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Abstract

For certain Bolza problems with linear dynamics, two sets extending the notion of conjugate
points in the calculus of variations are introduced. Independently of nonsingularity assumptions,
their emptiness, in one case without normality assumptions, is shown to be equivalent to a second
order necessary condition. A comparison with other notions available in the literature is given.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we shall be concerned with the problem (see the details in Section 2) of
minimizing a functional of the form I (x,u) = g(x(t1)) + ∫ t1

t0
L(t, x(t), u(t)) dt subject to:

(a) (x,u) : [t0, t1] → Rn × Rm with x piecewise C1, u piecewise continuous;
(b) ẋ(t) = A(t)x(t) + B(t)u(t) (t ∈ [t0, t1]);
(c) x(t0) = ξ0, Cx(t1) + b = 0.
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For this problem, a second order necessary condition for optimality can be easily derived
without normality assumptions, and our aim is to find an appropriate notion of conjugate
points which characterizes that condition. In the classical theory of calculus of variations,
this is usually achieved by means of nontrivial solutions of Jacobi’s equation (Euler’s equa-
tion for the second integrand) vanishing at two points which are called conjugate to each
other. The condition of Jacobi states that the set of points conjugate to an endpoint is empty
in the underlying open time interval, and it is equivalent to a second order necessary con-
dition assuming the trajectory under consideration satisfies the strengthened condition of
Legendre and, therefore, it is nonsingular.

For the problem posed above, let us denote by H the set of processes (x,u) satisfy-
ing the second order necessary condition. In this paper we first introduce a set of points
S1(x,u) with the property that (x,u) ∈ H if and only if S1(x,u) is empty. It extends the
classical theory not only to more general problems but also to singular trajectories. In fact,
one can easily show that, in the calculus of variations context, this set contains the clas-
sical set of conjugate points in the open interval under nonsingularity assumptions. We
compare it with a set G1(x,u) of “generalized conjugate points” defined in [4] and show
that G1(x,u) ⊂ S1(x,u). For normal problems, we introduce a second set S2(x,u) whose
emptiness is again equivalent to the condition (x,u) ∈ H, but it might be easier to check
its nonemptiness than that of S1(x,u). We compare it with a set G2(x,u) of “generalized
coupled points” introduced in [7] and show that G1(x,u) ⊂ G2(x,u) ⊂ S2(x,u). All these
sets of “extended conjugate points” are intervals in R, and S1 and S2 correspond to a
generalization of two sets first introduced in [1,6].

Now, for the “conjugate intervals” defined in [4,7], their emptiness has been established
merely as a sufficient condition for the existence of negative second variations. Also (we
hope most readers will agree) the main idea of characterizing a condition is, generally, to
obtain a simpler way of verifying it. However, even in the calculus of variations, simple
examples show that to solve the question of nonemptiness of these sets may be much more
difficult than checking if that condition holds. For the two sets introduced in this paper,
however, these two undesirable features are completely solved.

2. The problem and necessary conditions

Suppose we are given an interval T := [t0, t1] in R, open sets O ⊂ Rn and V ⊂ Rm,
ξ0 ∈ Rn, b ∈ Rk (k � n), a constant matrix C of dimension k × n, functions g :O → R
and L :T × O × V → R, and matrices of continuous functions A,B of dimensions n × n

and n×m, respectively. Denote by X(T ,O) the space of piecewise C1 functions mapping
T to O , by U(T ,V ) the space of piecewise continuous functions mapping T to V , set
Z := X(T ,O) × U(T ,V ), and define

D := {
(x,u) ∈ Z | ẋ(t) = A(t)x(t) + B(t)u(t) (t ∈ T )

}
,

Ze := {
(x,u) ∈ D | x(t0) = ξ0, Cx(t1) + b = 0

}
.

Let I :Z → R be given by I (x,u) := g(x(t1)) + ∫ t1
t0

L(x̃(t)) dt , where (x̃(t)) is short for
(t, x(t), u(t)). The problem we shall deal with, which we label (P), is that of minimizing I
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over Ze . We assume throughout the paper that L and g are of class C2, and the matrix C

is of full rank.
Elements of Z will be called processes, and a process (x,u) solves (P) if (x,u) ∈ Ze and

I (x,u) � I (y, v) for all (y, v) ∈ Ze. Without loss of generality, the theory to follow will be
applied to global solutions since the necessary conditions we state hold for any open sets
O ⊂ Rn and V ⊂ Rm. Thus, shrinking these sets if necessary, the same conditions remain
valid for local minima.

To state well-known first and second order conditions for (P) (see, for example, [4,7]),
we shall find convenient to introduce the following notation.

• For any S ⊂ T and r ∈ N, let X(S,Rr ) (respectively U(S,Rr )) be the space of piece-
wise C1 (respectively piecewise continuous) functions mapping S to Rr . For simplic-
ity, set X := X(T ,Rn), U := U(T ,Rm).

• Define the set of admissible variations as

Y := {
(y, v) ∈ X × U | ẏ(t) = A(t)y(t) + B(t)v(t) (t ∈ T ), y(t0) = 0,

Cy(t1) = 0
}
.

• The problem (P) will be called normal if there is no nonzero solution p on T of the
system

ṗ(t) + A∗(t)p(t) = 0, B∗(t)p(t) = 0, t ∈ T , −p(t1) ∈N ,

where N := {p ∈ Rn | p = C∗γ for some γ ∈ Rk} and ‘∗’ denotes transpose.
• For all (x,u) ∈ Z, let M(x,u) be the set of all (λ0,p) ∈ R × X satisfying:

(i) λ0 � 0 and λ0 + |p| �= 0;
(ii) ṗ(t) + A∗(t)p(t) = λ0L

∗
x(x̃(t)) (t ∈ T );

(iii) B∗(t)p(t) = λ0L
∗
u(x̃(t)) (t ∈ T );

(iv) −[p(t1) + λ0g
′(x(t1))

∗] ∈N .

• Consider the sets

E := {
(x,u,p) ∈ Z × X | (x,u) ∈ D and (1,p) ∈ M(x,u)

}
,

H := {
(x,u) ∈ Z | I ′′((x,u); (y, v)

)
� 0 for all (y, v) ∈ Y

}
,

where

I ′′((x,u); (y, v)
) = 〈

y(t1),Λy(t1)
〉 +

t1∫
t0

2Ω
(
t, y(t), v(t)

)
dt, (y, v) ∈ X × U,

Λ := g′′(x(t1)
)

and, for all (t, y, v) ∈ T × Rn × Rm,

2Ω(t, y, v) := 〈
y,Lxx

(
x̃(t)

)
y
〉 + 2

〈
y,Lxu

(
x̃(t)

)
v
〉 + 〈

v,Luu

(
x̃(t)

)
v
〉
.

Theorem 2.1. Suppose (x,u) solves (P). Then M(x,u) �= ∅. If (P) is normal then there
exists a unique p ∈ X such that (x,u,p) ∈ E and, moreover, (x,u) ∈ H.

For the problem we are dealing with, the normality assumption is no longer required for
the second order condition to hold. Let us give a simple proof of this fact.
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Theorem 2.2. If (x,u) solves (P) then (x,u) ∈H.

Proof. Let (y, v) ∈ Y , ε ∈ R, and set (z,w) := (x +εy,u+εv). Clearly ż(t) = A(t)z(t)+
B(t)w(t) (t ∈ T ), z(t0) = ξ0 and Cz(t1)+b = 0. Thus, since O and V are open, there exists
δ > 0 such that, for all |ε| < δ, (x+εy,u+εv) belongs to Ze . The function h : (−δ, δ) → R
given by h(ε) = I (x + εy,u + εv) (|ε| < δ) has therefore a minimum at ε = 0 and so

0 = h′(0) = I ′((x,u); (y, v)
)

:= g′(x(t1)
)
y(t1) +

t1∫
t0

{
Lx

(
x̃(t)

)
y(t) + Lu

(
x̃(t)

)
v(t)

}
dt

and 0 � h′′(0) = I ′′((x,u); (y, v)). In particular, (x,u) ∈H. �

3. Conjugate intervals

For all s ∈ [t0, t1) let Ts = [s, t1], Xs = X(Ts,Rn), Us = U(Ts,Rm), and

Ys := {
(y, v) ∈ Xs × Us | ẏ(t) = A(t)y(t) + B(t)v(t) (t ∈ Ts), y(s) = 0,

Cy(t1) = 0
}
.

Whenever we are given (x,u) ∈ Z and (y, v) ∈ Xs × Us , we shall consider the functions
σ :Ts → Rn and ρ :Ts → Rm defined by

σ [y, v](t) = σ(t) := Lxx

(
x̃(t)

)
y(t) + Lxu

(
x̃(t)

)
v(t),

ρ[y, v](t) = ρ(t) := Lux

(
x̃(t)

)
y(t) + Luu

(
x̃(t)

)
v(t).

Also, given (x,u) ∈ Z and (y, v) and (z,w) ∈ Xs × Us , consider the bilinear form

Fs

(
(z,w), (y, v)

) = 〈
z(t1),Λy(t1)

〉 +
t1∫

s

{〈
z(t), σ (t)

〉 + 〈
w(t), ρ(t)

〉}
dt.

Definition 3.1. For any (x,u) ∈ Z let S1(x,u) be the set of points s ∈ [t0, t1) for which
there exists (y, v) ∈ Ys such that either (i) or (ii) holds:

(i) Fs((y, v), (y, v)) < 0.
(ii) There exists (z,w) ∈ Y such that

Fs

(
(z,w), (y, v)

)2
> Fs

(
(y, v), (y, v)

)
I ′′((x,u); (z,w)

)
.

Theorem 3.2. (x,u) ∈ H ⇔ S1(x,u) = ∅.

Proof. ⇒. Suppose there exists s ∈ S1(x,u). Let (y, v) ∈ Ys be as in 3.1. Since (x,u) ∈H,
3.1(i) cannot hold. Thus a := Fs((y, v), (y, v)) � 0 and there exists (z,w) ∈ Y such that
β2 > ak where β = Fs((z,w), (y, v)) and k = I ′′((x,u); (z,w)). Set (ζ(t), η(t)) := (0,0)
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if t ∈ [t0, s], (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1], and note that (yα, vα) := (z + αζ,

w + αη) belongs to Y for any α ∈ R. If a = 0, so that β �= 0, set α := −(β + k/2β).
Then I ′′((x,u); (yα, vα)) = k + aα2 + 2αβ = −2β2 < 0. If a > 0, set α := −β/a. Then
I ′′((x,u); (yα, vα)) = (ak − β2)/a < 0.

⇐. Suppose (x,u) /∈ H. Let (y, v) ∈ Y be such that I ′′((x,u); (y, v)) < 0. Then 3.1(i)
holds with s = t0 and so t0 ∈ S1(x,u). �

In view of this result and Theorem 2.2, the nonemptiness of S1(x,u) implies non-
optimality of (x,u), independently of normality assumptions. For normal problems, how-
ever, we shall now introduce a set S2(x,u) for which verifying membership may be easier
than that of S1(x,u).

The definition of this second set is strongly based on the so-called accessory problem to
(P), which we label (AP). Given (x,u) ∈ Z, it corresponds to the problem of minimizing
I ′′((x,u); ·)/2 over Y , that is,

Minimize K(y, v) := 1

2

〈
y(t1),Λy(t1)

〉 +
t1∫

t0

Ω
(
t, y(t), v(t)

)
dt

subject to:

(a) (y, v) ∈ X × U ;
(b) ẏ(t) = A(t)y(t) + B(t)v(t) (t ∈ T );
(c) y(t0) = 0, Cy(t1) = 0.

For this problem, let us proceed as with (P) by defining, for the normal case, the sets M

and E . Given (x,u) ∈ Z, let M̃(y, v) be the set of all q ∈ X satisfying:

(i) q̇(t) + A∗(t)q(t) = Ω∗
y (ỹ(t)) [= Lxx(x̃(t))y(t) + Lxu(x̃(t))v(t)] (t ∈ T );

(ii) B∗(t)q(t) = Ω∗
u(ỹ(t)) [= Lux(x̃(t))y(t) + Luu(x̃(t))v(t)] (t ∈ T );

(iii) −[q(t1) + Λy(t1)] ∈N ,

and let Ẽ(x,u) be the set of all (y, v, q) ∈ X×U ×X such that ẏ(t) = A(t)y(t)+B(t)v(t)

(t ∈ T ) and q ∈ M̃(y, v). For any s ∈ [t0, t1), let Ẽs(x,u) be as above with (y, v, q) de-
fined on Ts . The following result gives first order conditions for a solution of the normal
accessory problem. It does follow from Theorem 2.1 (see, for example, [5]), but under as-
sumptions weaker than those imposed before since the integrand Ω can only be assured to
be piecewise continuous.

Lemma 3.3. Suppose (P) is normal and (x,u) ∈ Z. If (y, v) solves (AP) then there exists
q ∈ X such that (y, v, q) ∈ Ẽ(x,u).

Definition 3.4. For any (x,u) ∈ Z let S2(x,u) be the set of points s ∈ [t0, t1) for which
there exists (y, v) ∈ Ys such that:

(i) Fs((y, v), (y, v)) � 0.
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(ii) If there exists q ∈ Xs such that (y, v, q) ∈ Ẽs(x,u), then s > t0 and either (a) or (b)
holds:
(a) Luu(x̃(s+))v(s) �= 0;
(b) there exists w ∈ U([t0, s],Rm) with 〈z(s), q(s)〉 �= 0 where z : [t0, s] → Rn is the

solution of ż(t) = A(t)z(t) + B(t)w(t), z(t0) = 0.

Theorem 3.5. Suppose (P) is normal. Then (x,u) ∈H ⇔ S2(x,u) = ∅.

Proof. ⇒. Suppose there exists s ∈ S2(x,u). Let (y, v) ∈ Ys(x,u) be as in 3.4 and define
(ζ(t), η(t)) := (0,0) if t ∈ [t0, s], (ζ(t), η(t)) := (y(t), v(t)) if t ∈ [s, t1]. Note that, by
3.4(i),

I ′′((x,u); (ζ, η)
) = Fs

(
(y, v), (y, v)

)
� 0.

Strict inequality contradicts the assumption (x,u) ∈ H and, therefore, (ζ, η) solves (AP).
By Lemma 3.3, there exists q1 ∈ X such that (ζ, η, q1) ∈ Ẽ(x,u). Thus, for all t ∈ T ,

q̇1(t) + A∗(t)q1(t) = Lxx

(
x̃(t)

)
ζ(t) + Lxu

(
x̃(t)

)
η(t),

B∗(t)q1(t) = Lux

(
x̃(t)

)
ζ(t) + Luu

(
x̃(t)

)
η(t),

and −[q(t1) + Λy(t1)] ∈ N . Let q be the restriction of q1 to [s, t1]. Thus (y, v, q) ∈
Ẽs(x,u) and, by 3.4(ii), s > t0. Suppose that 3.4(ii)(a) holds. Then B∗(s−)q1(s−) = 0 �=
B∗(s+)q1(s+), contradicting that t → B∗(t)q1(t) is continuous. Suppose that 3.4(ii)(b)
holds. Let Φ :T → Rn×n satisfy Φ̇(t) = −Φ(t)A(t) (t ∈ T ), Φ(t1) = In. Since q̇1(t) +
A∗(t)q1(t) = 0 (t ∈ [t0, s]), we have q1(s) = Φ∗(s)Φ∗−1(t)q1(t) (t ∈ [t0, s]), and so

0 �= 〈
z(s), q(s)

〉 =
s∫

t0

〈
Φ−1(s)Φ(t)B(t)w(t), q1(s)

〉
dt =

s∫
t0

〈
w(t),B∗(t)q1(t)

〉
dt.

But 〈w(t),B∗(t)q1(t)〉 = 0 for all t ∈ [t0, s] and we reach a contradiction.
⇐. Suppose (x,u) /∈ H. Let (y, v) ∈ Y be such that I ′′((x,u); (y, v)) < 0. Clearly,

condition 3.4(ii) does not apply since, otherwise, I ′′((x,u); (y, v)), which coincides with
Ft0((y, v), (y, v)), would vanish. Thus t0 ∈ S2(x,u). �

4. Comparison with other notions

For problem (P) let us introduce the set of “generalized conjugate points” defined in [4].

Definition 4.1. For any (x,u) ∈ Z let G1(x,u) be the set of points s ∈ [t0, t1) for which
there exist (y, v) ∈ Ys and q ∈ Xs such that, if λ(t) := B∗(t)q(t) − ρ(t) (t ∈ Ts), then

(i) q̇(t) + A∗(t)q(t) = σ(t) (t ∈ Ts);
(ii) q(s) �= 0, −[q(t1) + Λy(t1)] ∈N ;

(iii) 〈v(t), λ(t)〉 � 0 (t ∈ Ts);

and either (a) or (b) holds:
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(a) 〈v(t), λ(t)〉 > 0 on a set of positive measure;
(b) there exists (z,w) ∈ Y such that 〈z(s), q(s)〉 > 0 and 〈w(t), λ(t)〉 � 0 (t ∈ Ts).

Theorem 4.2. For any (x,u) ∈ Z, G1(x,u) ⊂ S1(x,u).

Proof. Let s ∈ G1(x,u) and let (y, v) ∈ Ys and q ∈ Xs be as in 4.1. Observe first that

Fs

(
(y, v), (y, v)

)

= 〈
y(t1),Λy(t1)

〉 t1∫
s

{〈
y(t), q̇(t) + A∗(t)q(t)

〉 + 〈
v(t),B∗(t)q(t) − λ(t)

〉}
dt

= 〈
y(t1),Λy(t1) + q(t1)

〉 −
t1∫

s

〈
v(t), λ(t)

〉
dt � 0.

If 4.1(a) holds, so does 3.1(i). If 4.1(a) does not hold, then Fs((y, v), (y, v)) = 0 and there
exists (z,w) ∈ Y such that 〈z(s), q(s)〉 > 0 and 〈w(t), λ(t)〉 � 0 (t ∈ Ts). Therefore,

Fs

(
(z,w), (y, v)

)
�

〈
z(t1),Λy(t1) + q(t1)

〉 − 〈
z(s), q(s)

〉 −
t1∫

s

〈
w(t), λ(t)

〉
dt < 0

and so 3.1(ii) holds. �
Let us turn now, for problem (P), to the set of “generalized coupled points” defined

in [7].

Definition 4.3. For any (x,u) ∈ Z let G2(x,u) be the set of points s ∈ [t0, t1) for which
there exist (y, v) ∈ Ys and q ∈ Xs such that if λ(t) := B∗(t)q(t) − ρ(t) (t ∈ Ts) then

(i) q̇(t) + A∗(t)q(t) = σ(t) (t ∈ Ts);
(ii) −[q(t1) + Λy(t1)] ∈N ;

(iii) 〈v(t), λ(t)〉 � 0 (t ∈ Ts);
(iv) if the inequality in (iii) is equality for all t ∈ Ts then, for any α ∈ Rk satis-

fying B∗(t)Φ∗(t)C∗α = λ(t) (t ∈ Ts), there exists w ∈ U([t0, s],Rm) such that
〈z(s),Φ∗(s)C∗α − q(s)〉 < 0, where Φ :T → Rn×n satisfies Φ̇(t) = −Φ(t)A(t)

(t ∈ T ), Φ(t1) = In, and z is the solution of ż(t) = A(t)z(t) + B(t)w(t), z(t0) = 0.

Theorem 4.4. For any (x,u) ∈ Z, G1(x,u) ⊂ G2(x,u) ⊂ S2(x,u).

Proof. Let s ∈ G1(x,u) and let (y, v) ∈ Ys and q ∈ Xs satisfy 4.1. If 4.1(a) holds then
s ∈ G2(x,u). If 4.1(a) does not hold then there exists (z,w) ∈ Y satisfying 4.1(b). Let
M(t) := B∗(t)Φ∗(t)C∗ (t ∈ T ) and let α ∈ Rk satisfy M(t)α = λ(t) (t ∈ Ts). Since
〈z(t1),C∗α〉 = 0, 〈M(t)α,w(t)〉 � 0 (t ∈ Ts), and
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z(t) =
t∫

t0

Φ(t)−1Φ(τ)B(τ)w(τ) dτ, t ∈ T ,

we have

〈
z(s),Φ∗(s)C∗α

〉 =
s∫

t0

〈
M(t)α,w(t)

〉
dt = −

t1∫
s

〈
M(t)α,w(t)

〉
dt � 0

and so 〈z(s),Φ∗(s)C∗α − q(s)〉 < 0. This proves the first contention.
Now, let s ∈ G2(x,u) and let (y, v) ∈ Ys and q ∈ Xs be as in 4.3. As in the proof of 4.2,

we have that 3.4(i) holds. Suppose there exists q1 ∈ Xs such that (y, v, q1) ∈ Ẽs(x,u).
Therefore

0 = Fs

(
(y, v), (y, v)

) = −
t1∫

s

〈
v(t), λ(t)

〉
dt � 0

and the inequality in 4.3(iii) is equality for all t ∈ Ts . Let l, l1 ∈ Rk be such that q∗(t1) =
−y∗(t1)Λ− l∗C and q∗

1 (t1) = −y∗(t1)Λ− l∗1C, and define r(t) := q(t)−q1(t) (t ∈ Ts) and
α := l1 − l. Since ṙ(t) + A∗(t)r(t) = 0 we have r(t) = Φ∗(t)r(t1) = Φ∗(t)C∗α (t ∈ Ts).
Hence B∗(t)Φ∗(t)C∗α = λ(t)+ρ(t)−B∗(t)q1(t) = λ(t) (t ∈ Ts). By 4.3(iv), there exists
w ∈ U([t0, s],Rm) such that

0 >
〈
z(s),Φ∗(s)C∗α − q(s)

〉 = 〈
z(s), r(s) − q(s)

〉 = −〈
z(s), q1(s)

〉
,

where z : [t0, s] → Rn is the solution of ż(t) = A(t)z(t)+B(t)w(t), z(t0) = 0. Thus s > t0,
3.4(ii)(b) holds, and s ∈ S2(x,u). �

5. An example

In this section we provide an example of a simple problem which illustrates how the
theory related to the sets S1(x,u) and S2(x,u) can be applied. Also, we briefly explain
some of the difficulties that arise in trying to prove nonemptiness of G1(x,u) and G2(x,u).

Example 5.1. Let α ∈ R and consider the problem (Pα) of minimizing

I (x,u) = 1

2

(
x2

2(π) +
π∫

0

{
t3u2(t) + 2t3x1(t)u(t) − 3tx2

1(t)
}
dt

) (
x = (x1, x2)

)

subject to ẋ1(t) = ẋ2(t) = x1(t) + u(t) (t ∈ [0,π]), x(0) = 0 and x1(π) + αx2(π) = 0.
In this case we have T = [0,π], n = 2, m = k = 1, ξ0 = (0,0), b = 0, O = R2, V = R,

C = (1, α),

A =
(

1 0
1 0

)
, B =

(
1
1

)
,

g(x1, x2) = x2/2, and L(t, x1, x2, u) = [t3u2 + 2t3x1u − 3tx2]/2.
2 1
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Observe first that (Pα) is normal if (p1,p2) ≡ 0 is the only solution of the system(
ṗ1(t) + p1(t) + p2(t)

ṗ2(t)

)
=

(
0

0

)
,

p1(t) + p2(t) = 0, t ∈ T , p2(π) = αp1(π).

Therefore, (Pα) is normal if and only if α �= −1.
Now, we have Lx = (t3u−3tx1,0), Lu = t3u+ t3x1, Lux = L∗

xu = (t3,0), Luu = t3,

Lxx =
(−3t 0

0 0

)
and Λ = g′′(x1, x2) =

(
0 0
0 1

)
.

Thus, for (y1, y2, v) ∈ Xs × Us ,

σ(t) =
(−3ty1(t) + t3v(t)

0

)
, ρ(t) = t3y1(t) + t3v(t),

the set Ys is given by those (y, v) = (y1, y2, v) ∈ Xs × Us satisfying(
ẏ1(t)

ẏ2(t)

)
=

(
y1(t) + v(t)

y1(t) + v(t)

)
, t ∈ [0,π],

y(s) = 0, y1(π) + αy2(π) = 0,

and the bilinear form Fs corresponds to

Fs

(
(z,w), (y, v)

)
= z2(π)y2(π) +

π∫
s

{
t3v(t)z1(t) − 3ty1(t)z1(t) + t3y1(t)w(t) + t3v(t)w(t)

}
dt.

Let us prove that, for any (x,u) ∈ Z, the point s = 0 belongs to S2(x,u). Suppose that,
for some s ∈ [0,π), y = (y1, y2) ∈ Xs is of class C2 with y(s) = y(π) = 0. Set v ≡ ẏ1 −y1
so that (y, v) ∈ Ys . In this event, integrating by parts, we obtain

Fs

(
(y, v), (y, v)

)
=

π∫
s

{
t3(ẏ1(t) − y1(t)

)2 + 2t3y1(t)
(
ẏ1(t) − y1(t)

) − 3ty2
1(t)

}
dt

=
π∫

s

{
t3ẏ2

1(t) − (
t3 + 3t

)
y2

1(t)
}
dt = −

π∫
s

t3y1(t)
[
ÿ1(t) + y1(t)

]
dt.

Therefore, if (y(t), v(t)) := (sin t, sin t, cos t − sin t) (t ∈ T ), then (y, v) ∈ Y0 and
F0((y, v), (y, v)) = 0. Thus, the first condition in the definition of S2(x,u) is satisfied.
For the second, suppose that there exists (q1, q2) ∈ X such that (y, v, q) ∈ Ẽ(x,u). By
definition, this means that q2(π) = αq1(π) and, for all t ∈ T ,(

q̇1(t) + q1(t) + q2(t)

q̇2(t)

)
=

(
t3v(t) − 3ty1(t)

0

)
,

q1(t) + q2(t) = t3y1(t) − t3v(t).
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This implies that

q̇1(t) = 3t2 cos t − t3 sin t = −3t sin t − t3 sin t, t ∈ T ,

which is not the case. Hence 0 ∈ S2(x,u). An application of Theorems 2.2 and 3.5 shows
that, for any α �= −1, the problem (Pα) has no solution.

For the case α = −1, let us prove that s = 0 belongs also to S1(x,u). Indeed, with
the function (y, v) used before, note that it suffices to show that there exists (z,w) =
(z1, z2,w) ∈ Y such that F0((z,w), (y, v)) �= 0. By definition, (z,w) should satisfy(

ż1(t)

ż2(t)

)
=

(
z1(t) + w(t)

z1(t) + w(t)

)
, t ∈ [0,π], z(0) = 0, z1(π) = z2(π)

and therefore

F0
(
(z,w), (y, v)

) =
π∫

0

{
t3v(t)z1(t) + t3v(t)w(t) + t3y1(t)w(t) − 3ty1(t)z1(t)

}
dt

=
π∫

0

{
t3ẏ1(t)ż1(t) − (

t3 + 3t
)
y1(t)z1(t)

}
dt.

If, for example, we set (z1(t), z2(t),w(t)) := (t, t,1 − t), t ∈ T , then

F0
(
(z,w), (y, v)

) =
π∫

0

{
t3 cos t − (

t4 + 3t2) sin t
}
dt = −

π∫
0

(
t4 + 6t2) sin t dt �= 0.

Hence 0 ∈ S1(x,u) and, by Theorems 2.2 and 3.2, (Pα) with α = −1 has no solution.
Let us turn now to the sets G1(x,u) and G2(x,u). Note first that the problem (Pα) with

α = −1, being abnormal, lies beyond the scope of Zeidan [7] but not that of Loewen and
Zheng [4]. Now, by definition, if a point s ∈ [0,π) belongs to any of these sets, there exist
(y, v) ∈ Ys and q ∈ Xs such that q1(π) = −q2(π) − y2(π) and, for all t ∈ Ts ,(

q̇1(t) + q1(t) + q2(t)

q̇2(t)

)
=

(
t3v(t) − 3ty1(t)

0

)
and v(t)λ(t) � 0,

where λ(t) = q1(t) + q2(t) − t3y1(t) − t3v(t). As one readily verifies, the additional con-
ditions defining membership of G1(x,u) or G2(x,u) rule out the choice y1 ≡ 0. Also (we
omit the details) the function used to prove nonemptiness of S1(x,u) and S2(x,u) con-
tradicts the above relations, and the question of how such functions can be found is left
unsolved.

6. Nonemptiness of S2(x,u)

In the introduction we mentioned that there are problems for which checking that (x,u)

does not belong to H may be easier than verifying nonemptiness of G1(x,u) or G2(x,u). In
fact, there are examples where one can trivially find an admissible variation (y, v) ∈ Y with
I ′′((x,u); (y, v)) < 0, so that (x,u) /∈ H, but there does not exist q ∈ X such that (y, v, q)
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satisfies the conditions defining membership of G1(x,u) or G2(x,u). This does not occur
with the sets introduced in this paper since the use of the same admissible variation (y, v)

shows that s = t0 belongs to S1(x,u) and S2(x,u).
Similarly, if a point s belongs to G1(x,u) or G2(x,u), the functions appearing in the

definitions of these two sets can be used to prove that s belongs also to S1(x,u) or S2(x,u).
The converse, however, may not occur (see Example 5.1) since one may find (y, v) ∈ Ys

satisfying the conditions defining membership of S1(x,u) or S2(x,u), but there does not
exist q ∈ Xs such that (y, v, q) satisfies those of G1(x,u) or G2(x,u).

To illustrate these facts, let us provide a simple calculus of variations problem. For a
more complete study of a class of problems including this particular one, we refer to [2,3].

Example 6.1. Let a > 0 and consider the problem of minimizing I (x,u) = 1
2

∫ a

0 t{u2(t) −
x2(t)}dt subject to ẋ(t) = u(t) (t ∈ [0, a]) and x(0) = x(a) = 0.

In this case we have T = [0, a], n = m = k = 1, ξ0 = b = 0, O = V = R, A ≡ g ≡ 0,
B ≡ 1, C = 1, and L(t, x,u) = t (u2 − x2)/2.

Let (x,u) ∈ Z. Observe first that, for any s ∈ [0, a),

Ys = {
(y, v) ∈ X × U | ẏ(t) = v(t) (t ∈ Ts), y(s) = y(a) = 0

}
,

and, for any (y, v) and (z,w) ∈ Xs × Us ,

Fs

(
(z,w), (y, v)

) =
a∫

s

t
{
w(t)v(t) − z(t)y(t)

}
dt.

Let (y1(t), v1(t)) := (t,1) for t ∈ [0, a/2] and (y1(t), v1(t)) := (a− t,−1) for t ∈ (a/2, a].
Then, as one readily verifies,

I ′′((x,u); (y1, v1)
) = F0

(
(y1, v1), (y1, v1)

) = a2/2 − a4/24

which is negative if a >
√

12. In other words, if a >
√

12, there exists (y, v) ∈ Y = Y0
with a negative second variation, showing that (x,u) /∈ H. Also, the proof shows that
0 ∈ S1(x,u) ∩ S2(x,u). Since this holds independently of (x,u), it follows that, if
a >

√
12, then H = ∅, and so the problem has no solution.

On the other hand, if a point s ∈ [0, a) belongs to G1(x,u) or G2(x,u) then, necessarily,
there exist (y, v) ∈ Ys with y �≡ 0, and q ∈ Xs , such that q̇(t) = −ty(t) and v(t)(q(t) −
tv(t)) � 0 for all t ∈ [s, a]. Thus there exists c ∈ R such that

ẏ(t)

(
c −

t∫
s

τy(τ ) dτ − t ẏ(t)

)
� 0 for all t ∈ [s, a].

For the function defined above it is required for c ∈ R to satisfy both

c −
a/2∫
0

τy1(τ ) dτ � a/2 > 0 and c −
a/2∫
0

τy1(τ ) dτ � −a/2 < 0

which is a contradiction.
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A similar situation occurs with the function (y2(t), v2(t)) := (sin t, cos t) if t ∈ [0,π]
and (y2(t), v2(t)) := (0,0) if t ∈ (π, a]. Indeed, for the sets G1(x,u) and G2(x,u), one
requires the existence of q ∈ X such that

cos t

(
c −

t∫
0

τ sin τ dτ − t cos t

)
� 0 for all t ∈ [0,π].

This implies, in particular, that c − sin t � 0 for t ∈ [0,π/2) and c − sin t � 0 for any
t ∈ (π/2,π], which is impossible. On the other hand,

I ′′((x,u); (y2, v2)
) = F0

(
(y2, v2), (y2, v2)

) =
π∫

0

t{cos2 t − sin2 t}dt = 0

and so (y2, v2) ∈ Y does not have a negative second variation. It does satisfy, however, the
condition 3.4(i) in the definition of S2(x,u). Moreover, there does not exist q ∈ X such that
(y2, v2, q) ∈ Ẽ since, if this were the case, we would have q(t) = t cos t and q̇(t) = −t sin t

(t ∈ [0,π]), which is not the case. This implies that the point s = 0 belongs to S2(x,u)

and therefore, if a � π , the problem has no solution. Let us finally mention that, by using
(y2, v2) to show that s = 0 belongs also to S1(x,u), we require to prove the existence of
(z,w) ∈ Y such that

Fs

(
(z,w), (y2, v2)

) =
π∫

0

t
{
ż(t) cos t − z(t) sin t

}
dt = −

π∫
0

z(t) cos t dt �= 0,

and this inequality clearly occurs if, for example, z(t) = sin t cos t , t ∈ [0,π].
This example motivates a simple device for proving nonemptiness of S2(x,u). Let us

consider, for simplicity of exposition, the basic fixed-endpoint problem in the calculus of
variations.

Suppose that we are given an interval T = [t0, t1] in R, two points ξ0, ξ1 in R, and a
function L mapping T × R × R to R. The problem is to minimize I (x,u) = ∫ t1

t0
L(x̃(t)) dt

subject to ẋ(t) = u(t) (t ∈ T ), x(t0) = ξ0 and x(t1) = ξ1.
With respect to problem (P), we have n = m = k = 1, b = −ξ1, O = V = R, A ≡ g ≡ 0,

B ≡ 1 and C = 1.

Proposition 6.2. Let (x,u) ∈ Z, s ∈ [t0, t1), and define

p(t) := Luu

(
x̃(t)

)
, r(t) :=

[
d

dt
Lxu

(
x̃(t)

)] − Lxx

(
x̃(t)

)
, t ∈ T .

Suppose that p ∈ C2, r is continuous, and there exists y ∈ C2(Ts,R) with y(s) = y(t1) = 0
such that

(i) p(t)ÿ(t) + [r(t) − p̈(t)/2]y(t) = 0 for all t ∈ Ts ;

(ii) ṗ(t)ẏ(t) + [p̈(t)/2]y(t) �= 0 for some t ∈ Ts .

Then s ∈ S2(x,u).
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Proof. Let v ≡ ẏ so that (y, v) ∈ Ys , and define

K(y) := Fs

(
(y, v), (y, v)

) =
t1∫

s

{
ẏ(t)ρ(t) + y(t)σ (t)

}
dt.

From the definition, and integrating
∫

Lxu(x̃(t))y(t)ẏ(t) dt by parts, we have

K(y) =
t1∫

s

{
Luu

(
x̃(t)

)
ẏ2(t) + 2Lxu

(
x̃(t)

)
y(t)ẏ(t) + Lxx

(
x̃(t)

)
y2(t)

}
dt

=
t1∫

s

{
p(t)ẏ2(t) − r(t)y2(t)

}
dt.

Integrating again by parts, we have
t1∫

s

p(t)ẏ2(t) dt = −
t1∫

s

y(t)
[
p(t)ÿ(t) + ṗ(t)ẏ(t)

]
dt

and therefore

K(y) = −
t1∫

s

y(t)
[
p(t)ÿ(t) + ṗ(t)ẏ(t) + r(t)y(t)

]
dt.

Integrating once more by parts, now
∫

ṗ(t)ẏ(t)y(t) dt , we obtain

K(y) = −
t1∫

s

y(t)
[
p(t)ÿ(t) + β(t)y(t)

]
dt,

where β(t) = r(t)− p̈(t)/2. By (i) we have K(y) = 0, and condition 3.4(i) in the definition
of S2(x,u) is satisfied. Now, suppose there exists q ∈ Xs such that (y, v, q) ∈ Ẽs(x,u).
Then, for all t ∈ Ts ,

0 = ρ̇(t) − σ(t) = p(t)ÿ(t) + ṗ(t)ẏ(t) + r(t)y(t) = ṗ(t)ẏ(t) + [
r(t) − β(t)

]
y(t)

contradicting (ii). Thus s ∈ S2(x,u). �
Note that, in Example 6.1, p(t) = r(t) = t , so that 6.2(i) and 6.2(ii) correspond, respec-

tively, to

t
(
ÿ(t) + y(t)

) = 0 for all t ∈ [s,π], and ẏ(t) �= 0 for some t ∈ [s,π].
Thus, setting y(t) = sin t (t ∈ [0,π]), it follows that s = 0 belongs to S2(x,u). Let us end
with two more examples of this nature. The first is a generalization of Example 6.1.

Example 6.3. Let n be a positive integer, and consider the problem of minimizing

I (x,u) = 1

2

π∫ {
tnu2(t) − (

tn + n(n − 1)tn−2/2
)
x2(t)

}
dt
0
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subject to ẋ(t) = u(t), t ∈ [0,π], and x(0) = x(π) = 0.
In this case we have p(t) = tn and r(t) = tn + n(n − 1)tn−2/2. Thus 6.2(i) and 6.2(ii)

correspond to

(i) tn(ÿ(t) + y(t)) = 0 for all t ∈ [s,π];
(ii) ntn−1ẏ(t) + [n(n − 1)tn−2/2]y(t) �= 0 for some t ∈ [s,π].

As before, setting y(t) = sin t (t ∈ [0,π]), it follows that s = 0 belongs to S2(x,u). On the
other hand, to show that a point s ∈ [0,π) belongs to either G1(x,u) or G2(x,u), we need
to prove the existence of a constant c ∈ R and y ∈ Xs with y(s) = y(π) = 0 and y �≡ 0,
such that

ẏ(t)

(
c −

t∫
s

{
τn + n(n − 1)τn−2/2

}
y(τ) dτ − tnẏ(t)

)
� 0 for all t ∈ [s,π].

Clearly the solution of this question is much more complicated than that of proving non-
emptiness of S2(x,u).

Example 6.4. Consider the problem of minimizing

I (x,u) = 1

2

π∫
0

{
u2(t) sin2 t − x2(t) cos2 t

}
dt

subject to ẋ(t) = u(t), t ∈ [0,π], and x(0) = x(π) = 0.
In this case we have p(t) = sin2 t and r(t) = cos2 t so that 6.2(i) and 6.2(ii) correspond,

respectively, to

sin2 t
(
ÿ(t) + y(t)

) = 0 for all t ∈ [s,π] and

2 sin t cos t ẏ(t) + cos 2ty(t) �= 0 for some t ∈ [s,π].
Setting y(t) = sin t (t ∈ [0,π]), we conclude that s = 0 belongs to S2(x,u). Now, for the
nonemptiness of G1(x,u) and G2(x,u), we require to prove the existence of s ∈ [0,π),
a constant c ∈ R, and y ∈ Xs with y(s) = y(π) = 0 and y �≡ 0, such that

ẏ(t)

(
c −

t∫
s

y(τ ) cos2 τ dτ − ẏ(t) sin2 t

)
� 0 for all t ∈ [s,π],

a question which we leave open again.

We refer to [3] for a wide range of problems for which verifying membership of the set
S2(x,u) may be trivial, while checking if (x,u) /∈H or if the conditions defining member-
ship of G1(x,u) or G2(x,u) hold, may be extremely difficult.
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