∈ D(A2,i), that

A2,i( f g) = (A2,i f )g + f (A2,i g) + [
x(1 − x − y)∂x f ∂x g + (1 − x − y)y∂y f ∂y g + xy(∂x f − ∂y f )(∂x g − ∂y g)

]
.

(2.29)

By (2.28) and (2.29) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R and u ∈ C(S2), that

(λ − A2)S(λ)u = λS(λ)(u) −
2∑

i=1

A2
(
ψi R(λ, A2,i)(ψiu)

)
= λS(λ)(u) −

2∑
i=1

A2,i
(
ψi

(
R(λ, A2,i)(ψiu)

))
=

2∑
i=1

ψi(λ − A2,i)R(λ, A2,i)(ψiu) −
2∑

i=1

A2,i(ψi)R(λ, A2,i)(ψiu)

−
2∑

i=1

[
x(1 − x − y)∂x

(
R(λ, A2,i)(ψiu)

)
∂xψi + y(1 − x − y)∂y

(
R(λ, A2,i)(ψiu)

)
∂yψi

+ xy
(
∂x

(
R(λ, A2,i)(ψiu)

) − ∂y
(

R(λ, A2,i)(ψiu)
))

(∂xψi − ∂yψi)
]

=: (I + B(λ) + C(λ)
)
(u).

Applying (2.26) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R and u ∈ C(S2), that∥∥B(λ)u
∥∥

S2
� M

|λ| ‖u‖S2 ,

for some M > 0. In order to estimate C(λ) we proceed as follows.
Let f ∈ D(A2,1) and v = Φ1( f ). Then v ∈ D(A2,1) and the following holds

∂r v = (1 − s)∂x f , ∂s v = −r∂x f + ∂y f , (2.30)

and hence,

∂x f = ∂r v

1 − s
, ∂y f = ∂s v + r

1 − s
∂r v, ∂x f − ∂y f = 1 − r

1 − s
∂r v − ∂s v. (2.31)

So, by Lemma 2.10 and Proposition 2.7(2) (combined with Example 2.8) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with
|λ| > R1 := max{R, cb}, that∥∥x(1 − x − y)∂x f ∂xψ1 + y(1 − x − y)∂y f ∂yψ1 + xy(∂x f − ∂y f )(∂xψ1 − ∂yψ1)

∥∥
S2

�
∥∥x(1 − x − y)∂x f ∂xψ1

∥∥
Ω1

+ ∥∥y(1 − x − y)∂y f ∂yψ1
∥∥

Ω1
+ ∥∥xy(∂x f − ∂y f )(∂xψ1 − ∂yψ1)

∥∥
Ω1

� C1

(∥∥∥∥r(1 − s)(1 − r)(1 − s)
vr

1 − s

∥∥∥∥
T2,1−δ

+
∥∥∥∥(1 − r)(1 − s)s

(
vs + r

1 − s
vr

)∥∥∥∥
T2,1−δ

+
∥∥∥∥r(1 − s)s

(
vr

1 − r

1 − s
− vs

)∥∥∥∥
T2,1−δ

)
�

C ′
1√|λ| ‖λv − A2,1 v‖T2,1−δ

= C ′
1√|λ| ‖λ f − A2,1 f ‖Ω1 .

If f = R(λ, A2,1)(ψ1u) for some u ∈ C(S2), then it follows, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > R1, that∥∥x(1 − x − y)∂x
(

R(λ, A2,1)(ψ1u)
)
∂xψ1 + y(1 − x − y)∂y

(
R(λ, A2,1)(ψ1u)

)
∂yψ1

+ xy
(
∂x

(
R(λ, A2,1)(ψ1u)

) − ∂y
(

R(λ, A2,1)(ψ1u)
))

(∂xψ1 − ∂yψ1)
∥∥

S2

�
C ′

1√|λ| ‖u‖Ω1 �
C ′

1√|λ| ‖u‖S2 , (2.32)

with C ′ a positive constant independent of λ and f .
1
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By the symmetry of the change of variables, one analogously shows that, there exists C2 > 0 such that, for every λ ∈ {z ∈
C | |arg z| < θ} with |λ| > R1 and u ∈ C(S2), we have∥∥x(1 − x − y)∂x

(
R(λ, A2,2)(ψ2u)

)
∂xψ2 + (1 − x − y)y∂y

(
R(λ, A2,2)(ψ2u)

)
∂yψ2

+ xy
(
∂x

(
R(λ, A2,2)(ψ2u)

) − ∂y
(

R(λ, A2,1)(ψ2u)
))

(∂xψ2 − ∂yψ2)
∥∥

S2

� C2√|λ| ‖u‖S2 . (2.33)

Combining (2.33) and (2.32), we obtain that there exists K > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > R1
and u ∈ C(S2),∥∥C(λ)u

∥∥
S2

� K√|λ| ‖u‖S2 .

If |λ| � 1, then the operator B = (λ − A2)S(λ) is invertible in L(C(S2)). So, there exists R(λ, A2) = S(λ)B−1 and∥∥R(λ, A2)
∥∥ = ∥∥S(λ)B−1

∥∥ � C ′

|λ| ,
with C ′ a positive constant independent of λ, provided λ − A2 is injective and, in particular, for λ > 0 as A2 is dissipative.
To conclude that the semigroup is analytic of angle π/2 it now suffices to repeat the argument already used in the proof of
Proposition 2.6.

Since R(λ, A2) = S(λ)B−1 for some λ > 0 and the operator S(λ) is compact by Proposition 2.6, the differential operator
(A2, D(A2)) has compact resolvent. Thus, the semigroup is also compact, being analytic and hence, norm continuous. �

Recalling that the eigenvalues of the operator A2 are given by λn = −n(n−1)
2 , n � 1, [28, Ch. VIII, p. 221], and using

Theorem 2.11 together with [23, Proposition 5.6] we obtain the following result.

Theorem 2.12. The semigroup generated by (A2, D(A2)) is bounded analytic of angle π/2.

Moreover, the differential operator (A2, D(A2)) satisfies:

Proposition 2.13. The closure (A2, D(A2)) of the differential operator (A2, C2(S2)) defined in (2.22) satisfies the following proper-
ties:

(1) There exist Kb > 0 and tb > 0 such that, for every 0 < t < tb and u ∈ C(S2), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
S2

� Kb√
t
‖u‖S2 ,

∥∥√
y(1 − y)∂y

(
T (t)u

)∥∥
S2

� Kb√
t
‖u‖S2

and such that, for every t � tb and u ∈ C(S2), we have∥∥√
x(1 − x)∂x

(
T (t)u

)∥∥
S2

� Kb‖u‖S2 ,
∥∥√

y(1 − y)∂y
(
T (t)u

)∥∥
S2

� Kb‖u‖S2 .

(2) For each 0 < θ < π there exists two constants C > 0 and l > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l and
u ∈ C(S2), we have∥∥√

x(1 − x)∂x
(

R(λ, A2)u
)∥∥

S2
� C√|λ| ‖u‖S2 ,

∥∥√
y(1 − y)∂y

(
R(λ, A2)u

)∥∥
S2

� C√|λ| ‖u‖S2 .

Proof. We first prove property (2). According to the notation in the proof of Theorem 2.11, fixed an angle 0 < θ < π there
exists l > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l, we have

R(λ, A2) = S(λ)B−1,

where the operators S(λ) are defined according to (2.27) and ‖B−1‖ � 2. So, we obtain, for every λ ∈ {z ∈ C | |arg z| < θ}
with |λ| > l and u ∈ C(S2), that

∥∥√
x(1 − x)∂x

(
R(λ, A2)u

)∥∥
S2

�
2∑

i=1

∥∥√
x(1 − x)∂x

(
ψi R(λ, A2,i)

(
ψi B−1u

))∥∥
Ωi

�
2∑(∥∥√

x(1 − x)∂x(ψi)R(λ, A2,i)
(
ψi B−1u

)∥∥
Ωi
i=1
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+ ∥∥√
x(1 − x)ψi∂x

(
R(λ, A2,i)

(
ψi B−1u

))∥∥
Ωi

)
� c

2∑
i=1

(
C

|λ|
∥∥ψi B−1u

∥∥
Ωi

+ ∥∥√
x(1 − x)ψi∂x

(
R(λ, A2,i)

(
ψi B−1u

))∥∥
Ωi

)

� c
2∑

i=1

(
C√|λ|

∥∥B−1
∥∥‖u‖S2 + ∥∥√

x(1 − x)∂x
(

R(λ, A2,i)
(
ψi B−1u

))∥∥
Ωi

)
, (2.34)

where c := sup2
i=1‖ψi‖1,Ωi . To estimate the second addend on the right in (2.34) we proceed as follows.

For i = 1 set f = R(λ, A2,1)(ψ1 B−1u) and v = Φ1( f ). Then by (2.30) and (2.31)

∥∥√
x(1 − x)∂x f

∥∥
Ω1

=
∥∥∥∥√

r(1 − s)[1 − r(1 − s)]
1 − s

∂r v

∥∥∥∥
T2,1−δ

�
C ′′

1√|λ| ‖λv − A2,1 v‖T2,1−δ
= C1√|λ| ‖λ f − A2,1 f ‖Ω1

= C1√|λ|
∥∥ψ1 B−1u

∥∥
Ω1

� C1√|λ|
∥∥B−1

∥∥‖u‖S2 . (2.35)

Next, for i = 2 set f = R(λ, A2,2)(ψ2 B−1u) and v = Φ2( f ). Then ∂x f = ∂r v + s
1−r ∂s v and hence,

∥∥√
x(1 − x)∂x f

∥∥
Ω2

=
∥∥∥∥√

r(1 − r)

(
∂r v + s

1 − r
∂s v

)∥∥∥∥
T1−δ,2

�
∥∥√

r(1 − r)∂r v
∥∥

T1−δ,2
+

∥∥∥∥√
r(1 − r)

s

1 − r
∂s v

∥∥∥∥
T1−δ,2

�
C ′′

1√|λ| ‖λv − A2,2 v‖T2,1−δ
= C2√|λ| ‖λ f − A2,2 f ‖Ω2

= C2√|λ|
∥∥ψ1 B−1u

∥∥
Ω1

� C2√|λ|
∥∥B−1

∥∥‖u‖S2 . (2.36)

Combining (2.34)–(2.36) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l and u ∈ C(S2), that∥∥√
x(1 − x)∂x

(
R(λ, A2)u

)∥∥
S2

� C√|λ| ‖u‖S2

for some constant C > 0 independent of u and λ.
The proof of the other case is analogue.
Property (1) follows as in the proof of Proposition 2.7(1). �

3. The d-dimensional case

The aim of this section is to show that the semigroup (T (t))t�0 generated by the closure (Ad, D(Ad)) of the operator
(Ad, C2(Sd)) on C(Sd) (see Theorem 1.1) is also analytic for d > 2. We prove this using an argument by induction as follows.

3.1. Inductive hypotheses and consequences

We suppose that the following holds.

Hypotheses 3.1 (Inductive hypothesis). Suppose that the closure (Ad, D(Ad)) of (Ad, C2(Sd)) satisfies the following properties:

(1) (Ad, D(Ad)) generates a bounded analytic C0-semigroup (T (t))t�0 of angle π/2 on C(Sd). The semigroup is compact.
(2) For each 0 < θ < π there exist C > 0 and l > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l, i = 1, . . . ,d and

u ∈ C(Sd), we have∥∥√
xi(1 − xi)∂xi

(
R(λ, Ad)u

)∥∥
Sd

� C√|λ| ‖u‖Sd .
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In order to prove the inductive step, we need to provide some auxiliary results as follows.
Fix 0 < δ < 1

2 . Then, we define the sets Td+1,1−δ := Sd × [0,1 − δ], T1−δ,d+1 := [0,1 − δ] × Sd , and consider the second
order differential operators

Ad+1,1 = 1

2(1 − xd+1)

d∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u + 1

2
xd+1(1 − xd+1)∂

2
xd+1

u, x ∈ Td+1,1−δ, (3.1)

Ad+1,2 = 1

2
x1(1 − x1)∂

2
x1

u + 1

2(1 − x1)

d+1∑
i, j=2

xi(δi j − x j)∂
2
xi x j

u, x ∈ T1−δ,d+1. (3.2)

Recalling that C(Td+1,1−δ) = C(Sd) ⊗̂ε C([0,1 − δ]) and C(T1−δ,d+1) = C([0,1 − δ]) ⊗̂ε C(Sd) and the discussion prior to
Proposition 2.4, we can prove via Hypotheses 3.1, Proposition 2.1 and analogously to the proofs of Propositions 2.4, 2.6
and 2.7 the following facts.

Setting D(B) := {u ∈ C([0,1 − δ]) ∩ C2(]0,1 − δ]) | limy→0+ yu′′(y) = 0, u′(1 − δ) = 0}, we have:

Proposition 3.2. Suppose that Hypotheses 3.1 hold. Then the following properties are satisfied:

(1) The closure (Ad+1,1, D(Ad+1,1)) of (Ad+1,1, D(Ad) ⊗ D(B)) generates an analytic C0-semigroup of angle π/2 on C(Td+1,1−δ)

which is contractive and compact.
(2) The closure (Ad+1,2, D(Ad+1,2)) of (Ad+1,2, D(B) ⊗ D(Ad)) generates an analytic C0-semigroup of angle π/2 on C(T1−δ,d+1)

which is contractive and compact.

Proposition 3.3. Suppose that Hypotheses 3.1 hold. Then the following properties are satisfied:

(1) For each 0 < θ < π there exist C1 > 0 and l1 > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l1 and u ∈ C(Td+1,1−δ),
we have∥∥√

xi(1 − xi)∂xi

(
R(λ, Ad+1,1)u

)∥∥
Td+1,1−δ

� C1√|λ| ‖u‖Td+1,1−δ
, i = 1, . . . ,d,

and ∥∥√
xd+1∂xd+1

(
R(λ, Ad+1,1)u

)∥∥
Td+1,1−δ

� C1√|λ| ‖u‖Td+1,1−δ
.

(2) For each 0 < θ < π there exist C2 > 0 and l2 > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l2 and u ∈ C(T1−δ,d+1),
we have∥∥√

x1∂x1

(
R(λ, Ad+1,2)u

)∥∥
T1−δ,d+1

� C2√|λ| ‖u‖T1−δ,d+1 ,

and ∥∥√
xi(1 − xi)∂xi

(
R(λ, Ad+1,2)u

)∥∥
T1−δ,d+1

� C2√|λ| ‖u‖T1−δ,d+1 , i = 2, . . . ,d + 1.

3.2. Analyticity of a class of degenerate evolution equations on the canonical simplex of R
d+1

For the inductive step, we also need to perform the following changes of coordinates.
Fix 0 < δ < 1

2 . Then, we set

Ω1 := {x ∈ Sd+1 | 0 � xd+1 � 1 − δ}, Ω2 := {x ∈ Sd+1 | 0 � x1 � 1 − δ}. (3.3)

Then Sd+1 = ⋃2
i=1 Ωi . Next, we consider the maps ϕ1 : Td+1,1−δ → Ω1 and ϕ2 : T1−δ,d+1 → Ω2 defined by

ϕ1(r) := (
r1(1 − rd+1), r2(1 − rd+1), . . . , rd(1 − rd+1), rd+1

)
,

ϕ2(r) := (
r1, r2(1 − r1), . . . , rd(1 − r1), rd+1(1 − r1)

)
. (3.4)

Lemma 3.4. The map ϕi is bijective and a C∞-diffeomorphism for i = 1,2.
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Lemma 3.5. Let Φ1 : C(Ω1) → C(Td+1,1−δ) and Φ2 : C(Ω2) → C(T1−δ,d+1) be the operators defined by

Φi(u) = u ◦ ϕi, u ∈ C(Ωi), i = 1,2.

Then Φi is a surjective isometry for i = 1,2. In particular, Φ1(Cn(Ω1)) = Cn(Td+1,1−δ) and Φ2(Cn(Ω2)) = Cn(T1−δ,d+1) for every
n ∈ N.

For each i ∈ {1,2} we define

Ad+1,i := Φ−1
i ◦ Ad+1,i ◦ Φi, D(Ad+1,i) = Φ−1

i

(
D(Ad+1,i)

)
, (3.5)

with (Ad+1,i, D(Ad+1,i)) the second order differential operators defined in (3.1) and (3.2). Then, by Proposition 3.2 and
Lemma 3.5 the operator (Ad+1,i, D(Ad+1,i)) generates an analytic semigroup of angle π/2 on C(Ωi) for every i ∈ {1,2}.
We observe that, for i = 1 and v = Φ1(u) for some u ∈ Φ−1

1 (D(Ad+1,1)), we have

∂ri v = (1 − rd+1)∂xi u, ∂2
ri

v = (1 − rd+1)
2∂2

xi
u, i = 1, . . . ,d,

∂2
rir j

v = (1 − rd+1)
2∂2

xi x j
u, i, j = 1, . . . ,d,

∂rd+1 v = −
d∑

i=1

ri∂xi u + ∂xd+1 u, ∂2
rd+1

v =
d∑

i, j=1

rir j∂
2
xi x j

u − 2
d∑

i=1

ri∂
2
xi xd+1

u + ∂2
xd+1

u.

So, we obtain

Ad+1,1
(
Φ1(u)

)
(r) = Ad+1,1 v(r)

= 1

2(1 − rd+1)

d∑
i, j=1

ri(δi j − r j)(1 − rd+1)
2∂2

xi x j
u

+ 1

2
rd+1(1 − rd+1)

(
d∑

i, j=1

rir j∂
2
xi x j

u − 2
d∑

i=1

ri∂
2
xi xd+1

u + ∂2
xd+1

u

)

= 1

2

d∑
i, j=1

ri(1 − rd+1)
[
δi j − r j(1 − rd+1)

]
∂2

xi x j
u

−
d∑

i=1

ri(1 − rd+1)rd+1∂
2
xi xd+1

u + 1

2
rd+1(1 − rd+1)∂

2
xd+1

u, r ∈ Td+1,1−δ,

and hence,

Ad+1,1u(x) = 1

2

d∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u(x) −
d∑

i=1

xixd+1∂
2
xi xd+1

u(x) + 1

2
xd+1(1 − xd+1)∂

2
xd+1

u(x)

= 1

2

d+1∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u(x), x ∈ Ω1,

i.e., Ad+1|Ω1 = Ad+1,1.
On the other hand, for i = 2 and v = Φ2(u) for some u ∈ Φ−1

2 (D(Ad+1,2)), we have

∂r1 v = ∂x1 u −
d+1∑
i=2

ri∂xi u, ∂2
r1

v = ∂2
x1

u − 2
d+1∑
i=2

ri∂
2
x1xi

u +
d+1∑

i, j=2

rir j∂
2
xi x j

u,

∂ri v = (1 − r1)∂xi u, ∂2
ri

v = (1 − r1)
2∂2

xi
u, i = 2, . . . ,d + 1,

∂2
r r v = (1 − r1)

2∂2
x x u, i, j = 2, . . . ,d + 1.
i j i j
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So, we obtain

Ad+1,2
(
Φ2(u)

)
(r) = Ad+1,2 v(r) = 1

2
r1(1 − r1)

(
∂2

x1
u − 2

d+1∑
i=2

ri∂
2
x1xi

u +
d+1∑

i, j=2

rir j∂
2
xi x j

u

)

+ 1

1 − r1

1

2

d+1∑
i, j=2

ri(δi j − r j)(1 − r1)
2∂2

xi x j
u = 1

2
r1(1 − r1)∂

2
x1

u −
d+1∑
i=2

r1ri(1 − r1)∂
2
x1xi

u

+ 1

2

d+1∑
i, j=2

ri(1 − r1)
[
δi j − r j(1 − r1)

]
∂2

xi x j
u, r ∈ T1−δ,d+1,

and hence,

Ad+1,2u(x) = 1

2
x1(1 − x1)∂

2
x1

u(x) −
d+1∑
i=2

x1xi∂
2
x1xi

u(x) + 1

2

d+1∑
i, j=2

xi(δi j − x j)∂
2
xi x j

u(x)

= 1

2

d+1∑
i, j=1

xi(δi j − x j)∂
2
xi x j

u(x), x ∈ Ω2,

i.e., Ad+1|Ω2 = Ad+1,2.
We now may prove the main theorem of this section.

Theorem 3.6. Suppose that Hypotheses 3.1 hold. Then the closure (Ad+1, D(Ad+1)) of (Ad+1, C2(Sd+1)) generates an analytic C0-
semigroup (T (t))t�0 of angle π/2 on C(Sd+1). The semigroup is compact.

Proof. Fix 0 < δ < 1
2 . Let {ψi}i=1,2 ⊆ C∞

c (Rd+1) such that
∑2

i=1(ψi)
2 = 1 on Sd+1 and

supp(ψ1) ⊆ {
x ∈ R

d+1
∣∣ xd+1 < 1 − δ

}
, supp(ψ2) ⊆ {

x ∈ R
d+1

∣∣ x1 < 1 − δ
}
.

For the sake of simplicity, we still denote by ψi the restriction of ψi to Ωi , for i = 1,2.
By Proposition 3.2 the operators Ad+1,i defined according to (3.5) generate analytic semigroups of angle π/2. So, if

0 < θ < π is a fixed angle, we can find two positive constant C and R such that, for |λ| � R with |argλ| < θ , the resolvents
R(λ, A2,i) exist and satisfies

∥∥R(λ, A2,i)
∥∥ � C

|λ| , i = 1,2. (3.6)

Then, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R , we can define the operator S(λ) : C(Sd+1) → C(Sd+1) via

S(λ)u =
2∑

i=1

ψi R(λ, Ad+1,i)(ψiu), u ∈ C(Sd+1), (3.7)

and hence,∥∥S(λ)
∥∥ � 3C

|λ| .

We observe that the previous considerations on the differential operators Ad+1,i ensure, for every i = 1,2 and u ∈ C(Sd+1),
that

Ad+1
(
ψi R(λ, Ad+1,i)(ψiu)

) = Ad+1,i
(
ψi R(λ, Ad+1,i)(ψiu)

)
, (3.8)

and, for every f , g ∈ D(Ad+1,i), that

Ad+1,i( f g) = g(Ad+1,i f ) + f (Ad+1,i g) +
d+1∑

i, j=1

xi(δi j − x j)∂xi f ∂x j g. (3.9)
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By (3.8) and (3.9) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R and u ∈ C(Sd+1), that

(λ − Ad+1)S(λ)u = λS(λ)(u) −
2∑

i=1

Ad+1
(
ψi R(λ, Ad+1,i)(ψiu)

)
= λS(λ)(u) −

2∑
i=1

Ad+1,i
(
ψi

(
R(λ, Ad+1,i)(ψiu)

))
=

2∑
i=1

ψi(λ − Ad+1,i)R(λ, Ad+1,i)(ψiu) −
2∑

i=1

Ad+1,i(ψi)R(λ, Ad+1,i)(ψiu)

−
2∑

i=1

d+1∑
j,h=1

x j(δ jh − xh)∂x j

(
R(λ, Ad+1,i)(ψiu)

)
∂xh ψi

=: (I + B(λ) + C(λ)
)
(u).

Applying (3.6) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| � R and u ∈ C(Sd+1), that∥∥B(λ)u
∥∥

Sd+1
� M

|λ| ‖u‖Sd+1 ,

for some M > 0. In order to estimate C(λ) we proceed as follows.
We first observe, for every f , g ∈ D(Ad+1), that

d+1∑
i, j=1

xi(δi j − x j)∂xi f ∂x j g =
d+1∑
i=1

xi(1 − xi)∂xi f ∂xi g −
d+1∑
i=1

d+1∑
j=1, j �=i

[xi x j∂xi f ∂x j g − xi x j∂xi f ∂xi g + xi x j∂xi f ∂xi g]

=
d+1∑
i=1

xi(1 − xi)∂xi f ∂xi g −
d+1∑
i=1

d+1∑
j=1, j �=i

xi x j∂xi f (∂x j g − ∂xi g) −
d+1∑
i=1

xi∂xi f ∂xi g
d+1∑

j=1, j �=i

x j

=
d+1∑
i=1

xi

(
1 −

d+1∑
j=1

x j

)
∂xi f ∂xi g −

d+1∑
i=1

d+1∑
j=1, j �=i

xi x j∂xi f (∂x j g − ∂xi g).

Next, let f ∈ D(Ad+1,1) and v = Φ1( f ). Then v ∈ D(Ad+1,1) and the following holds

∂ri v = (1 − rd+1)∂xi f , i = 1, . . . ,d, ∂rd+1 v = −
d∑

i=1

ri∂xi f + ∂xd+1 f , (3.10)

and hence,

∂xi f = 1

1 − rd+1
∂ri v, i = 1, . . . ,d, ∂xd+1 f = ∂rd+1 v +

d∑
i=1

ri

1 − rd+1
∂ri v. (3.11)

So, by Proposition 3.3 we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > R1 := max{R, l1, l2}, that∥∥∥∥∥
d+1∑

i, j=1

xi(δi j − x j)∂xi f ∂x j ψ1

∥∥∥∥∥
Sd+1

=
∥∥∥∥∥

d+1∑
i=1

xi

(
1 −

d+1∑
j=1

x j

)
∂xi f ∂xi ψ1 −

d+1∑
i=1

d+1∑
j=1, j �=i

xix j∂xi f (∂x j ψ1 − ∂xi ψ1)

∥∥∥∥∥
Sd+1

� c

(
d+1∑
i=1

∥∥∥∥∥xi

(
1 −

d+1∑
j=1

x j

)
∂xi f

∥∥∥∥∥
Ω1

+
d+1∑
i=1

d+1∑
j=1, j �=i

‖xi x j∂xi f ‖Ω1

)

= c

(
d∑

i=1

∥∥∥∥∥ri(1 − rd+1)
2

(
1 −

d∑
j=1

r j

)
1

1 − rd+1
∂ri v

∥∥∥∥∥
Td+1,1−δ

+
∥∥∥∥∥rd+1(1 − rd+1)

(
1 −

d∑
r j

)(
∂rd+1 v +

d∑ ri

1 − rd+1
∂ri v

)∥∥∥∥∥

j=1 i=1 Td+1,1−δ
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+
d∑

i=1

d∑
j=1, j �=i

∥∥∥∥rir j(1 − rd+1)
2 1

1 − rd+1
∂ri v

∥∥∥∥
Td+1,1−δ

+
d∑

i=1

∥∥∥∥ri(1 − rd+1)
1

1 − rd+1
∂ri v

∥∥∥∥
Td+1,1−δ

+
d∑

i=1

∥∥∥∥∥rd+1ri(1 − rd+1)

(
∂rd+1 v +

d∑
i=1

ri

1 − rd+1
∂ri v

)∥∥∥∥∥
Td+1,1−δ

)

� C1√|λ| ‖λv − Ad+1,1 v‖Td+1,1−δ
= C1√|λ| ‖λ f − Ad+1,1 f ‖Ω1

� C1√|λ| ‖λ f − Ad+1 f ‖Sd+1 .

If f = R(λ, Ad+1,1)(ψ1u) for some u ∈ C(Sd+1), it follows, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > R1, that∥∥∥∥∥
d+1∑
j,h=1

x j(δ jh − xh)∂x j

(
R(λ, Ad+1,1)(ψ1u)

)
∂xh ψi

∥∥∥∥∥
Sd+1

� C1√|λ| ‖u‖Sd+1 . (3.12)

By the symmetry of change of variables, we obtain in analogous way that there exists C2 > 0 such that, for every λ ∈ {z ∈ C |
|arg z| < θ} with |λ| > R1 and u ∈ C(Sd+1), we have∥∥∥∥∥

d+1∑
j,h=1

x j(δ jh − xh)∂x j

(
R(λ, Ad+1,2)(ψ2u)

)
∂xh ψi

∥∥∥∥∥
Sd+1

� C2√|λ| ‖u‖Sd+1 . (3.13)

Combining (3.12) and (3.13), we obtain that there exists K > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > R1 and
u ∈ C(Sd+1),∥∥C(λ)u

∥∥
Sd+1

� K√|λ| ‖u‖Sd+1 .

If |λ| � 1, then the operator B = (λ − Ad+1)S(λ) is invertible in L(C(Sd+1)). Hence, there exists R(λ, Ad+1) = S(λ)B−1 and∥∥R(λ, Ad+1)
∥∥ = ∥∥S(λ)B−1

∥∥ � C ′

|λ| , (3.14)

with C ′ a positive constant independent of λ, provided λ − Ad+1 is injective and, in particular, for λ > 0 as Ad+1 is
dissipative. To conclude that the semigroup is analytic of angle π/2 it now suffices to repeat the argument already used in
the proof of Proposition 2.6.

Since R(λ, Ad+1) = S(λ)B−1 for some λ > 0 and the operator S(λ) is compact by Proposition 3.2, the differential operator
(Ad+1, D(Ad+1)) has compact resolvent. Thus, the semigroup is also compact, being analytic and hence, norm continu-
ous. �

Recalling that the eigenvalues of the operator Ad+1 are given by λn = −n(n−1)
2 , n � 1, [28, Ch. VIII, p. 221], and using

Theorem 3.6 together with [23, Proposition 5.6] we obtain the following result.

Theorem 3.7. The semigroup generated by (Ad+1, D(Ad+1)) is bounded analytic of angle π/2.

Moreover, the differential operator (Ad+1, D(Ad+1)) satisfies:

Proposition 3.8. Suppose that Hypotheses 3.1 hold.
Then the closure (Ad+1, D(Ad+1)) of the differential operator (Ad+1, C2(Sd+1)) defined in (1.1) satisfies the following properties:

(1) There exist Kb > 0 and tb > 0 such that, for every 0 < t < tb , i = 1, . . . ,d + 1 and u ∈ C(Sd+1), we have∥∥√
xi(1 − xi)∂xi

(
T (t)u

)∥∥
Sd+1

� Kb√
t
‖u‖Sd+1 ,

and such that, for every t � tb , i = 1, . . . ,d + 1 and u ∈ C(Sd+1), we have∥∥√
xi(1 − xi)∂xi

(
T (t)u

)∥∥
Sd+1

� Kb‖u‖Sd+1 .
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(2) For each 0 < θ < π there exist two constants C > 0 and l > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l,
i = 1, . . . ,d + 1 and u ∈ C(Sd+1), we have∥∥√

xi(1 − xi)∂xi

(
R(λ, Ad+1)u

)∥∥
Sd+1

� C√|λ| ‖u‖Sd+1 .

Proof. We first prove property (2). According to the notation in the proof of Theorem 3.6, fixed an angle 0 < θ < π there
exists l > 1 such that, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l, we have

R(λ, Ad+1) = S(λ)B−1,

where the operators S(λ) are defined in (3.7) and ‖B−1‖ � 2. Fix i ∈ {1, . . . ,d + 1}. So, we obtain, for every λ ∈ {z ∈ C |
|arg z| < θ} with |λ| > l and u ∈ C(Sd+1), that∥∥√

xi(1 − xi)∂xi

(
R(λ, Ad+1)u

)∥∥
Sd+1

�
2∑

j=1

∥∥√
xi(1 − xi)∂xi

(
ψi R(λ, Ad+1, j)

(
ψ j B−1u

))∥∥
Ω j

�
2∑

j=1

(∥∥√
xi(1 − xi)∂xi (ψ j)R(λ, Ad+1, j)

(
ψ j B−1u

)∥∥
Ω j

+ ∥∥√
xi(1 − xi)ψ j∂xi

(
R(λ, Ad+1, j)

(
ψ j B−1u

))∥∥
Ω j

)

� c
2∑

j=1

(
C

|λ|
∥∥ψ j B−1u

∥∥
Ω j

+ ∥∥√
xi(1 − xi)ψ j∂xi

(
R(λ, Ad+1, j)

(
ψ j B−1u

))∥∥
Ω j

)

� c
2∑

j=1

(
C√|λ|

∥∥B−1
∥∥‖u‖Sd+1 + ∥∥√

xi(1 − xi)∂x
(

R(λ, Ad+1, j)
(
ψ j B−1u

))∥∥
Ω j

)
(3.15)

with c := sup2
j=1‖ψ j‖1,Ωi . To estimate the second addend on the right in (3.15) we proceed as follows.

For j = 1 set f = R(λ, Ad+1,1)(ψ1 B−1u) and v = Φ1( f ). Then, by (3.10) and (3.11) we have, for i = 1, . . . ,d, that

∥∥√
xi(1 − xi)∂xi f

∥∥
Ω1

=
∥∥∥∥
√

ri(1 − rd+1 )[1 − ri(1 − rd+1)]
1 − rd+1

∂ri v

∥∥∥∥
Td+1,1−δ

�
C ′′

1√|λ| ‖λv − Ad+1,1 v‖Td+1,1−δ
= C1√|λ| ‖λ f − Ad+1,1 f ‖Ω1

= C1√|λ|
∥∥ψ1 B−1u

∥∥
Ω1

� C1√|λ|
∥∥B−1

∥∥‖u‖Sd+1 , (3.16)

and we have, for i = d + 1, that∥∥√
xd+1(1 − xd+1)∂xd+1 f

∥∥
Ω1

(3.17)

=
∥∥∥∥∥√

rd+1(1 − rd+1)

(
∂rd+1 v +

d∑
i=1

ri

1 − rd+1
∂ri v

)∥∥∥∥∥
Td+1,1−δ

�
∥∥√

rd+1(1 − rd+1)∂rd+1 v
∥∥

Td+1,1.δ
+

d∑
i=1

∥∥∥∥√
rd+1(1 − rd+1)

ri

1 − rd+1
∂ri v

∥∥∥∥
Td+1,1−δ

�
C ′′

1√|λ| ‖λv − Ad+1,1 v‖Td+1,1−δ
= C ′

1√|λ| ‖λ f − Ad+1,1 f ‖Ω1

= C ′
1√|λ|

∥∥ψ1 B−1u
∥∥

Ω1
�

C ′
1√|λ|

∥∥B−1
∥∥‖u‖Sd+1 . (3.18)

By the symmetry of the change of variables, one analogously shows that there exists C2 > 0 such that, for every λ ∈ {z ∈ C |
|arg z| < θ} with |λ| > l, i = 1, . . . ,d + 1 and u ∈ C(Sd+1), we have∥∥√

xi(1 − xi)∂xi

(
R(λ, Ad+1,2)

(
ψ2 B−1u

))∥∥
Ω2

� C2√ ∥∥B−1
∥∥‖u‖Sd+1 . (3.19)
|λ|
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Combining (3.15)–(3.17) and (3.19) we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} with |λ| > l, i = 1, . . . ,d + 1 and u ∈ C(Sd+1),
that ∥∥√

xi(1 − xi)∂xi

(
R(λ, Ad+1)u

)∥∥
Sd+1

� C√|λ| ‖u‖Sd+1

for some constant C > 0 independent of u and λ.
Property (1) follows as in the proof of Proposition 2.7(1). �

3.3. The main results

Finally, we can state and prove the main results of this paper.

Theorem 3.9. The closure (Ad, D(Ad)) of the operator (Ad, C2(Sd)) generates a bounded analytic C0-semigroup of angle π/2 on
C(Sd) for every d � 1. The semigroup is compact.

Proof. The proof is by induction on the integer d � 1. The case d = 1 is given in [6,23]. Suppose that the result holds for
d � 2. Then we can apply Theorem 3.6 and conclude that the result holds for d + 1. Thus, the proof is complete. �

Therefore, a similar argument as in the proof of Proposition 2.6 together with Theorem 3.9 allow us to show that the
following holds.

Theorem 3.10. Let d � 1 and m be a strictly positive function in C(Sd). Then the operator (mAd, D(Ad)) generates an analytic
C0-semigroup of angle π/2 on C(Sd). The semigroup is contractive and compact.

Proof. By Theorem 1.1 and [12, Theorem] we can conclude that (mAd, D(Ad)) generates a contractive C0-semigroup
on C(Sd). We claim that the semigroup is analytic of angle π/2. To show this we can proceed as in the proof of Proposi-
tion 2.6 and hence, we indicate only the main changes.

For each n ∈ N let I j
n := [ j−1

n ,
j+1
n ], j = 1, . . . ,n − 1, and let L = {1, . . . ,n − 1}d . Then, for every j = ( j1, j2, . . . , jd) ∈ L,

we define the set

J j
n = (

I j1
n × I j2

n × · · · × I jd
n

) ∩ Sd.

Set Mn = { j ∈ L | J j
n �= ∅} and fix V j

n ∈ J j
n for all j ∈ Mn . Then, we choose φ

j
n ∈ C∞(Rd) for all j ∈ Mn such that supp(φ

j
n) ⊆ J j

n

and
∑

j∈Mn
(φ

j
n)2 = 1. We observe that, if v j ∈ C(Q ), for j ∈ Mn , and x ∈ Sd , then there exists j ∈ Mn such that x ∈ J j

n and
hence, ∑

j∈Mn

φ
j

n(x)v j(x) =
∑

j∈Mn,0

φ
j

n(x)v j(x),

where Mn,0 = { j = ( j1 + h1, j2 + h2, . . . , jd + hd) | ∀i ∈ {1, . . . ,d} ki ∈ {−1,0,1}} so that Mn,0 contains exactly 3d elements.
Therefore, we have∥∥∥∥ ∑

j∈Mn

φ
j

n v j

∥∥∥∥
Sd

� 3d sup
j∈Mn

∥∥φ
j

n v j
∥∥

Sd
. (3.20)

Since (Ad, D(Ad)) generates a bounded analytic semigroup of angle π/2 on C(Sd), for each λ ∈ C \ (−∞,0), n ∈ N and
j ∈ Mn , we can define

R jn(λ) = (
λ − m

(
V j

n
)

Ad
)−1

,

and hence, for a fixed angle 0 < θ < π , there exists K > 0 such that, for every λ ∈ {z ∈ C | |arg z| < θ}, n ∈ N and j ∈ Mn , we
have ∥∥R jn(λ)

∥∥ = [
m

(
V j

n
)]−1

∥∥∥∥R

(
λ

m(V j
n)

, Ad

)∥∥∥∥ � K

|λ| . (3.21)

Moreover, if we set μ = λ[m(V j
n)]−1, then we have

Ad R jn(λ) = [
m

(
V j

n
)]−1(−I + λR jn(λ)

)
and hence,
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∥∥Ad R jn(λ)
∥∥ �

[
m

(
V j

n
)]−1

(1 + K ) � 1 + K

m0
(3.22)

with m0 = minx∈Sd m(x) > 0. We now consider the approximate resolvents of the operator mAd defined by

Sn(λ)u =
∑
j∈Mn

φ
j

n · R jn(λ)
(
φ

j
nu

)
, u ∈ C(Sd).

Combining (3.21) with (3.20), we obtain, for every λ ∈ {z ∈ C | |arg z| < θ} and n ∈ N, that∥∥Sn(λ)
∥∥ � 3d K

|λ| . (3.23)

Since we have, for every φ,η ∈ D(Ad) that

Ad(φη) = ηAd(φ) + φA2(η) +
d∑

i, j=1

xi(δi j − x j)∂xi φ∂x j η,

the operators Sn(λ) satisfy, for every u ∈ C(Sd),

(λ − mAd)Sn(λ)u = u +
∑
j∈Mn

φ
j

n
(
m

(
V j

n
) − m

)
Ad

(
R jn(λ)

(
φ

j
nu

))

−
∑
j∈Mn

mAd
(
φ

j
n
) · R jn(λ)

(
φ

j
nu

) −
∑
j∈Mn

d∑
i,h=1

xi(δih − xh)∂xi

(
R jn(λ)

(
φ

j
nu

))
∂xh φ

j
n

=: (I + C1(λ) + C2(λ) + C3(λ)
)
u.

We fix n ∈ N such that sup
J j
n
|m(x) − m(V j

n)| � ε =: m0
2.3d(1+K )

for j ∈ Mn . Then, from (3.20)–(3.22) and Proposition 3.8(2),

and argumenting as in proof of Proposition 2.6 we obtain, for every λ ∈ {z ∈ C | |arg z| < θ |} with |λ| > l and u ∈ C(Sd), that∥∥C1(λ)u
∥∥

Sd
<

1

2
‖u‖Sd ,

∥∥C2(λ)u
∥∥

Sd
� K ′

|λ| ‖u‖Sd ,
∥∥C3(λ)u

∥∥
Sd

� K ′′
√

λ
‖u‖Sd ,

for some positive constants K ′ , K ′′ independent of λ and u. Now, if |λ| is large enough, then we get ‖C1(λ) + C2(λ) +
C3(λ)‖ < 1 and hence, the operator B = (λ − mA2)Sn(λ) is invertible in L(C(Sd)). So, there exists R(λ,mAd) = Sn(λ)B−1 in

L(C(Sd)) and, by (3.23) ‖R(λ,mAd)‖ = ‖S(λ)B−1‖ � M′
|λ| for some M ′ > 0 independent of λ, provided λ − mAd is injective

and, in particular, for λ > 0 as mAd is dissipative. To conclude the proof it now suffices to repeat the argument already used
in the proof of Proposition 2.6. �
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