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In this study, the least square support vector machine (LSSVM) algorithm was applied to predicting the
bearing capacity of bored piles embedded in sand and mixed soils. Pile geometry and cone penetration
test (CPT) results were used as input variables for prediction of pile bearing capacity. The data used were
collected from the existing literature and consisted of 50 case records. The application of LSSVM was
carried out by dividing the data into three sets: a training set for learning the problem and obtaining a
relationship between input variables and pile bearing capacity, and testing and validation sets for
evaluation of the predictive and generalization ability of the obtained relationship. The predictions of pile
bearing capacity by LSSVM were evaluated by comparing with experimental data and with those by
traditional CPT-based methods and the gene expression programming (GEP) model. It was found that the
LSSVM performs well with coefficient of determination, mean, and standard deviation equivalent to 0.99,
1.03, and 0.08, respectively, for the testing set, and 1, 1.04, and 0.11, respectively, for the validation set. The
low values of the calculated mean squared error and mean absolute error indicated that the LSSVM was
accurate in predicting the pile bearing capacity. The results of comparison also showed that the proposed
algorithm predicted the pile bearing capacity more accurately than the traditional methods including the
GEP model.
� 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Bearing capacity is one of the most important factors that
govern the design of pile foundations. Therefore, it has been the
subject of interest for many researchers throughout the history of
the geotechnical engineering profession. As a result, numerous
theoretical and experimental procedures have been proposed to
predict the pile behavior and bearing capacity. However, accurate
evaluation of pile bearing capacity and certain interpretation of pile
load transfer mechanism are still far from being accomplished due
to the complexity of the problem.

The theoretical solutions, which employ the theory of bearing
capacity to calculate the pile shaft and tip resistance, involve
shortcomings resulting from considerable uncertainty over the
factors that influence the bearing capacity. Among those factors are
ahadori).
ock and Soil Mechanics, Chi-

ics, Chinese Academy of Sci-
hts reserved.
the effect of installation method, stress history and soil compress-
ibility. For bored piles embedded in layered soil, the problem is
more complex due to sensitivity of the factors that affect the
behavior of the pile and the difficulty in quantifying those factors.
For instance, the friction angle between pile and the surrounding
soil cannot be exactly determined because of the effect of instal-
lation procedure and the difficulty in finding the real soil
properties.

The experimental solutions that correlate the results of in-situ
tests such as standard penetration test (SPT) or cone penetration
test (CPT) with pile bearing capacity also involve setbacks. Thatmay
be attributed to that the SPT has substantially inherent variability
and does not reflect soil compressibility (Abu-Kiefa, 1998). More-
over, the SPT results are affected by many factors, such as operator,
drilling, hammer efficiency, and rate of blows. Hence, the accuracy
of the proposed correlations between SPT data and pile bearing
capacity is not assured. Although the correlation between pile ca-
pacity and CPT data can be a better alternative to the SPT correla-
tion, comparative studies of the available CPT-based methods
carried out by a number of researchers (e.g. Briaud,1988; Roberston
et al., 1988; Eslami, 1997; Abu-Farsakh and Titi, 2004; Cai et al.,
2008) have shown that the capacity predictions can be very
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different for the same case depending on the method employed. It
is also found that these methods cannot provide consistent and
accurate prediction of pile bearing capacity.

Considering the limitations of the proposed procedures for
predicting pile bearing capacity and the limited success that they
have achieved in terms of providing accurate prediction of pile
bearing capacity, further research is required to overcome the
complications associated with the problem. Artificial intelligence
techniquesmay be better alternatives, due to the capability of being
able to deal with complex and highly nonlinear functions, and
employing the considerable capacity of computers to perform
enormously iterated work. The modeling advantage of these tech-
niques is their ability to capture the nonlinear and complex re-
lationships between the targeted output and the factors affecting it,
without having to assume a priori formula describing this rela-
tionship. A number of researchers (e.g. Teh et al., 1997; Abu-Kiefa,
1998; Das and Basudhar, 2006; Ardalan et al., 2009; Shahin, 2010;
Ornek et al., 2012; Tarawneh, 2013) have successfully applied
artificial neural network (ANN), which is a form of artificial intel-
ligence, to solving engineering problems. Genetic programming
(GP), which is another form of artificial intelligence, has been used
successfully in solving engineering problems (Rezania and Javadi,
2007; Alavi et al., 2011; Alkroosh and Nikraz, 2011a, b; Gandomi,
2011; Gandomi and Alavi, 2012). Recently, an emerging algo-
rithm, i.e. the least square support vector machine (LSSVM), which
is a developed version of support vector machine (SVM), has been
found successful in solving engineering problems (Das et al., 2011a,
b; Samui and Kothari, 2011). This study investigates the feasibility
of using the LSSVM to predict the bearing capacity of bored piles
embedded in sand and mixed soils more accurately than the
available methods.
2. Support vector machine (SVM)

The SVM is a method developed using the statistical learning
concept (Suykens and Vandewalle, 1999). It has been widely used
across the world (Cortes and Vapnik, 1995; Bazzani et al., 2001;
Suykens et al., 2002; Amendolia et al., 2003; Baylar et al., 2009;
Übeyli, 2010; Chen et al., 2011; Chamkalani et al., 2013; Rafiee-
Taghanaki et al., 2013; Shokrollahi et al., 2013).

If we have training samples with given data xi˛Rnand result
data yi˛Rwith labels �1 and 1, respectively, the SVM estimates the
function shown below (Suykens and Vandewalle, 1999; Suykens
et al., 2002):

y ¼ wTFðxÞ þ b (1)

where FðxÞ is the function that maps x, andw and b are the weight
vector and bias variable. When the data are separable, we will have
(Suykens and Vandewalle, 1999; Suykens et al., 2002):

wTFðxkÞ þ b � 1 ðyk ¼ 1Þ
wTFðxkÞ þ b � 1 ðyk ¼ �1Þ

�
(2)

Eq. (2) is nearly equal to (Das et al., 2011a, b; Chamkalani et al.,
2013):

yk
h
wTFðxkÞ þ b

i
� 1 ðk ¼ 1; 2; .; NÞ (3)

The further development of linear SVM to non-independent
case was also created by Cortes and Vapnik (1995). Simply, it is
done by presenting extra variables into Eq. (3) (Suykens and
Vandewalle, 1999; Suykens et al., 2002):
yk
h
wTFðxkÞ þ b

i
� 1� zk; zk � 0 ðk ¼ 1; 2; .; NÞ (4)

where zk is the deviation factor.
The optimal separating hyperplane is predicted using the vector

w that minimizes the functional conditions using the constraints
(Eq. (4)) (Suykens and Vandewalle, 1999; Suykens et al., 2002;
Übeyli, 2010):

Fðw; ziÞ ¼ 1
2
wTw þ C

2

XN
i¼1

zpi (5)

where p is the upper limit, and C is a coefficient.
In the SVM, optimal separating hyperplane is calculated using

the quadratic method (Cortes and Vapnik, 1995):

Fðw; b; ai; zi; biÞ ¼
1
2
wTwþC

2

XN
i¼1

zi

�
XN
i¼1

ai

h
yi
�
wTxiþb

�
�1þzi

i
�
XN
j¼1

bizia

(6)

where a is the adjustable parameter, ai and bi are the Lagrange
multipliers (Suykens and Vandewalle, 1999; Suykens et al., 2002).

In contrast to the SVM, the LSSVM is developed using minimi-
zation of cost equation (Suykens and Vandewalle, 1999; Suykens
et al., 2002):

Fðw; ziÞ ¼ 1
2
wTw þ C

2

XN
i¼1

z2i (7)

yi
h
wTFðxiÞ þ b

i
¼ 1� zi ði ¼ 1; 2; .; NÞ (8)

To derive the dual problem for the nonlinear classification
problem of LSSVM, the Lagrange function is defined as (Suykens
and Vandewalle, 1999; Suykens et al., 2002):

Lðw; b; z; aÞ ¼ 1
2
wTw þ C

2

XN
i¼1

z2i

�
XN
i¼1

ai

n
yi
h
wTFðxiÞ þ b

i
� 1þ zi

o
ð9Þ

The conditions for optimality can be obtained as

vL
vw

¼ 00w ¼
XN
i¼1

aiyiFðxiÞ

vL
vb

¼ 00
XN
i¼1

aiyi ¼ 0

vL
vzi

¼ 00ai ¼ gzi ði ¼ 1; 2; .; NÞ

vL
vak

¼ 00yi
h
wTFðxiÞ þ b

i
¼ 1� zi ði ¼ 1; 2; .; NÞ

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
(10)

By defining ZT ¼ ½FTðx1Þy1; FTðx2Þy2; .; FTðxNÞyN�, Y ¼
½y1; y2; .; yN�, 1

! ¼ ½1; 1; .; 1�, z ¼ ½z1; z2; .; zN �, a ¼
½a1; a2; .; aN�, Eq. (10) is finally converted into the below form
(Minoux, 1986; Suykens and Vandewalle, 1999):
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where IN is an N � N identity matrix, and U˛RN�N is the kernel
matrix defined by

Uij ¼ FðxiÞF
�
xj
� ¼ K

�
xi; xj

�
(12)

Most extensively used kernel functions are radial basis function
(RBF) (Eq. (13)) and polynomial function (Eq. (14)) (Gunn, 1998;
Müller et al., 2001):

K
�
xi; xj

� ¼ exp
�
� 		xi � xj

		2.s2� (13)

K
�
xi; xj

� ¼
�
1þ xTi xj

.
C
�g

(14)

where s is an independent variable.
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Fig. 1. Summary sheet for selected case record: (a) pile geometry and soil profile; (b) c
This work uses the RBF (Baylar et al., 2009; Xavier-de-
Souza et al., 2009; Deng and Yeh, 2010; Chamkalani
et al., 2013; Rafiee-Taghanaki et al., 2013; Shokrollahi et al.,
2013) kernel, which is suitable for the LSSVM mathematical
modeling.
3. Application of LSSVM for predicting pile bearing capacity

3.1. Database used

The application of LSSVM in this work is based on pile load test
and CPT data, reported in Alsamman (1995), Eslami (1997) and
Alkroosh and Nikraz (2011a, b). The case records were collected
from a wide spectrum of geographic locations all over the world.
Most of the piles embedded in layered soil of sand and clay. The
piles were tested under slow maintained compression loads. Ac-
cording to Ng et al. (2004), the piles were classified into small
diameter piles (diameter < 600 mm) and large diameter piles
(diameter > 600 mm).
8 12 16 20 24 28 32
Cone tip resistance (MPa)

3000 4000 5000

oad (kN)

CPT profile

Failure load
= 2668

(b)

)

one tip resistance profile; (c) load-movement plot (Alkroosh and Nikraz, 2011a, b).



I.S. Alkroosh et al. / Journal of Rock Mechanics and Geotechnical Engineering 7 (2015) 584e592 587
3.2. Input and output variables

A proper estimation of bearing capacity of pile foundation re-
quires the identification of the factors that influence the pile-soil
interaction. An extensive study of relevant existing literature was
carried out and concluded that pile geometry and soil properties
are the significant factors that affect the pile bearing capacity.

(1) Pile geometry

All geotechnical engineering sources confirm that pile diameter
and length have significant influence on bearing capacity of pile
foundations. Therefore, these factors were selected to represent
pile geometry for input of LSSVM model (Eslami, 1997; Teh et al.,
1997; Abu-Kiefa, 1998).

(2) Soil properties

The soil properties that have principal influence on pile bearing
capacity are mainly interpreted as the angle of internal friction, 4,
relative density, Dr, earth pressure coefficient, K0, and cohesion, c.
Many researchers have suggested correlations between these fac-
tors and CPT data, and proposed solutions for prediction of pile
bearing capacity. However, indirect correlations of CPT data with
pile bearing capacity have been found to give inaccurate estimate of
pile bearing capacity due to considerable uncertainty resulting
from the intermediate steps and correlations. Consequently, direct
correlations of CPT results with pile bearing capacity have been
suggested and found to give better results.

Thus, in this work, the CPT results were directly used as input
variables based on the suggestions provided by the current CPT-
based methods (e.g. Alsamman, 1995; Eslami, 1997). According to
themethods, the cone point resistance measurements are averaged
within pile tip influence zone, which is a function of pile diameter,
and used for calculating pile tip resistance. For small diameter piles,
the influence zone was taken based on the work done by Eslami
Table 1
Summary of database used in the application of LSSVM and the output results (Alkroosh

Test No. Dataset D
(mm)

L
(m)

qc�tip
(MPa)

qc�shaft
(MPa)

Qu(exp.)

(kN)
Qu(pred.)

(kN)
Qu(exp.)/
Qu(pred.)

T

1 Training 1100 13 16.2 4 2624 2677 0.98 2
2 Training 421 5.8 22.9 11.8 912 824 1.11 2
3 Training 320 10.2 22 7.2 712 764 0.93 2
4 Testing 457 15.2 1.6 8.1 1423 1388 1.03 2
5 Training 393 6.5 10.1 12.8 738 707 1.04 3
6 Training 410 5.6 16.7 15.8 560 729 0.77 3
7 Training 320 10.2 14.6 4.5 832 795 1.05 3
8 Testing 320 7.7 8.3 2.6 445 392 1.14 3
9 Validation 403 9.2 13.1 10.3 1352 1098 1.23 3
10 Validation 814 24.2 6.5 9.6 5872 5882 1 3
11 Training 320 10.2 21.9 7.1 818 775 1.06 3
12 Training 671 13 25.6 17.2 4270 4257 1 3
13 Training 1000 9.5 29.3 5.1 2358 2368 1 3
14 Training 1000 9 35.9 8.5 3692 3691 1 3
15 Training 840 24.4 47.6 9.2 9653 9644 1 4
16 Validation 600 7.2 10.9 7.6 1437 1375 1.05 4
17 Validation 1100 9 15.4 5.4 3247 3173 1.02 4
18 Training 500 10.2 8.9 2.2 1005 1019 0.99 4
19 Training 329 6.2 20.7 10.6 605 735 0.82 4
20 Validation 408 5.8 17.6 8.2 765 705 1.09 4
21 Training 521 8.2 12.9 9.6 1334 1422 0.94 4
22 Training 1800 11.5 36.6 7.6 7651 7645 1 4
23 Testing 405 8.4 33.4 11.5 1019 907 1.12 4
24 Validation 405 10.4 8.9 11.3 1019 1207 0.84 4
25 Training 399 7.8 12.8 4.4 667 657 1.02 5

Note: qc�shaft is the weighted average cone point resistance in the pile shaft; qc�tip is the w
Eslami (1997) for small diameter piles and as by Alsamman (1995) for large diameter pile
LSSVM-predicted and experimental pile bearing capacity, respectively.
(1997), while for large diameter piles the influence zone was
taken based on Alsamman (1995). The average cone point resis-
tance along pile shaft was included as input, as most of themethods
also suggest it to calculate pile shaft resistance.

In fact, the use of sleeve friction in calculation of bearing ca-
pacity is not recommended by number of commonly used CPT-
based methods, such as Laboratoire Central des Pont et Chausees
(LCPC), due to the unreliability of sleeve friction measurements
(Alkroosh and Nikraz, 2011a, b).

The mechanical cone point resistance was converted to equiv-
alent electric values using Eq. (15) which was developed by
Kulhawy and Mayne (1990):



qc
pa

�
Electric

¼ 0:47


qc
pa

�1:19

Mechanical
(15)

where qc is the cone point resistance; pa is the atmospheric pres-
sure, which is 101 kPa.

3.3. Pile bearing capacity, Qu

The interpreted failure load, Qu, was considered as the pile
bearing capacity and calculated according to Alsamman (1995). The
failure load was defined as the measured axial load that corre-
sponds to a displacement equal to 5% of pile diameter plus the
elastic compression of the pile. Fig. 1 presents the definition of the
failure load for a case record selected from the database.

3.4. LSSVM for predicting pile bearing capacity

The data were mapped into range [�1, 1] using below equation:

xn ¼ 2
x� xmin

xmax � xmin
� 1 (16)
and Nikraz, 2011a, b).

est No. Dataset D
(mm)

L
(m)

qc�tip
(MPa)

qc�shaft
(MPa)

Qu(exp.)

(kN)
Qu(pred.)

(kN)
Qu(exp.)/
Qu(pred.)

6 Training 671 10.2 13.7 20.1 4697 4692 1
7 Training 430 8.7 31.7 14.5 516 589 0.88
8 Training 320 7.7 7.9 2.6 356 371 0.96
8 Testing 399 10 24.6 12.7 756 766 0.99
0 Validation 600 12 21.4 10.8 2687 2466 1.09
1 Testing 600 12 21.3 11.1 2406 2527 0.95
2 Validation 1100 27 7 9.4 8207 8198 1
3 Training 320 7.7 8.2 2.6 391 386 1.01
4 Testing 400 9.4 2.4 1.4 480 489 0.98
5 Training 1085 25.1 32 9 7695 7693 1
6 Training 350 15.8 5.1 5.5 840 865 0.97
7 Training 500 10.2 14.7 3.2 1299 1255 1.03
8 Training 405 7.9 6.2 12.8 792 750 1.06
9 Training 1100 6 21 7.8 2469 2495 0.99
0 Testing 631 18.3 30 11.7 1770 1797 0.98
1 Training 521 8.2 12.8 9.5 1263 1410 0.9
2 Training 405 7 17.8 14.3 1294 1084 1.19
3 Training 399 7.8 13.1 4.1 578 679 0.85
4 Training 1500 6 10.4 8.5 2669 2679 1
5 Training 400 7.8 10.6 3.6 543 575 0.94
6 Training 320 7.7 8.5 2.6 409 402 1.02
7 Training 762 16.8 5.9 5.2 3425 3413 1
8 Training 430 8.7 26.8 11.7 627 821 0.76
9 Training 329 6.3 25.9 15.6 756 701 1.08
0 Training 1078 13 31 19 8825 8820 1

eighted average cone point resistance within pile tip influence zone calculated as by
s; D is the pile diameter; L is the pile embedment depth; Qu(pred.) and Qu(exp.) are the
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where x and xn are the original and normalized desired variables,
respectively; xmin and xmax are the extreme values of the variable x.
This pre-processing procedure was applied to obtain the parame-
ters of the LSSVM algorithm. Later, these values were changed to
their original values.

In the next step, the database was divided into three subsets
including the training, testing and validation sets. The division of
database into three subsets was normally performed randomly but
considering the statistical consistency of the data of the subsets. For
this purpose, 70%, 15% and 15% of the main dataset were randomly
selected for building the LSSVM models (i.e. training, testing and
validation sets, respectively). The allocated data for each subset are
shown in Table 1. The effect of the percent allocation of the three
subsets from the database on the accuracy of the final model has
been studied (Gharagheizi et al., 2011). As for the distribution of the
data through the three subsets, we generally performed many
distributions to avoid the local accumulations of the data in the
feasible region of the problem. As a result, the acceptable distri-
bution is the one with homogeneous accumulations of the data on
the domain of the three subsets (Eslamimanesh et al., 2011).
4. Results and discussion

The ability of the LSSVM to predict the pile bearing capacity was
evaluated primarily during the training phase by comparing the
measured values of pile bearing capacity with the predicted values
obtained by the LSSVM.When training phasewas completed, it was
expected that the proposed algorithm would correctly reproduce
the targeted output values presuming the error is minimal. How-
ever, this was insufficient to conclude that the trained LSSVM can
predict the pile bearing capacity accurately as this technique, in
general, has a high tendency towards over-fitting. Over-fitting re-
fers to the large error in predictions when new data are presented
to the trained LSSVM (i.e. ability of the LSSVM to memorize rather
than generalize the form of the relationship between input and
output data). Generally, over-fitting is expectedwhen data points in
training sets are scanty (Das, 2013). To overcome this setback, a
Table 2
Some CPT methods versus the LSSVM.

Method Procedure for calculating

Schmertmann (1978) The end bearing capacity
rt ¼ wðqc1 þ qc2Þ=2
where qc1 is the average
below the pile tip, qc2 is t
coefficient ranging from 0
The unit shaft resistance
rs ¼ Cqc
where C ranges from 0.00

Bustamante and Gianeselli (1982) Pile bearing capacity is th
qp ¼ kb1qeqðtipÞ , fp ¼ qeqð
where kb1 ranges from 0.
average of qc values of zo
30 to 150 depending on s

Alsamman (1995) For piles in cohesionless s
rt ¼ 0:15qcðtipÞ for qcðtipÞ�
where rt must not exceed
The unit side resistance is
(1) In sand and silty sand
rs ¼ 0:015qcðshaftÞ for qcðs
where rs must not exceed
(2) In gravelly sand and g
rs ¼ 0:02qcðshaftÞ for qcðsh
where rs must not exceed

Alkroosh and Nikraz (2011a, b) In this method, gene expr
For bored piles, pile beari

Qu ¼ Lþ D1:25Lqc�shaft
250:8 þ L

265 ð
testing dataset, not included in training data, was used to examine
the predictive ability of LSSVM. If it was found to give accurate
predictions, further evaluation was made to verify its generaliza-
tion ability. This was done by examining the predictions of LSSVM
through the use of validation dataset which was neither included
among training nor testing datasets. Once the training testing and
validation steps were successfully completed, the trained LSSVM
can be recommended as a design tool for this type of application.

The predictions of pile bearing capacity by the LSSVM as well as
other CPT-based methods including Schmertmann (1978),
Bustamante and Gianeselli (1982), Alsamman (1995), and Alkroosh
and Nikraz (2011a, b) were evaluated. A brief description of the
compared methods is provided in Table 2. The results of comparison
are shown numerically in Table 3 and graphically in Figs. 2 and 3.
Table 3 also presents the results of statistical analysis used to evaluate
theaccuracyof theproposedmethod. Five statistical indices including
coefficient of determination, R, mean, m, standard deviation, s, mean
absolute error, MAE, and mean squared error, MSE, were used in the
analysis. The coefficient of determination is calculated by

R ¼ r2 ¼

2
66664

Pn
i¼1

�
Qmi � Qm

��
Qpi � Qp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
Qmi � Qm

�2Pn
i¼1

�
Qpi � Qm

�2r
3
77775

2

(17)

where r is the coefficient of correlation; Qmi and Qpi are the
measured and predicted pile bearing capacity of case i, respec-
tively; Qm and Qp are the averages of measured and predicted pile
bearing capacity, respectively; n is the number of observations.

The optimal value of R is unity, which means that a perfect fit is
achieved between predicted and measured values. Table 3 shows
that the calculated R ¼ 1 for the training and validation sets and
R ¼ 0.99 for the testing set indicate that the LSSVM can achieve an
accurate correlation between predicted and measured pile bearing
capacity. Table 3 also shows that the proposed method is more
accurate than other methods.
pile bearing capacity

is obtained by

of qc after elimination of extreme values for a zone ranging from 0.7D to 4D
he average of qc for a zone extending to 8D above the pile tip, w is a
.5 to 1 depending on overconsolidation ratio.
is determined by

18 to 0.008.
e sum of unit end resistance, qp, and unit shaft friction, fp:

sideÞ=ks1
15 to 0.6 depending on soil type and installation procedure; qeq is the equivalent
ne ranging from 1.5D below pile tip to 1.5D above pile tip; ks1 ranges from
oil type, pile type and installation procedure.
oil, the unit tip resistance is calculated by
9.5 MPa and rt ¼ 1:44þ 0:075½qcðtipÞ � 9:5� for qcðtipÞ>9.5 MPa
2.87 MPa.
determined as follows:

, we have

haftÞ�4.75 MPa
95 kPa.
ravel, we have

aftÞ�4.75 MPa and rs ¼ 0:095þ 0:0025½qcðshaftÞ � 4:75� for qcðshaftÞ�4.75 MPa
130 kPa.
ession programming is used to predict pile bearing capacity from CPT data.
ng capacity is estimated as

D� 1171Þ � 2qc�tipqc�shaft þ qc�shaft þ Dþ q1:33c�tipL� 52



Table 3
Results of evaluating the performance of LSSVM.

Method Dataset Coefficient of
determination, R

Mean,
m

Standard
deviation, s

Mean absolute
error, MAE

Mean squared
error, MSE

Proposed method Training 1 0.98 0.09 50 5699
Testing 0.99 1.03 0.08 51 4534
Validation 1 1.04 0.11 110 20,315

Schmertmann (1978) Training 0.65 1.43 0.61 766 2,601,053
Testing 0.89 1.11 0.20 168 69,669
Validation 0.87 1.14 0.34 1076 2,235,985

Bustamante and Gianeselli (1982) Training 0.8 0.99 0.28 688 1,782,956
Testing 0.88 0.97 0.19 213 71,214
Validation 0.97 1.09 0.26 752 1,201,709

Alsamman (1995) Training 0.89 1.03 0.25 462 789,032
Testing 0.88 1.07 0.23 214 63,969
Validation 0.97 1.14 0.23 370 251,119

GEP by Alkroosh and Nikraz (2011a, b) Training 0.95 1.03 0.28 421 374,303
Testing 0.99 0.96 0.09 51 3991
Validation 0.99 1.16 0.15 419 243,574
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Then the mean and standard deviation were respectively
calculated by

m ¼ 1
n

Xn
1

Qm

Qp
(18)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

1

 
Qm
Qp

� m

!2

n� 1

vuuuut
(19)

If the mean value is unity, the predicted values of pile bearing
capacity are on average equivalent to the measured values. A mean
value of less than unity indicates that the method tends to under-
predict the pile bearing capacity. Conversely, more than unity is
an indication of over-prediction. The optimum value of standard
deviation is zero; the closer the standard deviation approaches to
zero, the greater the accuracy is. As presented in Table 3, the
calculated mean values of the proposed method are 0.98, 1.03 and
1.04 for the training, testing and validation sets, respectively, which
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Fig. 2. Performance of the LSSVM model in training, testing and validation sets.
indicate that the LSSVM possesses a high capability in predicting
pile bearing capacity. The results also indicate that, on average, the
proposed method may tend to over-predict the pile bearing ca-
pacity in testing and validation sets, whereas under-predict it in
training set. In comparison with other methods, the calculated
mean values indicate that the LSSVM provides better estimate for
pile bearing capacity.

The predictive ability of the LSSVM is also evaluated by calcu-
lating the error. Table 3 shows that the calculatedMSE andMAE are
low when using the proposed method to predict pile bearing ca-
pacity. The table also shows that the proposed method has the
lowest error in comparison with other methods.

As shown in Fig. 2, the strong ability of LSSVM to predict the
pile bearing capacity is obvious. All the points in training, testing
and validations sets are situated on or very close to the line of
equality, suggesting that the proposed method is accurate in
predicting the pile bearing capacity. Fig. 3 shows that the LSSVM
achieves very high correlation between predicted and measured
values and it has the lowest scatter around the line of equality in
comparison with other methods. From Fig. 3, it is most evident
that the LSSVM provides best prediction of total pile bearing
capacity.

In order to verify whether or not the results of the proposed
method agree with those in the existing literature and experi-
mental results, the sensitivity analysis was carried out. In
this analysis, values of one input variable were allowed to
change within the range of the training data whereas the
values of other input variables were set constant. The data were
then input in the developed LSSVM and the outputs were eval-
uated. The results, as presented in Fig. 4, have shown that the
proportion between each input variable and the predicted pile
bearing capacity is incremental, and the variations of pile
diameter and average cone point resistance within pile tip in-
fluence zone and along pile shaft have great influence on pile
bearing capacity. The variation of pile length slightly affects pile
bearing capacity.

5. Conclusions

The results of this study indicate that the proposed LSSVM can
accurately predict the bearing capacity of bored piles from CPT
data. The statistical analysis of the results reveals that this
technique can obtain coefficient of determination and mean close
to unity for all training, testing and validation sets. It has also
achieved standard deviation less than 0.2 and low error values.
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Fig. 3. Comparisons of the performance of the LSSVM model with CPT-based methods.
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The comparisons of the predictive ability of LSSVM with tradi-
tional CPT-based methods as well as the GEP model have shown
that this technique predicts pile bearing capacity better. The
relationship of pile bearing capacity with each of pile diameter,
length, average of cone point resistance is incremental. The
average cone point resistance within pile tip zone is the most
influential factor on pile bearing capacity. The output of this
study suggests that LSSVM can be used as a design tool for
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predicting the bearing capacity of bored piles installed in sand
and mixed soils.
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