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1. INTRODUCTION

w xHammocks have been considered by Brenner 3 in order to give a
numerical criterion for a finite translation quiver to be the Auslander]
Reiten quiver of some representation-finite algebra. Ringel and Vossieck
w x13 gave a combinatorial definition of left hammocks, which generalizes
the concept of hammocks, in the sense of Brenner, as a translation quiver

Ž .H and an additive function h on H called the hammock function
satisfying some conditions. They also showed that a thin left hammock
with finitely many projective vertices is just the preprojective component of
the Auslander]Reiten quiver of the category of SS , where SS is a finite

Ž .partially ordered sets abbreviated poset . An important role of posets in
representation theory is played by two differentiation algorithms. One of

w xthe algorithms is due to Nazarova and Roiter 9 and it reduces a poset SS

with a maximal element a g SS to a new poset SS
X s  SS with samea

w xrepresentation type. The second algorithm is due to Zavadskiı 15 and it˘
Ž .reduces a poset SS with a suitable pair a, b of elements a, b to a new

poset SS
X s  SS with same representation type. Zavadskiı ’s algorithm˘Ža, b.

is successfully used to give new proofs for characterizing posets of finite
w x w xtype 5 and for characterizing posets of wild type 10 in studying posets of

w x w xfinite growth 15 . In the paper 7 , we discussed the relationship between
hammocks and the algorithm of Nazarova and Roiter. The main purpose
of the present paper is to construct some new left hammocks from a given
one, and to show the relationship between these new left hammocks and
the algorithm of Zavadskiı .˘

In Section 2, we recall some basic definitions and facts. Let H be a thin
Ž .left hammock with hammock function h , let p a a projective vertex ofH

Ž .H different from the source, and let q b an injective vertex of H different
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from the sink. In Section 3, we construct a new left hammock H froma b
Ž . Ž .the given one by using the pair of points p a and q b . We determine its

hammock function h . It is shown that H s H l H , where H andŽ H . a b a b aa b
Ž .H are left hammocks induced from H by a point see Section 2.5 . Inb

Section 4, we prove that the subquiver, denoted by Hr H , consisting ofa b
Ž . Ž .all vertices x satisfying h x y h x / 0, is an ‘‘almost’’ left ham-H Ž H .a b

mock. If H is a thin left hammock with finitely many projective vertices,
the relation between the left hammock He induced by the pair of pointsa b
of H and the algorithm of Zavadskiı is as stated in Theorem 5.1. The˘
proof of Theorem 5.1 will cover Sections 6 and 7. The corresponding

Ž .results concerning ll SS , the category of SS-spaces, are also described.
Throughout this paper, all algebras are assumed to be finite-dimensional

Ž .associative basic algebras with unit over an algebraically closed field and
all modules are finitely generated right modules. We denote by A-mod the
category of A-modules. The composition of two morphisms f : M ª M1 2
and g : M ª M is denoted by fg. All posets are assumed to be finite. We2 3
denote by N, N , and Z the set of natural numbers, positive integers, and1

w xintegers, respectively. For all unexplained notation, we refer to 11 and
w x13 .

2. PRELIMINARIES

2.1. Left Hammocks and Hammocks

Ž .Let H s H , H , t be a proper translation quiver. We define induc-0 1
tively the full subquivers dH of H. First of all, y1H is the empty quiver,
and z belongs to dH if and only if zy:dy1H. Also, `H s D dH. Thus,d g N

� 4 dfor all d g N j ` , we see that H is a predecessor closed subquiver, and
we may consider it as a translation quiver, using the restriction of t .
Suppose H has a unique source v and H s`H. Then we define h :H

Ž .H ª Z inductively as follows. By abuse of notation, let h t x s 0 for x0 H
Ž . Ž .projective note that, in this case, t x is not defined . Now, let h v s 1H

and, for x / v, with h already defined on all proper predecessors of x,H
Ž . Ž . Ž . Žlet h x s Ý h y y h t x where the sum is taken over all ar-H y ª x H H

.rows ending at x . With these preparations, we are able to recall the main
definition: the translation quiver H is said to be a left hammock provided
Ž . `1 H s H;
Ž . Ž .2 H has a unique source v and h v s 1;H
Ž .3 h takes values in the set N of positive integers,H 1
Ž . Ž . Ž .4 if q is an injective vertex, then h q G Ý h y .H q ª y H
When H is a left hammock, the function h is said to be its hammockH

function.
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Ž .A vertex x of H is called thin if h x s 1. A left hammock H is saidH
Ž .to be thin provided h p s 1 for any projective vertex p of H. A leftH

< <hammock H is called a hammock if H - `. A hammock is always thin0
and has a unique sink, say vX.

2.2. S-Spaces

Ž .Fix some field k. Given a poset SS , an SS-space V s V ; V is givenv s sg SS

by a vector space V over k and subspaces V of V , for s g SS , such thatv s v

V : V for s F t. We call V the total space of V, and define its k-dimen-s t v

sion by dim V s dim V . Given two SS-spaces V, W, a map c : V ª W isk vv

Ž .given by a k-linear map c : V ª W satisfying c V : W for all s g SS ;v v v v s s
the induced map V ª W will be denoted by c . The posets we wills s s
consider are always assumed to be finite. We denote the category of

Ž .SS-spaces V with dim V - ` by ll SS . For convenience, we denotek v

Ž . Ž .Hom V, W for two SS-spaces V and W by Hom V, W . We denotell Ž SS . SS

by SS q the poset obtained from SS by adjoining an element v with s - v
for all s g SS . Similarly we denote by SS y the poset obtained from SS by
adjoining an element vX with s ) vX for all s g SS . The projectï e objects,

Ž . q Ž . ydenoted P s with s g SS , and the injectï e objects, Q s with s g SSSS SS

are defined as follows. For all t g SS q,

k for t G s
P s sŽ . tSS ½ 0 for t h s

and

k for t g s
Q s sŽ . tSS ½ 0 for t F s.

Ž . Ž Ž . .For t g SS and V g ll SS , we have dim Hom P t , V s dim V andk SS SS k t
Ž Ž ..dim Hom V, Q t s dim V y dim V . An SS-space V is thin if itsk SS SS k v k t

total space V is one dimensional. We denote by t the Auslander]Reitenv SS

Ž .translation in ll SS . It is well known that the Auslander]Reiten quiver of
Ž .ll SS always has a unique preprojective component, denoted by PP , whichSS

is standard.
Given a Krull]Schmidt k-category L, let us define the full subcategories

L. First of all, L contains only the zero object. Second, an indecompos-d y1
able object X of L belongs to L if and only if any indecomposable objectd

Ž .Y of L with rad Y, X / 0 belongs to L. Finally, L s D L. Letdy1 ` d g N d
Ž . Ž .SS be a poset. We observe that ll SS is just the full subcategory of ll SS`

Ž . Ž .whose indecomposable objects occur in PP . So ll SS ( add k PP ,SS ` SS

Ž .where k PP denote the mesh category for PP .SS SS
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There is a strong relationship between thin left hammocks and the
Žrepresentation theory of posets which is due to Ringel and Vossieck see

w x.13 and is described as follows.

THEOREM 2.1. Let SS be a finite poset and let k be a field. Then the
Ž .preprojectï e component PP of the Auslander]Reiten quï er of ll SS is aSS

thin left hammock with finitely many projectï e ¨ertices. The hammock
function on PP is dim . Con¨ersely, gï en a thin left hammock H with nSS v

Ž .projectï e ¨ertices, there exists a unique poset SS [ SS H with n y 1 ele-
Ž . Ž .ments such that add k H ( ll SS as categories and H ( PP as translation` SS

quï ers.

From now on we will take any thin left hammock H as the preprojective
Ž .components PP for SS s SS H . Accordingly we have a bijective mapSS

q � 4 Ž .p: SS ª projective vertices of H , where p s is the vertex corresponding
Ž . Ž y. o yto P s . Let SS be the subset of SS consisting of those elements sSS

Ž . Ž .such that the injective object Q s occurs in ll SS . Then we have aSS `

Ž y. o � 4 Ž .bijective map q: SS ª injective vertices of H , where q s is the
Ž .vertex corresponding to Q s . In particular, we obtainSS

Ž Ž . Ž .. qHom p s , p t / 0 if and only if s G t in SS andk Ž H .
Ž Ž . Ž .. Ž y. oHom q s , q t / 0 if and only if s G t in SS .kŽH .

2.3. Incidence Algebras and Socle-Projectï e Modules

Let k be a field. Given a Krull]Schmidt k-category L, a L-module M is
a finitely presented functor Lop ª k-mod. We denote by L-mod the
category of all L-modules and by L-spmod the full subcategory of L-mod
generated by all modules M g L-mod which have a projective socle. A
module M in L-spmod is said to be thin if M has a simple socle. We will
use the following easy result.

LEMMA 2.1. Let L be a Krull]Schmidt k-category, M, N, L g L-spmod.
Ž . Ž .1 Assume that 0 / c g Hom M, N and M is thin. Then c is aL

monomorphism.
Ž . Ž . Ž .2 Assume that 0 / u g Hom M, N , 0 / f g Hom N, L , and M, NL L

are thin. Then uf / 0.

Ž Ž ..Proof. Suppose that c is not a monomorphism, then soc ker l s
Ž Ž .. Ž Ž ..soc M since M is thin. As a consequence, soc Im c ( soc Mrker c is

not projective}a contradiction to the fact that L-spmod is closed under
Ž . Ž .submodules. Thus 1 holds and 2 follows at once.

Let SS be a poset and let k be an algebraically closed field. By
Ž . q qA SS [ k SS we mean the k-incidence algebra of the enlarged poset SS .

Ž . Ž .Note that P v is the unique simple projective A SS -module. TheA
Ž w x.following theorem is due to Ringel and Vossieck see 13 .



YANAN LIN698

THEOREM 2.2. Let H be a left hammock with source v and let k be a
Ž . Ž .field. Let PP H, k be the full additï e subcategory of k H whose indecom-

posable objects are just the projectï e ¨ertices of H. Define the functor
Ž . Ž . Ž . Ž . < Ž .M: k H ª PP H, k -mod by M x s Hom ], x PP H, k . ThenkŽH .

Ž . Ž .1 there is a unique simple projectï e object in PP H, k -mod, namely,
Ž . Ž . Ž .M v . An object X of PP H, k -mod belongs to PP H, k -spmod if and only

Ž .if its socle is generated by M v ;
Ž . Ž Ž . .2 PP H, k -spmod has Auslander]Reiten sequences;`

Ž . Ž . Ž Ž . . Ž .3 M induces the equï alence k H ( PP H, k -spmod as categories ;`

Ž . Ž .4 H ( G as translation quï ers , where G is`Ž PPŽH , k .-spmod. `Ž PPŽH , k .-spmod.
Ž Ž . .the Auslander]Reiten quï er of PP H, k -spmod .`

Ž .For convenience, we put FF [ PP H, k -spmod. Thus we write
Ž Ž . . Ž .PP H, k -spmod as FF and we write instead of Hom X, Y` ` PPŽH , k .-spmod

Ž .just Hom X, Y . If the left hammock H has only finitely many projec-
`FF

Ž . Ž .tive vertices, PP H, k is a finite category; therefore PP H, k -mod (
Ž . Ž . Ž . ŽA H -mod for some finite-dimensional algebra A H and k H ( A-`

. Ž . Ž .spmod , H ( G , where A s A H . We call A H the finite-dimen-`Ž A -spmod.
sional algebra corresponding to H. Note that if H is a thin left hammock

Ž .with finitely many projective vertices, then A H is just the incidence
Ž .algebra of the poset SS H .

Ž .2.4. Auslander]Reiten Translation in ll SS

Ž .In order to describe the Auslander]Reiten translate in ll SS , Simson
Ž w x.introduced the notion of prinjective modules see 14 . Let SS be a poset,

Ž . qk be a field, A SS [ k SS be the incidence algebra, and k SS s
Ž . Ž Ž .. Ž .A SS rsoc A SS . As we know, the incidence algebra A SS is the one-

Ž . Ž .point coextension of k SS by R [ I v rsoc I v . So we can identify theA A
Ž X X .right A-module X with the triple X s X , X , f : X m R ª X ,v k SS v

where X X is a right k SS-module and X is a k-vector space. A rightv

Ž X . XA-module X s X , X , f is called prinjectï e if X is a projectivev

Ž Ž ..k SS-module. By prin A SS we mean the full additive subcategory of
Ž . Ž Ž ..A SS -mod whose objects are prinjective modules; prin A SS is closed

under extension and kernels of epimorphisms. On the other hand, a
Ž .module X in A SS -mod will be identified with a system X s

Ž . qX ; f , where X , s g SS , are finite-dimensional k-vector spacess t s t F sF v s
and f : X ª X , t F s, are k-linear maps such that f s id for allt s t s s s

q Ž .Ž . Ž .s g SS and f f s f for t - s - u. Now, we recall the functort s s u t u
Ž . Ž . Ž . Ž ŽQ: A SS -mod ª ll SS defined by the formula Q X f s X , Im f :s, t s v s v

..X ª X .s v sg SS

Ž .Let SS be a poset, k be a field, A SS be the incidence algebra, and
Ž . Ž Ž .. ;k SS s A SS rsoc A SS . Given an SS-space V , we put V s

Ž . Ž Ž .. Ž .P V rsoc ker s , where s : P V ª V is the projective cover of V in
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Ž . ; Ž Ž .. Ž ;.ll SS . Then V is in prin A SS , and t V is an SS-space, where t isA A
the Auslander]Reiten translate in A-mod. The following theorem is due

Ž w x.to Simson see 14 .

Ž .THEOREM 2.3. The relatï e Auslander]Reiten translates in ll SS are
yŽ . yŽ . Ž . Ž ;.t V s Qt V and t V s t V .SS A SS A

k � < 4 �For a given poset SS and a g SS , set a s x g SS x G a and a s x gn
< 4 k kSS x F a . If A : SS , then A s D a and A s D a . Ifag A n ag A n

� 4a , . . . , a , where r G 1, is a set of mutually incomparable points of the1 r
Ž .poset SS , we introduce a one-dimensional SS-space P a , . . . , a by settingS 1 r

Ž . Ž . � 4kP a , . . . , a s U ; U , where U s U s k if x g a , . . . , a andS 1 r v s sg SS v x 1 r
U s 0 otherwise.x

In the case when X is a nonprojective SS-space and both X and t X are
thin, then we call X, t X a pair of thin SS-spaces. The following pairs of thin
SS-spaces seem to be useful.

PROPOSITION 2.1. Let SS be a poset. Assume that a and b in SS are
Ž . Ž . � xincomparable. Then t P a, b s P z , . . . , z , where z , . . . , z sSS SS SS 1 r 1 r

Ž � 4 .min SS _ a, b .n

Ž . Ž . Ž .Proof. It is clear that P a [ P b ª P a, b is the projective coverSS SS SS

Ž . Ž . Ž . Ž . Ž .;in ll SS . So 0 ª P v ª P a [ P b ª P a, b ª 0 is a minimalSS SS SS SS

Ž .; Ž Ž ..projective resolution for P a, b in prin A SS . We apply the NakayamaSS

Ž .functor DHom ], A to the sequence above, and by the definition of theA
Auslander]Reiten translation, we obtain the exact sequence 0 ª
Ž Ž .;. Ž . Ž . Ž .t P a, b ª I v ª I a [ I b ª 0. By Theorem 2.3, we get theA A A A

result.

COROLLARY 2.1. Let SS be a poset. Assume that a and b in SS are
incomparable and that b is the unique maximal element of SS _ ak. Then there

x
Ž . Ž .exists an irreducible map P a ª P a, b .SS SS

Proof. The assumption that b is the unique maximal element of SS _ ak

k Ž . Ž .implies SS s b j a . So we have P z , . . . , z s rad P a , wheren SS 1 r SS

� 4 Ž � 4 .z , . . . , z s min SS _ a, b . Thus there is an irreducible map1 r n
Ž . Ž .P z , . . . , z ª P a . This yields the existence of x by Proposition 2.1.SS 1 r SS

Ž .PROPOSITION 2.2. Let SS be a poset. Let X g ll SS . Then both X and
Ž .t X are thin if and only if X s P s, t for a pair of incomparable points sSS SS

and t.

Proof. One direction follows from Proposition 2.1. For the converse, we
Ž .dŽ s. Ž .assume that [ P s ª X is the projective cover for X in ll SS ,SSsg SS

Ž . Ž . Ž .dŽ s. ;where d s G 0. Then 0 ª [ P v ª [ P s ª X ª 0 is aSS SSJ sg SS

Ž Ž ..minimal projective resolution for X in prin A SS . Thus X thin implies
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< < Ž .J s Ý d s y 1. Apply the Nakayama functor to the sequence above.sg SS

By the definition of the Auslander]Reiten translation, we obtain the
Ž .; Ž . Ž .dŽ s.following exact sequence 0 ª t X ª [ I v ª [ I s ª 0.A A AJ sg SS

Ž . Ž ;. < < Ž .Since t X s t X is thin, we see J s 1. This means Ý d s s 2.SS A sg SS

Ž . Ž . Ž .Thus the projective cover of P a, b is P s [ P t . Finally, X thinSS SS SS

implies that s and t are incomparable.

2.5. Hammocks Induced by a Point

Let L be a Krull]Schmidt k-category and let J be a class of objects of
Ž .L. For x, y g L, we denote by Hom x, y the subspace of the all mapsL J

Ž . w xin Hom x, y which factor through some object of J. In the paper 7 , weL

obtained the following result.

THEOREM 2.4. Let k be a field. Let H be a thin left hammock with source
Ž . Ž .v and let h be the hammock function of H. Assume that p a / p v is aH

Ž . Ž X.projectï e ¨ertex of H and q a / q v is an injectï e ¨ertex of H. Then
Ž . � < Ž Ž . . 41 H s x g H Hom p a , x / 0 is a left hammock with sourcea kŽH .
Ž . Ž Ž . .p a . The hammock function on H is h s dim Hom p a , ] sa Ž H . k kŽH .a

Ž Ž . .dim Hom p v , ] .k kŽH . � pŽa.4
Ž . � < Ž . Ž . 42 Hr H s x g H h x y h x / 0 is a left hammock with sourcea H Ž H .a

v. The hammock function on Hr H is h s h y h .a ŽHr H . H Ž H .a a
Ž . � < Ž Ž .. 43 H s x g H Hom x, q a / 0 is a hammock with source va kŽH .

Ž .and since q a . The hammock function on H is h sa Ž H .a
Ž Ž ..dim Hom ], q a .k kŽH .

Ž . � < Ž . Ž . 44 HrH s x g H h x y h x / 0 is a left hammock with sourcea H ŽH .a
Ž .p a . The hammock function on HrH is h s h y h .a ŽHr H . H ŽH .a a
Ž .5 H s Hr H and H s HrH .a a a a
Ž . Ž . Ž . Ž Ž .6 Let SS H be the poset corresponding to H. Then SS H SS H ,a a

. Ž .respectï ely is obtained from SS H by a finite sequence of differentiations
Ž .with respect to maximal minimal, respectï ely elements in the sense of

Nazarö a and Roiter.

3. HAMMOCKS INDUCED BY A PAIR OF POINTS

Ž .Let k be a field. Let H be a left hammock and let k H be the mesh
Ž .category of H. For a given projective vertex p a of H, let MM be the classa

Ž Ž . .of all objects x with Hom p a , x s 0. For a given injective vertexkŽH .
Ž . Ž Ž ..q b of H, let MM be the class of all objects x with Hom x, q b s 0.b kŽH .

There should be no confusion if we denote by MM the class of all objects Xa
Ž Ž . . Ž .with Hom P a , X s 0 for a given projective object P a of FF. Simi-FF

Ž .larly, for a given injective object Q b of FF, let MM be the class of allb
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Ž Ž ..objects X with Hom X, Q b s 0. Let SS be a poset. We denote by NNFF a
Ž Ž . .the class of all objects X with Hom P a , X s 0 for a given projectiveSS SS

Ž . Ž .object P a of ll SS , and let NN be the class of all objects X withSS b
Ž Ž .. Ž . Ž .Hom X, Q b s 0 for a given injective object Q b of ll SS .SS SS SS

Ž . Ž .LEMMA 3.1. Let k be a field. Let H be a thin left hammock, p a / p v
Ž . Ž X.be a projectï e ¨ertex, and q b / q v be an injectï e ¨ertex of H. Assume

Ž Ž . Ž ..that Hom p b , p a s 0. Then we ha¨ekŽH .
Ž . Ž . � < Ž Ž .. Ž Ž .. 41 H s x g H Hom x, q b rHom x, q b / 0 is aa b a kŽH . kŽH . a MM

Ž Ž ..hammock, and the hammock function is h s dim Hom x, q bŽŽ H . . k kŽH .a b
Ž Ž ..y dim Hom x, q b .k kŽH . a MM

Ž . Ž . � < Ž Ž . . Ž Ž . . 42 Also, H s x g H Hom p a , x rHom p a , x / 0 isa b kŽH . kŽH . MMb
Ž Ž . .a hammock, and the hammock function is h s dim Hom p a , xŽ ŽH .. k kŽH .a b

Ž Ž . .y dim Hom p a , x .k kŽH . MMb

Ž . Ž . dProof. We claim that q b g H. Assume q b g H. We consider thea
Ž . Ž .full subcategory PP d q 2 of PP H, k given by all projective vertices p

dq2 Ž . Ž .with p g H. We can consider PP d q 2 -modules as PP H, k -modules.
Ž .Since PP d q 2 is a finite category, there is a finite-dimensional algebra A

Ž . Ždq2 . Ž Ž . .with A-mod ( PP d q 2 -mod and k H ( PP H, k -spmod (dq2
Ž .A-spmod . We denote by M the corresponding equivalence functor M:dq2

Ždq2 . Ž . Ž Ž .. Ž . Ž Ž ..k H ( A-spmod . We can write M p a s P a , M p b sdq2 A
Ž . Ž Ž .. Ž . Ž Ž . Ž ..P b , and M q b s Q b . Note that Hom p b , p a s 0 impliesA A kŽH .

Ž Ž . Ž .. Ž Ž . Ž ..Hom P b , P a s 0. It follows that Hom P a , I b s 0, whereA A A A A A
Ž . Ž .I b is the injective hull of the top of P b . By the definition ofA A

Ž .Auslander]Reiten translate, there is an exact sequence 0 ª t B b ªA A
Ž . Ž . Ž Ž . .[ I v ª I b ª 0. Applying Hom P a , ] to this sequence, we getA A A AJ
Ž Ž . Ž .. Ž Ž . Ž ..Hom P a , t B b / 0, since Hom P a , I v / 0 andA A A A A A A
Ž Ž . Ž .. Ž Ž . Ž .. Ž .Hom P a , I b s 0. Thus, Hom p a , q b / 0. Therefore q bA A A kŽH .

g H.a
Ž .Of course, q b is also an injective vertex of H. By Theorem 2.4,a

Ž . � < Ž Ž .. 4H s x g H Hom x, q b / 0 is a hammock with hammocka b a kŽ H .a
Ž Ž .. Ž .function h s dim Hom x, q b . As we know, k H ( FF, soŽŽ H . . k kŽ H . `a b a

Ž . Ž Ž ..k H ( FF r MM . T h u s, w e h ave H om x , q b sa ` a k Ž H .a
Ž Ž .. Ž Ž .. Ž Ž ..Hom x, q b s Hom x, q b rHom x, q b s HomFF r MM FF FF a MM kŽH .` a ` `

Ž Ž .. Ž Ž .. Ž . Ž .x, q b rHom x, q b . Therefore we obtain 1 . The proof of 2 iskŽH . a MM

similar.

Note that for H a thin left hammock with only finitely many projective
Ž Ž . Ž .. Ž .vertices, Hom p b , p a s 0 means that a g b in SS H .kŽH .

LEMMA 3.2. Let k be a field. Let H be a thin left hammock, let
Ž . Ž . Ž . Ž X.p a / p v be a projectï e ¨ertex, and let q b / q v be an injectï e

Ž Ž . Ž .. �¨ertex of H. Assume that Hom p b , p a s 0. Let H s x gkŽH . a b
< Ž Ž . Ž .. 4 Ž . Ž .H Hom p a , q b / 0 . Then H s H s H .kŽH . � x4 a b a b a b
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Ž Ž . .Proof. First, assume that there are f g Hom p a , x and g gkŽH .
Ž Ž .. Ž .Hom x, q b in k H with fg / 0. We claim that 0 / f inkŽH .
Ž Ž . . Ž Ž . .Hom p a , x rHom p a , x . For, otherwise, f gk Ž H . k Ž H . MM b

Ž Ž . .Hom p a , x means that f factors through some object in MM , saykŽH . MM bb
Ž Ž . .z. We write f s f f , where f g Hom p a , z and f g1 2 1 k ŽH . 2

Ž .Hom z, x . Then z g MM implies f g s 0 and fg s 0}a contradic-kŽH . b 2
Ž .tion. Thus we have proved H : H .a b a b

Ž Ž . . Ž Ž . .Next, let 0 / f in Hom p a , x rHom p a , x . This implieskŽH . kŽH . MMb
Ž Ž . .that 0 / f g Hom p a , x . So there exists 0 / g gk Ž Ž H ..a b

Ž Ž .. Ž Ž .. Ž w x .Hom x, q b such that fg / 0 g k H see 13 , Corollary 5 .kŽ ŽH .. a ba b
Ž . Ž .This shows fg / 0 in k H , and therefore H = H .a b a b
Ž .The proof of H s H is similar.a b a b

THEOREM 3.1. Let k be a field. Let H be a thin left hammock, let
Ž . Ž . Ž . Ž X.p a / p v be a projectï e ¨ertex, and let q b / q v be an injectï e

Ž Ž . Ž ..¨ertex of H. Assume that Hom p b , p a s 0. Then H skŽH . a b
� < Ž Ž . Ž .. 4x g H Hom p a , q b / 0 is a hammock with hammock func-kŽH . � x4

Ž Ž . . Ž Ž . .tion h s dim Hom p a , ] y dim Hom p a , ] s dimŽ H . k kŽH . k kŽH . MM ka b b
Ž Ž .. Ž Ž ..Hom ], q b y dim Hom ], q b .kŽH . k kŽH . a MM

Ž . Ž .Proof. By Lemma 3.2 we know that H s H s H is a ham-a b a b a b
mock. Since the hammock function is uniquely determined, we have
h s h s h .Ž H . ŽŽ H . . Ž ŽH ..a b a b a b

Ž Ž . Ž ..Remark. Note that if Hom p b , p a / 0 and a / b, thenkŽH .
Ž Ž . Ž ..Hom p a , q b s 0. So H s B.kŽH . a b

Remark. Let H be a hammock. According to Theorem 2.4, we can
Ž .obtain the poset SS H corresponding to the hammock H from thea b a b

Ž .poset SS H corresponding to the hammock H by a finite sequence of the
Ž w x.algorithms of Nazarova and Roiter see 7 .

THEOREM 3.2. Let k be a field. Let H be a thin left hammock, let
Ž . Ž . Ž . Ž X.p a / p v be a projectï e ¨ertex, and let q b / q v be an injectï e

Ž Ž . Ž ..¨ertex of H. Assume that Hom p b , p a s 0. Then H s H l H .kŽH . a b a b

In order to prove Theorem 3.2, we need some properties of SS-spaces.
Ž w x.The following lemma is due to Zavadskiı see 16 .˘

� 4LEMMA 3.3. Let SS be a poset. Assume that a , . . . , a , where t G 1, is a1 t
subset of SS with a , . . . , a mutually incomparable. Then a morphism f g1 t

Ž . Ž Ž ..mHom U, V factors through a direct sum P a , . . . , a if and only ifSS SS 1 t
Ž . r Ž . � 4kf U : F V and f U s 0 for x g SS _ a , . . . , a .v is1 a x 1 ti
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PROPOSITION 3.1. Let SS be a poset. Assume that a and b in SS are
incomparable. Then
Ž . Ž Ž . . Ž Ž . .1 f g Hom P a , X if and only if f g Hom P a , X .SS SS NN SS SS �P Ža, b.4b SS

Ž . Ž Ž ..2 x g H o m X , Q b if a n d o n ly if x gSS SS a NN

Ž Ž .. � 4 Ž � 4 .Hom X, Q b , where z , . . . , z s min SS _ a, b .SS SS �P Ž z , . . . , z .4 1 r nSS 1 r

Ž . Ž Ž . .Proof. 1 For f g Hom P a , X , there is some Y g NN such thatSS SS NN bb
Ž Ž . . Ž .f s uc , where u g Hom P a , Y and c g Hom Y, X . Since Y gSS SS SS

Ž Ž .. Ž Ž . .NN , then Hom Y, Q b s 0 and Y s Y . So u P a, b sb SS SS v b SS v

Ž Ž . . Ž Ž . .u P a, b : Y s Y j Y s Y l Y , and u P a, b s 0 for x g SSSS a a a v a b SS x
� 4k Ž ._ a, b , since P a, b s 0. Thus, according to Lemma 3.3 we see that uSS x

Ž . Ž .factors through P a, b and f factors through P a, b . This means thatSS SS

Ž Ž . .f g Hom P a , x . The other implication is obvious, sinceSS SS �P Ža, b.4SS

Ž .P a, b g NN .SS b
Ž . Ž .2 The proof is similar to 1 .

The following consequence of the Proposition 3.1 will be useful.

COROLLARY 3.1. Let k be a field. Let H be a thin left hammock with
Ž . Ž .finitely many projectï e ¨ertices, let p a / p v be a projectï e ¨ertex, and let

Ž . Ž X. Ž Ž . Ž ..q b / q v be an injectï e ¨ertex of H. Assume that Hom p b , p akŽH .
Ž .s 0. Then the following statements are equï alent for x g k H .

Ž .1 x g H ;a b
Ž . Ž Ž . .2 there is a map c g Hom p a , x which does not factor throughkŽH .
Ž .p a, b ;
Ž . Ž Ž ..3 there is a map f g Hom x, q b which does not factor throughkŽH .
Ž . � 4 Ž � 4 .p z , . . . , z , where z , . . . , z s min SS _ a, b .1 r 1 r n

Proof. It follows from Proposition 3.1 and Lemma 3.2.

Proof of Theorem 3.2. It is easy to see that H : H l H . In order toa b a b
Ž . d dy1show the other inclusion, assume that q b g H _ H. We denote by

Ž . d
SS d the poset formed from all projective vertices p of H with p g H.

Ž . Ž . Žd .Then a, b g SS d and ll SS ( k H . Now, assume that x g H l H .d a b
Ž Ž . . Ž Ž ..Then there are 0 / f g Hom p a , x and 0 / g g Hom x, q b .kŽH . kŽH .

Ž Ž . .If f f Hom p a , x , then x g H by Corollary 3.1. If g fkŽH . NN a bb
Ž Ž ..Hom x, q b , then x g H by Corollary 3.1 again. Suppose f gkŽH . aNN a b
Ž Ž . . Ž Ž ..Hom p a , x and g g Hom x, q b . From Proposition 3.1, wekŽH . NN kŽH . aNNb

Ž Ž . XŽ .. Ž XŽ . Ž ..have Hom P a, b , F x / 0 and Hom F x , P z , . . . , z /SS Žd. SS SS Žd. SS 1 r
X X Žd . Ž Ž Ž ... � 40, where F is the functor F : k H ( ll SS d and z , . . . , z sd 1 r

Ž � 4 . Ž . Ž .min SS _ a, b . This is impossible, since t P a, b s P z , . . . , z byn SS SS SS 1 r
Ž .Theorem 2.3 and since the preprojective component of ll SS is directed.

COROLLARY 3.2. Let k be a field. Let SS be a poset. Let PP be theSS

Ž . Ž .preprojectï e component of the Auslander]Reiten quï er of ll SS , let P aSS
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Ž . Ž .be a projectï e object in PP different from P v , and let Q b be anSS SS SS

Ž X .injecti¨e object on PP different from Q v . Assume thatSS SS

Ž Ž . Ž .. � < Ž Ž . .Hom P b , P a s 0. Then H s X g PP Hom P a , X / 0SS SS SS a b SS SS SS

Ž Ž .. 4 � < � 4and Hom X, Q b / 0 s X g PP min dim X , dim X y dim XSS SS SS k a k v k b
4/ 0 is a hammock with hammock function

dim X Hom P a, b , X s 0Ž .Ž .k a SS SSh X sŽ .Ž H .a b ½ dim X y dim X otherwisek v k b

dim X y dim X Hom X , P z , . . . , z s 0Ž .Ž .k v k b SS SS 1 rs ½ dim X otherwisek a

� 4s min dim X , dim X y dim X ,k a k v k b

� 4 Ž � 4 .where z , . . . , z s min SS _ a, b .1 r n

Ž Ž . . Ž Ž . .Proof. If Hom P a, b , X s 0, then Hom P a , X s 0. SoSS SS SS SS NNb
Ž . Ž Ž . .h X s d im H o m P a , X s d im X a n dŽ H . k SS SS k aa b

Ž Ž . . Ž Ž ..dim Hom P a , X s dim Hom X , Q b y dimk SS SS k SS SS k
Ž Ž .. Ž Ž ..Hom X, Q b F dim Hom X, Q b s dim X y dim X . IfSS SS aNN k SS SS k v k b
Ž Ž . . Ž Ž ..Hom P a, b , X / 0, then Hom X , P z , . . . , z s 0 andSS SS SS SS 1 r
Ž Ž .. Ž . Ž Ž ..Hom X , Q b s 0. So h X s dim Hom X , Q b sSS SS aNN Ž H . k SS SSa b

Ž Ž .. Ž Ž . .dim X y dim X and dim Hom X, Q b s dim Hom P a , Xk v k b k SS SS k SS SS

Ž Ž . . Ž Ž . .y dim Hom P a , X F dim Hom P a , X s dim X .k SS SS NN k SS SS k ab

Ž .COROLLARY 3.3. Let k be a field. Let SS be a poset. Let U g ll SS .`

Ž Ž . . Ž Ž ..Assume that Hom P a, b , U s 0 and Hom U, P z , . . . , z s 0,SS SS SS SS 1 r
� 4 Ž � 4 .where z , . . . , z s min SS _ a, b . Then dim U y dim U s dim U .1 r n k v k b k a

PROPOSITION 3.2. Let k be a field. Let H be a thin left hammock, let
Ž . Ž . Ž . Ž . Ž .p a , p c be projectï e ¨ertices of H different from p v , and let q b , q d

Ž X .be injecti¨e ¨ertices of H different from q v . Assume that
Ž Ž . Ž .. Ž Ž . Ž .. Ž Ž . Ž ..Hom p b , p a s 0, Hom p d , p a s 0, Hom p b , p ckŽH . kŽH . kŽH .

Ž Ž . Ž .. Ž Ž . Ž ..s 0, Hom p c , p a / 0, and Hom p b , p d / 0. Then wekŽH . kŽH .
ha¨e
Ž . Ž .1 H : H and H s H ;a b a d a b a d b
Ž . Ž .2 H : H and H s H ;a b c b a b a c b
Ž . Ž .3 H s H .a b a c d b

Ž Ž . .Proof. Let x g H . Then there exist f g Hom p a , x and g ga b kŽH .
Ž Ž ..Hom x, q b such that fg / 0. So 0 / fgl by Lemma 2.1, wherekŽH .

Ž Ž . Ž .. Ž .0 / l g Hom q b , q d . This means x g H and x g H . There-kŽH . a d a d b
Ž .fore H : H and H : H . On the other hand, let f ga b a d a b a d b

Ž Ž . . Ž Ž ..Hom p a , x and g g Hom x, q b with fg / 0. It follows thatkŽ H . kŽ H .a b a b
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Ž . Ž . Ž .fg / 0 in k H . Therefore H = H . The proof of 2 is similar. Fora b a d b
Ž . Ž . Ž . Ž . Ž Ž ..3 , from Lemma 3.2 and 1 and 2 , we have H s H sa c d b a c d b
Ž .H s H .a d b a b

4. ‘‘ALMOST’’ LEFT HAMMOCKS INDUCED BY A PAIR
OF POINTS

Let k be a field. Let H be a thin left hammock with finitely many
Ž . Ž . Ž .projective vertices, let p a / p v be a projective vertex, and let q b /

Ž X. Ž Ž . Ž ..q v be an injective vertex of H. Assume that Hom p b , p a s 0,kŽH .
Ž . �that is, a g b in SS H . In this section, we consider Hr H s x ga b

< Ž . Ž . 4 Ž .yH h x y h x / 0 . Note that in the case when a ) b, if z g p b ,H Ž H .a b
Ž .then z g H and furthermore p b is a source of Hr H and is differenta b a b

from v. So we only consider the case when a and b are incomparable.

LEMMA 4.1. Let H be a thin left hammock with finitely many projectï e
Ž . Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a / p v

Ž . Ž X .be a projectï e ¨ertex and let q b / q v be an injectï e ¨ertex of H.
Ž . Ž .Assume that a and b are incomparable in SS . Then h x G h x forH Ž H .a b

Ž .x g H, where we put h x s 0 for x g H _ H .Ž H . a ba b

Ž Ž . . Ž Ž . .Proof. Since dim Hom p a , x s dim Hom p v , x , ac-k kŽH . k kŽH . � pŽa.4
w x Ž . Ž Ž . .cording to 6, Lemma 3.1 , we have h x s dim Hom p a , x yŽ H . k kŽH .a b

Ž Ž . . Ž Ž . .d im H o m p a , x F d im H o m p a , x sk k Ž H . MM k k Ž H .b
Ž Ž . . Ž Ž . . Ž .dim Hom p v , x F dim Hom p v , x s h x .k kŽH . � pŽa.4 k kŽH . H

Ž .LEMMA 4.2. Let H be a thin left hammock and let SS [ SS H be the
Ž . Ž .poset corresponding to H. Let p a / p v be a projectï e ¨ertex and let

Ž . Ž X.q b / q v be an injectï e ¨ertex of H. Assume that a and b are incompa-
j htrable in SS . Let 0 ª t X ª [ Y ª X ª 0 be an Auslander]ReitenSS iis1

Ž .sequence in ll SS . Then the following conditions are equï alent.`

Ž . � 41 X, t X f H and Y g H for some j g 1, . . . , t ;SS a b j a b
Ž . Ž .2 X s P a, b .SS

Ž . Ž .Proof. 1 « 2 : Note that Y g H for some j implies that there arej a b
Ž Ž . t . Ž t Ž ..0 / f g Hom P a , [ Y and 0 / c g Hom [ Y , Q b . NowSS SS i SS i SSis1 is1

Ž .X f H means jc / 0. So jc factors through P z , . . . , z , wherea b SS 1 r
� 4 Ž � 4 .z , . . . , z s min SS _ a, b . This follows from Corollary 3.1, since t X1 r n SS

Ž Ž ..f H . Thus we have Hom t X, P z , . . . , z / 0. Similarly, we knowa b SS SS SS 1 r
Ž Ž . .Hom P a, b , X / 0. Now we get the sequence of mapsSS SS

c c c c1 2 3 4Ž . Ž .t X ª P z , . . . , z ª Z ª P a, b ª X, where Z is a summand ofSS SS 1 r 1 SS 1
the module which occurs in the middle term of the Auslander]Reiten

Ž .sequence ending in P a, b , c and c are irreducible maps, and c andSS 2 3 1
c are nonzero maps. Suppose that c is not an isomorphism. Then c is4 4 1
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Ž . Ž .not an isomorphism either, since t P a, b s P z , . . . , z . So c fac-SS SS SS 1 r 4
t Ž .tors through [ Y . This means that there is 0 / f , . . . , f gi 1 tiy1

Ž Ž . t . tHom P a, b , [ Y , and c also factors through [ Y . This meansSS SS i 1 iiy1 is1
Ž .X Ž t Ž ..that there is 0 / x , . . . , x g Hom [ Y , P z , . . . , z . Consider1 t SS i SS 1 ris1

the case when there is some i such that f / 0 and x / 0. We obtain ai i
x c c fi 2 3 iŽ . Ž .cycle sequence Y ª P z , . . . , z ª Z ª P a, b ª Y }a contradictioni SS 1 r 1 SS i

to the fact that the preprojective component of the Auslander]
Ž .Reiten quiver of ll SS is directed. If the case above does not occur, we`

can choose f / 0 and x / 0, where i / j. Then we obtain a subgraph ofi j
the orbit graph of the preprojective component of the Auslander]Reiten

Ž .quiver of ll SS as follows`

P a, bŽ .SS

Y Yi j

X

where a dotted line denotes the composition of some edges. This is a
contradiction, because the orbit graph of the preprojective component of

Ž .the Auslander]Reiten quiver of ll SS is a tree. Note that obviously`

Ž . Ž .P a, b / X. Therefore, c is an isomorphism, i.e., X s P a, b .SS 4 SS

Ž . Ž . Ž . Ž .2 « 1 : Proposition 2.1 shows that t P a, b s P z , . . . , z .SS SS SS 1 r
Ž . Ž . Ž . Ž .Clearly, P a, b f H and P z , . . . , z f H. So P a, b , t P a, bSS b SS 1 r a SS SS SS

Ž . Ž .f H . Since both P a, b and t P a, b are thin, we know t F 2. Ina b SS SS SS

Ž .case t s 2, Y , Y both are thin. By Lemma 2.1 we know that P z , . . . , z1 2 SS 1 r
Ž .is a SS-subspace of Y and Y is a SS-subspace of P a, b , for i s 1, 2. Soi i SS

Ž . Ž . � 4 Ž� 4kP z , . . . , z is a SS-subspace of P a, b and z , . . . , z s min a, bSS 1 r SS 1 r
� 4. Ž . Ž . Ž ._ a, b . Thus, comparing P z , . . . , z , P a, b with Y , for i s 1, 2SS 1 r s SS s i s

q Ž .and s g SS , we can obtain that Y s P a, u , . . . , u and Y s1 SS 1 s 2
Ž . � 4 kP b, ¨ , . . . , ¨ , where u g z , . . . , z , u f a , for i s 1, . . . , s, andSS 1 t i 1 r i

� 4 k¨ g z , . . . , z , ¨ f b , for j s 1, . . . , t. Therefore Y g H and Y fj 1 r j 1 a b 2
Ž Ž . Ž ..H . Consider now the case t s 1. Since Hom P a , P a, b / 0 anda b SS SS SS

Ž Ž . Ž .. Ž Ž . .Hom t P a , Q b / 0, we have Hom P a , Y / 0 andSS SS SS SS SS SS 1
Ž Ž ..Hom Y, Q b / 0. Thus Y g H follows from Theorem 3.2.SS SS 1 a b

Let H be a left hammock with translation t and let m be a
q � 4 y � 4projective]injective vertex of H with m s « . If m s t« , then we call

� 4the subquiver H _ m , together with the restriction of t on it, an ‘‘almost’’
� 4left hammock with respect to « . An ‘‘almost’’ left hammock H _ m is

called an ‘‘almost’’ hammock, if H is a hammock. If L is an ‘‘almost’’ left
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hammock obtained from some left hammock H with respect to « , we
� 4 q � 4write H s L j m with m s « , and we call the vertex m the additional

¨ertex.

THEOREM 4.1. Let H be a thin left hammock with finitely many projectï e
Ž . Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a / p v

Ž . Ž X .be a projectï e ¨ertex and let q b / q v be an injectï e ¨ertex of H.
� < Ž .Assume that a and b are incomparable in SS . Then Hr H s x g H h xa b H

Ž . 4 Ž .y h x / 0 is an ‘‘almost’’ left hammock with respect to p a, b . ForŽ H .a b
e Ž . � 4con¨enience, we denote by H the left hammock Hr H j m , wherea b a b

q � Ž .4 em s p a, b . Then the hammock function of H isa b

h x y h x x g Hr HŽ . Ž .H Ž H . a ba b
eh x sŽ .Ž H .a b ½ 1 x s m.

Ž .Proof. Consider a given vertex x g H different from p v . Leta b

y1

6
y

6

2

6

6

.t x x

6

..
6

yr

Ž . Ž .be the mesh in k H we put t x s 0 in case x is projective . We can
Ž . Ž .observe combinatorially that the equality h x q h t x sŽ H . Ž H .a b a b

Ž . Ž Ž . .Ý h y holds if z f H , let h z s 0 except in the followingy ª x Ž H . a b Ž H .a b a b

Ž . Ž . Ž . ycases: i x s p a ; ii x, t x f H and y g H for some y g x .a b a b

Now, we check that He and h e satisfies the conditions of a lefta b Ž H .a b

hammock.
Ž .1 Clearly, v is a source of Hr H . Suppose there is another source za b

Ž . Ž .e ein Hr H . We can suppose that h t z s 0, Ý h y s 0, anda b Ž H . y ª z Ž H .a b a b

Ž . Ž . Ž .eh z / 0. Clearly, the case i and the case ii both do not occur. SoŽ H .a b

Ž . Ž . Ž . Ž .h z q h t z s Ý h y . This together with h z qŽ H . Ž H . y ª z Ž H . Ha b a b a b

Ž . Ž . Ž . Ž . Ž .e e eh t z s Ý h y implies h z q h t z s Ý h yH y ª z H Ž H . Ž H . y ª z Ž H .a b a b a b

Ž .eand h z s 0}a contradiction.Ž H .a b
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Ž .2 Let

y1

6
y

6

2

6

6

.t x x

6

..
6

yr

Ž . Ž . Ž .ebe a mesh in k H with h x / 0. This implies that the case i doesŽ H .a b
Ž Ž .. Ž Ž .. Ž .not occur, since h p a s h p a . If the case ii does not occur,H Ž H .a b

Ž . Ž . Ž . Ž .h x q h t x s Ý h y . This together with h x qŽ H . Ž H . y ª x Ž H . Ha b a b a b
Ž . Ž . Ž . Ž .e eh t x s Ý h y shows that h x q h t x sH y ª x H Ž H . Ž H .a b a b

Ž . Ž .eÝ h y . In the case ii , by Lemma 4.2 and Proposition 2.1 we knowy ª x Ž H .a b
Ž . Ž . � 4 Žthat x s p a, b and t x s p z , . . . , z , where z , . . . , z s min SS _1 r 1 r

� 4 . Ž Ž .. Ž . Ž Ž .. Ž .a, b , and F p a, b s P a, b , F p z , . . . , z s P z , . . . , z un-n SS 1 r SS 1 r
Ž . Ž . Ž . Ž .der the equivalence functor F: k H ª ll SS . So h x s h t x s 1,` H H

Ž . Ž .Ý h y s 2, and Ý h y s 1. Thus, after adding an excep-y ª X H y ª x Ž H .a bq � Ž .4 y � Ž .4tional vertex m with m s p a, b and m s p z , . . . , z , we have1 r
Ž . Ž . Ž .e e eh x q h t x s Ý h y .Ž H . Ž H . y ª x Ž H .a b a b a b

Ž . e3 Assume that z is an injective vertex of H . We have to prove thata b
Ž . Ž .e eh z G Ý h y . First, we consider the case when z is anŽ H . z ª y Ž H .a b a b

< q< Ž . Ž .injective vertex of H. It is clear that z s 1 and h z s h y withH H 0
q � 4 Ž . Ž . Ž .z s y . Now z g Hr H implies z / q b , so h z s h y and0 a b Ž H . Ž H . 0a b a b

Ž . Ž .e eh z s h y . Next, in the case when z is not an injective vertexŽ H . Ž H . 0a b a b
Ž . Ž y . Ž . Ž .of H, we have the mesh h z q h t z s Ý h y , h z /H H z ª y H i H

Ž . Ž y . Ž y . Ž . Ž .h z , and h t z s h t z . So the case i and ii both do notŽ H . H Ž H .a b a b
Ž . Ž y . Ž . Ž .eoccur and h z q h t z s Ý h y . Thus, h z sŽ H . Ž H . z ª y Ž H . Ž H .a b a b a b a b

Ž . Ž .e eÝ h y . Finally, in case z s m, we have h z s 1 sz ª y Ž H . Ž H .a b a b
Ž Ž ..eh p a, b .Ž H .a b

Remark. From Theorem 5.1 below, we know that the left hammock
e Ž X . X eH corresponds to ll SS for some poset SS . So H is a thin lefta b ` a b

hammock with finitely many projective vertices.

From Theorem 4.1 and Corollary 3.2, we have the following result:

COROLLARY 4.1. Let k be a field. Let SS be a poset and let PP be theSS

Ž . Ž .preprojectï e component of the Auslander]Reiten quï er of ll SS . Let P aSS

Ž . Ž . Ž .be a projectï e object in ll SS different from P v and let Q b be an` SS SS

Ž . Ž X .injectï e object in ll SS different from Q v . Assume that a and b are` SS

� < �incomparable in SS . Then Hr H s X g PP max dim X , dim X ya b SS k b k v

4 4 Ž .dim X / 0 is an ‘‘almost’’ left hammock with respect to P a, b . Wek a SS
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e Ž . � 4 q � Ž .4denote by H the left hammock Hr H j m with m s P a, b .a b a b SS

Then the hammock function of He isa b

� 4max dim X , dim X y dim X X g Hr Hk b k v k a a b
eh X sŽ .Ž H .a b ½ 1 X s m.

˘5. HAMMOCKS AND THE ALGORITHM OF ZAVADSKII

First, we recall the algorithm of Zavadskiı . Let us fix some notation.˘
Let SS be a poset. We write SS s A q ??? qA if A j ??? j A s SS and1 n 1 n

ŽA l A s B for i / j note that the points from different A can bei j i
. kcomparable . Let a pair of points a, b be incomparable. We put SS s a q

Ž . Ž . � < 4b q J a, b and J [ J a, b s J q J q J , where J s x g J x - a andn a 0 b a
� < 4 Ž .J s x g J x ) b see the diagram below . Then we have the followingb

facts: points x, a, b are mutually incomparable for x g J , points y, a are0
incomparable for y g J j J , and z, b are incomparable for z g J j J .b 0 a 0

Ž . ŽLet SS be a poset. A pair of points a, b is called suitable for a
. kstratification if a and b are incomparable, and SS s a q b q J, wheren

� 4 w x Ž .J s z - ??? - z . Following 17 , we construct the a, b -stratified poset1 n
Ž . k SS as follows: The points of  SS consist of 1 x, for x g a j b ;Ža, b. Ža, b. n

Ž . Ž .2 a q x, for x g J j J ; 3 b l x, for x g J j J . The order relation inb 0 a 0
Ž . SS is defined as follows: 1 we keep all relations in SS betweenŽa, b.

k Ž . Ž .elements in a j b ; 2 we set b l x - a q x for x g J ; 3 we setn 0
Ž .a q x - a q y, if x - y in J j J ; 4 we set b l x - b l y, if x - y inb 0

Ž . Ž .J j J ; 5 we set a q x - y, if x - y for x g J j J and y ) a; 6 wea 0 b 0
Ž .set x - b l y, if x - y for x g J j J and y - b; 7 we add the relationa 0
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Ž .a - a q x for x g J j J , and b l y - b for y g J l J ; 8 if x and yb 0 a 0
are such x ) y and x - y under the relation above, then we identify x
and y.

EXAMPLE.

Now, we can state the theorem concerning left hammocks and Zavadskiı̆
stratification algorithms.

THEOREM 5.1. Let H be a thin left hammock with finitely many projectï e
Ž . Ž .¨ertices and let SS H be the poset corresponding to H. Let p a be a

Ž . Ž .projectï e ¨ertex different from p v and let q b be an injectï e ¨ertex of H
Ž X. Ž .different from q v . Assume that a and b are incomparable in SS H .

Ž e. eDenote by SS H the poset corresponding to the left hammock H . Thena b a b
Ž e. Ž .SS H is obtained from SS H as follows: there is a finite sequence of pairsa b

Ž . Ž . Ž . Ž .of points c , d , c , d , . . . , c , d s a, b , and a finite sequence of posets1 1 2 2 l l
Ž .SS s SS H , SS , . . . , SS such that1 2 l

Ž . Ž .1 c , d is a suitable pair of points of SS , for i s 1, . . . , l;i i i
Ž . Ž .2 SS s  SS for i s 2, . . . , l, that is, SS is the c , d -i Žc , d . iy1 i iy1 iy1iy1 iy1

stratified poset of SS ;iy1
Ž . Ž e.3 SS s SS H .l a b

The proof of this theorem will be covered in Sections 6 and 7.
We point out that Zavadskiı only considers the case J s B s J . Let˘ a 0

w xus make some remarks here. In 15 , Zavadskiı introduced the algorithm˘
w xcalled ‘‘differentiation with respect to a pair of points.’’ In 17 , he used the

two meticulous algorithms, which he called ‘‘stratification’’ and ‘‘replenish-
ment,’’ instead of the differentiation with respect to a pair of points. In the
rest of this section, we will discuss the correspondence between two classes
of left hammocks, in which replenishment will be completely explained.

The left hammock He, by definition, has the property that it includes aa b
q � 4 y � 4projective]injective vertex m with m s « and m s t« . The following
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proposition shows a bijection between the class of left hammocks with this
property and the class of left hammocks including a projective vertex p
and an injective vertex q with pys qq.

Ž .PROPOSITION 5.1. Let F be the set of pairs H, m , where H is a thin left
q � 4hammock, and let m be a projectï e]injectï e ¨ertex of H with m s « and

y � 4 Ž .m s t« . Let C be the set of triples L, p, q , where L is a thin left
hammock, p is a projectï e ¨ertex, and q is an injectï e ¨ertex of L with

y q Ž . Ž .p s q . We define j : F ª C by sending H, m to L, « , where L s H _
� 4m , and omitting the translation t on « in L. Then j is a bijectï e
correspondence.

Ž .Proof. Let H, m g F. We consider its translation subquiver L [ H _
� 4m and forget the translation t on « in L. Thus « is a projective vertex

q � 4 y � 4and t« is an injective vertex in L. Since m s « and m s t« , we see
Ž . Ž . Ž . < y< y � 4that h m s h « s h t« s 1. So « s 2, say, « s m, z . There-H H H

� 4 < Ž . < Ž . < Ž .fore, in H _ m , we have h « s h z s h t« s 1. Hence L isL L LH H H
<a left hammock with hammock function h , and L has a projectiveLH

y q � 4 Ž .vertex « and an injective vertex t« with « s t« s z . Thus L, « , t« g
Ž . < y< < q<C. On the other hand, for L, p, q g C, we know p s q s 1, say,

q � 4q s z . We construct a new left hammock H from L by adding an
q � 4 y � 4additional vertex m with m s q and m s p , and define t q s p. It is

easy to see that H is a left hammock with hammock function

h x x g LŽ .Lh x sŽ .H ½ 1 x s m.

Ž . Ž .In this way, we define the map z : C ª F by sending L, p, q to H, m .
Finally, it is obvious that jz s l and zj s 1 .F C

X Ž .PROPOSITION 5.2. Let F be the set of triples SS , a, b , where SS is a
poset and a and b are ¨ertices in SS with SS s akq b . Let C

X be the set ofn
Ž .triples SS , a, b , where SS is a poset, and a and b are ¨ertices in SS with a - b

k � 4 X X X Ž .and with SS s a _ b q b . We define j : F ª C by sending SS , a, b ton
XŽ .itself and adding the order relation a - b in j SS , a, b . Then j is a bijectï e

correspondence.
X X X XŽ .Proof. Define z : C ª F by deleting the relation a - b in z SS , a, b .

X X X X
X XThen we have j z s 1 and z j s 1 .F C

w x Ž .Following Zavadskiı 17 , a pair of incomparable points a, b of a poset˘
SS is called specific if SS s akq b . The new poset g SS obtained fromn Ža, b.
SS by adding the relation a ) b is called the replenished poset. We define

Ž . Ž . Ž .the replenishment functor g : ll SS ª ll g SS by setting g V s V , forŽa, b. x x
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Ž . Ž .x / b, g V s V q V , and g c s c . The following result is owing tob a b
w xZavadskiı and is presented in 17 as Theorem 2 and Corollary 2.˘

Ž . Ž .THEOREM 5.2. The replenishment functor g : ll SS ª ll g SS inducesŽa, b.
Ž . � Ž . Ž .4an equi¨alence of factor categories: ll SS r P a , P a, b (SS SS

Ž . � Ž .4 � Ž .4ll g SS r P a and an equï alence of translation quï ers G _ P aŽa, b. g SSŽa, b. SSX X Ž .( G , where G and G are the Auslander]Reiten quï er of the categories ll SS

Ž .and ll g SS .Ža, b.

It is easy to see that the left hammock H has a projective]injective
Ž . Ž .vertex m if and only if the poset SS H has a specific pair of points a, b

Ž . Ž .with m s P a s Q b . Now from Theorem 5.2 and Proposition 5.2, weSS SS

have the following theorem.

THEOREM 5.3. Let H be a thin left hammock with finitely many projectï e
Ž .¨ertices and with a projectï e]injectï e ¨ertex m. Let SS H be the poset

Ž . Ž .corresponding to H. Assume that j H, m s L, p, q in the sense of Proposi-
Ž .tion 5.2. Then SS L is just the replenishment poset g SS for the specificŽa, b.

Ž . Ž . Ž .pair a, b with m s P a s Q b .SS SS

6. THE PROOF OF THEOREM 5.1 IN A SPECIAL CASE

Ž . kUnder the hypothesis of Theorem 5.1, we put SS H s a q J q b asn
Ž . Ž .in Section 5. If width J s 1, then a, b is a suitable pair and Zavadskiı ’s˘

Ž .algorithm is valid. But in general, width J ) 1. In this section we will
Ž .prove Theorem 5.1 in the case width J s 1. We will establish the general

case by induction in the next section. Now, we first consider the special
case J s B.

PROPOSITION 6.1. Let H be a thin left hammock with finitely many
Ž . Ž .projectï e ¨ertices and let SS H be the poset corresponding to H. Let p a be
Ž .a projectï e ¨ertex and let q b be an injectï e ¨ertex of H. Assume that a and

Ž .b in SS H are incomparable. Then the following conditions are equï alent.
Ž . Ž . Ž . k1 a, b is specific, that is, SS H s a q b ;n
Ž . < <2 H s 1;a b
Ž . � Ž .4 � Ž .43 H s p a s q b ;a b
Ž . e4 H s H.a b

Proof. It is obvious.

Ž .Now we consider the case width J s 1.
Ž .Let SS be a poset, let a, b be a suitable pair of points of SS , and let

Ž . SS be the a, b -stratified poset. Following Zavadskiı , we define the˘Ža, b.
Ž . Ž . Ž Ž ..stratification functor  : ll SS ª ll  SS by setting  U s UŽa, b. Ža, b. Ža, b. v v

Ž . k Ž .and  U s U whenever x g a j b and  U s U q U ,Ža, b. x x n Ža, b. aqx a x
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Ž . Ž . U s U l U for an SS-space U, and  c s c . The follow-Ža, b. bl x b x Ža, b.
Ž w x.ing theorem is owing to Zavadskiı see 17 . Zavadskiı has considered˘ ˘

only the case J s B s J . Although we allow J j J / B, the proof isa b a b
the same.

THEOREM 6.1. Let SS be a poset. Assume that the points a, b g SS are
Ž . � 4incomparable. Assume that width J s 1, and write J s z , . . . , z , where1 n

Ž . Ž .z F ??? F z . Then the functor  : ll SS ª ll  SS induces an1 n Ža, b. Ža, b.
Ž . Ž . Xequï alence of the factor categories  : ll SS rV ( ll  SS rV , whereŽa, b. Ža, b.

� Ž . Ž . Ž .4 X � Ž .4 ŽV s P a , P a, z , . . . , P a, z and V s P a we putSS SS 1 SS n  SSŽa, b.
Ž . Ž . .P a, z [ P z if a ) z .SS i SS i i

Ž .Moreo¨er, let G be the Auslander]Reiten quï er of ll SS and let GSS  SSŽa, b.
Ž .be the Auslander] Reiten qui¨ er of ll  SS . Then G _Ž a , b . SS

� Ž . Ž . Ž .4 � Ž .4P a , P a, z , . . . , P a, z ( G _ P a .SS SS 1 SS n  SS  SSŽa, b. Ža, b.

Ž . Ž . Ž .Remark. Observe that P a s Q b and P a, b s SS  SS  SSŽa, b. Ža, b. Ža, b.
Ž Ž .. Ž . P a, b in ll  SS .Ža, b. SS Ža, b.

LEMMA 6.1. Let k be a field. Let H be a thin left hammock with finitely
Ž .many projectï e ¨ertices and let SS [ SS H be the poset corresponding to H.

Ž . Ž .Let p a be a projectï e ¨ertex and let q b be an injectï e ¨ertex of H.
Ž Ž ..Assume that a and b are incomparable in SS . Assume that width J a, b s 1,

Ž . � 4 Ž .and write J a, b s z , . . . , z , where z F ??? F z . Gï en x g k H , as-1 n 1 n
Ž .sume that x corresponds to the object X in ll SS under the equï alence`

Ž . Ž . Ž . Ž .k H ( ll SS . Then the equality h x s h x holds if and only if` H Ž H .a b

X g V.

Proof. Note that the objects in V occur on the preprojective compo-
Ž . Ž .nent of the Auslander]Reiten quiver of ll SS , since q b g H. For

Ž . Ž .X g V, it is easy to see that h x s 1, x g H , and h x / 0. SoH a b Ž H .a b
Ž . Ž .h x s 1 s h x by Lemma 4.1.Ž H . Ha b

Ž . Ž .On the other hand, h x s h x means dim HomH Ž H . k k Ž H .a b
Ž . Ž Ž . . Ž Ž . .v, x s dim Hom p a , x y dim Hom p a , x s dimk kŽH . k kŽH . MM kb

Ž Ž .. Ž Ž ..Hom x, q b y dim Hom x, q b . This implies that dim X skŽH . k kŽH . a MM k
dim X and dim X s 0.k a k b

X Ž . Ž k . XLet SS s SS H _ a j b ; the order relation of SS follows fromn
Ž . Ž X. Ž . Ž .SS H . We define a functor G: ll SS ª ll SS by setting G U s U ,v v

Ž . k Ž . Ž .G U s U whenever x g a , G U s 0 whenever x g b , and G U sx x n x
Ž . k Ž .U for x g SS H _ a j b , and G c s c . Clearly, G is indeed a func-x n

Ž X.tor. Moreover, G induces an equivalence between ll SS and the full
Ž .subcategory of ll SS consisting of the objects V with V s 0 and V s V .b a v

Ž . XSince width J F 1, each indecomposable SS -space V is thin. This
implies that X is thin. Therefore X g V, since X s 0 and X s X .b a v
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THEOREM 6.2. Let H be a thin left hammock with finitely many projectï e
Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a be a
Ž . Ž .projectï e ¨ertex and let q b be an injectï e ¨ertex of H. Assume that a, b is

Ž . Ž .a suitable pair of points in SS H with width J a, b s 1 and that  SS isŽa, b.
Ž . Ž . Ž e.the a, b -stratification of SS H . We denote by SS H the poset corre-a b

e e � 4sponding to the left hammock H , where H s Hr H j m anda b a b a b
� < Ž . Ž . 4 Ž e.Hr H s x g H h x y h x / 0 . Then SS H (  SS .a b H Ž H . a b Ža, b.a b

Ž . Ž . � < Ž .Proof. By definition, we know k Hr H ( k H r x g H h x sa b H
Ž .4 Ž .h x . Note that the objects of V occur in ll SS . This together withŽ H . `a b

Ž . � < Ž . Ž .4 Ž .Lemma 6.1 implies k H r x g H h x s h x ( ll SS rV. Corol-H Ž H . `a b
Ž .q � Ž .4 Xlary 2.1 means P a s P a, b . It follows that the objects of V SS  SSŽa, b. Ža, b.

Ž . Ž . Ž .occur in ll  SS , since  P a, b s P a, b . So by Theorem` Ža, b. Ža, b. SS  SSŽa, b.
Ž . Ž . X Ž .6.1 we have ll SS rV ( ll  SS rV . Thus we obtain k Hr H (` ` Ža, b. a b

Ž . X � Ž .4ll  SS rV and Hr H ( PP _ P a . Since Hr H is an` Ža,’b. a b  SS  SS a bŽa, b. Ža, b.

Ž .‘‘almost’’ left hammock with respect to p a, b , we see that PP _ SSŽa, b.
� Ž .4 Ž .P a is an ‘‘almost’’ hammock with respect to P a, b . Note SS  SSŽa, b. Ža, b.

Ž Ž .. Ž . eagain that  P a, b s P a, b . Thus we have H ( PP .Ža, b. SS  SS a b  SSŽa, b. Ža, b.
Ž . Ž .Note that the projective objects of ll SS occur in ll SS . This, together`

Ž . Ž . Xwith the fact that ll SS rV ( ll  SS rV , implies that the projectiveŽa, b.
Ž . Ž . Ž e.objects of ll  SS occur in ll  SS . Therefore SS H (  SS .Ža, b. ` Ža, b. a b Ža, b.

7. THE PROOF OF THEOREM 5.1: THE INDUCTION
PROCESS

In this section, we will prove Theorem 5.1 in the general case. First, we
have the following lemma.

LEMMA 7.1. Let SS be a poset and let PP be the preprojectï e componentSS

Ž .of the Auslander]Reiten quï er of ll SS . Let b be a point in SS . Assume that
� 4there is a subset y , y , y , y of SS with mutually incomparable elements1 2 3 4

Ž .and let y G b. Then Q b does not occur in PP .4 SS SS

X � 4k Ž X. Ž .Proof. Put SS s y , y , y , y . Define a functor G: ll SS ª ll SS1 2 3 4
Ž Ž .. Ž . � 4k Ž .by setting G U s U , G U s U for x g y , y , y , y , and G Uv v x x 1 2 3 4 x

� 4k Ž .s 0 for x g SS _ y , y , y , y , and G c s c . If y ) b, then clearly1 2 3 4 4
Ž . Ž . Ž X. Ž Ž . Ž ..dim G U / dim G U for each U g ll SS . So Hom G U , Q b /k k b SS SS

Ž X . Ž X . X0 for each U g ll SS . Note that width SS G 4 implies that SS is
Ž .infinite type. Thus Q b does not occur in PP . If y s b, we denote bySS SS 4

X Ž . Ž X .XQ b the injective object corresponding to b in ll SS . Clearly,SS

Ž Ž X Ž .. Ž .. Ž X. X
XHom G Q b , Q b / 0. Note that width SS G 4 implies that SSSS SS SS



HAMMOCKS AND ZAVADSKII ALGORITHMS˘ 715

Ž X .is of infinite type. Thus there are infinitely many V g ll SS with
Ž Ž .. Ž Ž . Ž .. Ž .X XHom V, Q b / 0 and Hom G V , Q b / 0. So Q b does notSS SS SS SS SS

occur in PP .SS

COROLLARY 7.1. Let H be a thin left hammock with finitely many
Ž .projectï e ¨ertices and let SS [ SS H be the poset corresponding to H. Let

Ž . Ž .p a be a projectï e ¨ertex and let q b be an injectï e ¨ertex of H. Assume
k Ž .that a and b are incomparable in SS . Let SS s a q J a, b q b andn

Ž . Ž Ž .. Ž .J a, b s J q J q J as abo¨e. Then width J a, b F 3, width J F 1,a 0 b 0
Ž . Ž .width J j J F 2, and width J j J F 2.a 0 0 b

Proof. As we know, x, a, b are mutually incomparable for x g J ; also,0
y, a are incomparable for y g J j J , and z, b are incomparable forb 0

Ž .z g J j J . Suppose that width J G 2 and say x , x g J are incompa-a 0 0 1 2 0
rable. Then a, x , x , b are mutually incomparable}a contradiction to1 2

Ž .Lemma 7.1. Suppose that width J j J G 3 and that x , x , x g J j J0 a 1 2 3 0 a
are mutually incomparable. Then x , x , x , b are mutually incomparable1 2 3

Ž}a contradiction to Lemma 7.1 again. Similarly, we can prove width J j0
. Ž Ž ..J F 2. Now, we suppose that width J a, b G 4 and that x , x , x , x gb 1 2 3 4
Ž .J a, b are mutually incomparable. If b, x are incomparable for each i,i

� 4i s 1, 2, 3, 4, then x , x , x , b is a subset of SS with mutually incompara-1 2 3
ble elements}a contradiction to Lemma 7.1. If there is some x G b, theni
we also get a contradiction to Lemma 7.1 again.

LEMMA 7.2. Let H be a thin left hammock with finitely many projectï e
Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a be a
Ž .projectï e ¨ertex and let q b be an injectï e ¨ertex of H. Assume that a and b

k Ž . Ž .are incomparable in SS , and SS s a q J a, b q b and J [ J a, b s Jn a
Ž Ž ..q J q J as before. Assume that width J a, b s 2. Then either there exists0 b

Ž Ž .. Ž Ž ..c g J with width J c, b s 1 or there exists d g J with width J a, d s 1,a b
k Ž . k Ž .where SS s c q J c, b q b and SS s a q J a, d q d .n n

� <Proof. Let V s x g J there is y g J such that x and y are incompa-a
4rable .

If V / B, we choose a minimal element of V, say c, such that first, c
and y are incomparable for some y g J and, second, for z - c, thec c
element z is comparable to each x g J. We claim that J _ ck is linear. In
fact, the first condition implies that J _ ck/ B. Now suppose that x , x1 2
in J _ ck are incomparable. Then the second condition implies that
c, x , x are incomparable}a contradiction to the hypothesis. So J _ ck is1 2

k � 4linear, say J _ c s z F ??? F z . Clearly, c, b are incomparable and1 r
k Ž . Ž . kSS s c q J c, b q b , where J c, b s J _ c is linear.n

If V s B, then for each x g J , x is comparable to each y g J. Thena
X � <we consider V s x g J there is y g J such that x and y are incompara-b
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4 Ž Ž .. Xble . Since width J a, b s 2, we see that V / B. A discussion similar to
Ž Ž ..the one above proves that there exists d g J with width J a, d s 1.b

LEMMA 7.3. Let H be a thin left hammock with finitely many projectï e
Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a be a
Ž .projectï e ¨ertex and let q b be an injectï e ¨ertex of H. Assume that a and b

k Ž . Ž .are incomparable in SS , and SS s a q J a, b q b and J a, b s J q Jn a 0
Ž Ž ..q J as before. Assume that width J a, b s 3. Then there exists c g J andb a

Ž Ž ..d g J with c, d incomparable such that width J c, d s 1.b

� <Proof. Let V s x g J x, x and x are mutually incomparable fora 1 2
4 Ž .some x , x g J . From Corollary 7.1, we have width J j J F 2. To-1 2 0 b
Ž Ž ..gether with width J a, b s 3, this implies V / B. So we can choose a

minimal element, say c, such that first, c, x , x are mutually incompara-c1 c2
ble for some x , x g J, and, second, for y - c, there does not exist ac1 c2
pair of points x , x in J with y, x , x mutually incomparable. We claim1 2 1 2

Ž k. Ž k.that width J _ c s 2. In fact, the first condition implies width J _ c G
2. Suppose that there are x , x , x g J _ ck mutually incomparable. Then1 2 3
the second condition implies that c, x , x , x are mutually incomparable1 2 3

X � Ž}a contradiction with the hypothesis. Now consider V s x g J l J _b
k. < k4c x and y are incomparable for some y g J _ c . Obviously, x or xc1 c2

X Ž . Xare in V , since width J j J F 2, so V / B. We can choose a maximala 0
element of V

X, say d. A similar discussion to that above shows that
Ž k. Ž k. � 4J _ c _ d is linear, say J _ c _ d s z - ??? - z . Note that c, dn n 1 r

k k Ž .are incomparable, since d g J _ c . Thus SS s c q J c, d q d , wheren
kŽ . Ž .J c, d s J _ c _ d .n

Let H be a thin left hammock with finitely many projective vertices and
Ž . Ž .let SS [ SS H be the poset corresponding to H. Let p a be a projective

Ž .vertex and let q b be an injective vertex of H. Assume that a and b are
Ž Ž ..incomparable in SS . In the case when width J a, b F 3, Lemmas 7.2 and

7.3 show that we can use the Zavadskiı ’s algorithm for some suitable pair˘
of points c and d with c F a, d G b. From Theorem 6.2 we obtain the thin
left hammock of He. Note that c F a, d G b means that a, b g d SSc d Žc, d.
and that a, b are incomparable in d SS . So we can consider theŽc, d.

Ž e.hammock H . Now, we will consider the relation between the ham-a c d b
Ž e.mocks H and H , as well as between the ‘‘almost’’ hammocksa b a c d b

Ž e . Ž e . Ž e .Hr H and H r H . Since H , H , Hr H , anda b c d a c d b a b a c d b a b
Ž e. Ž e.H r H all are subquivers of H, we will not distinguish betweenc d a c d b
the vertices in H and the vertices in these subquivers.

PROPOSITION 7.1. Let H be a thin left hammock with finitely many
Ž .projectï e ¨ertices and let SS [ SS H be the poset corresponding to H. Let

Ž . Ž . Ž . Ž .p a , p c be projectï e ¨ertices and let q b , q d be injectï e ¨ertices of H.
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Assume that a and b are incomparable, c and d are incomparable and
Ž . k Ž .a G c, d G b in SS , and J c, d is linear, where SS s c q J a, b q d .n

Ž . Ž Ž e. � 4.Then, as subsets of ¨ertices of H, we ha¨e H s H j H _ m .a b c d a c d b

Ž Ž . Ž ..Proof. First, a G c, d G b means that Hom p a , p c / 0 andkŽH .
Ž Ž . Ž .. Ž .Hom q d , q b / 0. So H s H : H by Proposition 3.2.kŽH . c d c a b d a b

Ž e. � 4 Ž Ž . .eNext, let x g H _ m . Then there are f g Hom p a , x anda c d b kŽ H .c d
Ž Ž ..eg g Hom x, q b with fg / 0. If neither f nor g factors through thekŽ H .c d

Ž .additional vertex m, then fg / 0 in k Hr H , and, further, fg / 0 inc d
Ž .k H . Thus we have x g H . If f factors through m, then f factorsa b

Ž .through p c, d , and g does not factor through m. This means that there is
Ž Ž . . Ž Ž . Ž ..h g Hom p c, d , x with hg / 0 g Hom p c, d , q b , andkŽH . kŽHr H . � x4a d

Ž Ž . Ž ..hg / 0 g Hom p c, d , q b . We claim that g does not factorkŽH . � x4
Ž . Ž . � 4 Ž � 4 .through p z , . . . , z in k H , where z , . . . , z s min SS _ a, b .1 r 1 r n

Ž .In fa c t , if g fa c to rs th ro u g h p z , . . . , z , th e n1 r
Ž Ž . Ž ..Hom p c, d , p z , . . . , z / 0. This is impossible, since c F a andkŽH . 1 r
Ž Ž . Ž ..Hom p c , p z , . . . , z s 0. Thus, by Corollary 3.1, we have x g H .kŽH . 1 r a b

Ž Ž . .Similarly, if g factors through m, then f g Hom p a , x and f doeskŽH .
Ž .not factor through p c, d . So x g H also. Thus, we have proven thata b

Ž e. � 4H = H _ m .a b a c d b
e Ž .Finally, let x g H . Let us assume that x f H . Then x s p c, z ,a b c d i

Ž .where z g J c, d . Note that x g H means that there are f gi a b
Ž Ž . . Ž Ž ..Hom p a , x and g g Hom x, q b with fg / 0. Thus f factorskŽH . kŽH .
Ž . Ž .through p c and g factors through q d by Lemma 3.3. This means

x g H l H , so x g H according to Theorem 3.2. In the case x g He,c d c d c d
eŽ .we have x g H , clearly.a c d b

PROPOSITION 7.2. Let H be a thin left hammock with finitely many
Ž .projectï e ¨ertices and let SS [ SS H be the poset corresponding to H. Let

Ž . Ž . Ž . Ž .p a , p c be projectï e ¨ertices and q b , q d injectï e ¨ertices of H. As-
sume that a and b are incomparable, that c and b are incomparable, that

Ž . e Ž . � 4a G c, d G b in SS , and that J c, d is linear. Let H s Hr H j m ,c d a b
q � Ž .4 Ž . Ž . Ž . Žewith m s p c, d . Then we ha¨e h x s h x q h x . LetŽ H . Ž H . Ž Ž H . .a b c d a c d b

Ž . Ž .eh x s 0 for x g H _ H and let h x s 0 for x g H _Ž H . a b c d Ž Ž H . . a bc d a c d b
Ž e. .H .a c d b

e Ž . Ž .Proof. If x f H , then x s p c, z for some z g J c, d . This impliesc d i i
Ž . Ž . Ž e.x g H and h x s 1 s h x . Now we assume that x g H _c d Ž H . H a c d ba b Ž H .c d� 4m .

Ž Ž . .First, we consider a vertex x with Hom p c, d , x s 0. LetkŽH .
Ž .h x s n and let f , . . . , f be a basis of HomŽ H . 1 n k Ž H .a b

Ž Ž . . Ž Ž . . Ž .p a , x rHom p a , x . Assume that f , . . . , f factor through p ckŽH . MM 1 tb
Ž .and f , . . . , f do not factor through p c . Let f s lh , 1 F i F t, wheretq1 n i i

Ž Ž . Ž ..l is a fixed nonzero map in Hom p a , p c and h gk Ž H . i
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Ž Ž . .Hom p c , x . Then h , . . . , h are linearly independent, since f , . . . , fkŽH . 1 t 1 t
Ž Ž . .are linearly independent. Now Hom p c , x s 0 follows fromkŽH . MMd

Ž Ž . .Hom p c, d , x s 0 by Proposition 3.1. So h , . . . , h are linearlykŽH . 1 t
Ž Ž . . Ž Ž . .independent in Hom p c , x rHom p c , x . Furtherk Ž H . k Ž H . MMd

Ž .f , . . . , f do not factor through add [ p c, z , since f , . . . , ftq1 n i tq1 nz g J Žc, d.i
Ž .do not factor through p c . So f , . . . , t are linearly independent intq1 n

Ž . Ž e.k Hr H . Moreover, f , . . . , t are linearly independent in k H ,c d tq1 n c d
Ž Ž . .since Hom p c, d , x s 0. Thus, we have shown dimk Ž H . k

Ž Ž . . Ž Ž . . Ž Ž .Hom p a , x y dim Hom p a , x F dim Hom p c ,k ŽH . k k ŽH . MM k k ŽH .b

. Ž Ž . . Ž Ž . .ex y dim Hom p c , x q dim Hom p a , x yk k Ž H . MM k k Ž H .d c d

Ž Ž . . X
Xedim Hom p a , x , where MM is the objects class of all objects yk kŽ H . MM bc d b

e Ž Ž ..ein H with Hom y, q b s 0. On the other hand, let f , . . . , fc d kŽ H . 1 rc d

Ž Ž . . Ž Ž . .induce a basis of Hom p c , x rHom p c , x and let g , . . . , gkŽH . kŽH . MM 1 sd

Ž Ž . . Ž Ž . . Xe einduce a basis of Hom p a , x rHom p a , x . Note thatkŽ H . kŽ H . MMc d c d b

Ž Ž . .H o m p c , d , x s 0 im p l ie s t h a t g i s ink Ž H . j
Ž Ž . . Ž Ž . .Hom p a , x rHom p a , x , for j s 1, . . . , s. We claim thatkŽH . kŽH . MMb

lf , . . . , lf , g , . . . , g are linearly independent, where l is a fixed nonzero1 r 1 s
Ž Ž . Ž .. r s Xmap in Hom p a , p c . Consider Ý k lf q Ý k g s 0. SincekŽH . is1 i i js1 j j

r Ž . s XÝ k lf factors through p c , we see that Ý k g s 0. So k s 0 andis1 i i js1 j j i

kX s 0 for 1 F i F r and 1 F j F s. Thus we have shown dimj k
Ž Ž . . Ž Ž . . Ž .Hom p a , x y dim Hom p a , x G dim Hom c, x ykŽH . k kŽH . MM k kŽH .b

Ž . Ž Ž . .e edim Hom c, x q dim Hom p a , x y dim Homk k ŽH . MM k k Ž H . k k Ž H .d c d c d

Ž Ž . . Xp a , x .MMb

Ž Ž . .Now we consider the case when Hom p c, d , x / 0. We havekŽH .
Ž Ž .. � 4 Ž � 4 .Hom x, p z , . . . , z s 0, where z , . . . , z s min SS _ c, d .kŽH . 1 r 1 r n

Ž Ž ..Using a similar argument to that above, we have dim Hom x, q b yk kŽH .
Ž Ž .. Ž Ž .. Ždim Hom x, q b s dim Hom x, q d y dim Hom x,k k ŽH . a MM k k ŽH . k k ŽH .

Ž .. Ž Ž .. Ž Ž .. Xe eq d q dim Hom x, q b y dim Hom x, q b , wherec MM k kŽ H . k kŽ H . a MMc d c dX Ž e. Ž Ž . .eMM is the object class of all objects y in k H with Hom p a , ya c d kŽ H .c d

s 0. Thus, the expected result follows from Theorem 3.1.

From Propositions 7.1 and 7.2, we have the following result.

THEOREM 7.1. Let H be a thin left hammock with finitely many projectï e
Ž . Ž . Ž .¨ertices and let SS [ SS H be the poset corresponding to H. Let p a , p c

Ž . Ž .be projectï e ¨ertices and let q b , q d be injectï e ¨ertices of H. Assume that
a and b are incomparable, that c and d are incomparable, that a G c, d G b

Ž . e Ž . � 4 qin SS , and that J c, d is linear. Let H s Hr H j m with m sc d c d
� Ž .4 Ž e. Ž e.p c, d . Then Hr H s H r H .a b c d a c d b

Ž e.Proof. We claim that m g H . In fact, a G c, d G b in  SS anda c d b Žc, d.
Ž . Ž . Ž . Ž . Ž e.p c s q d . So it follows that m s p c s q d in k H andc d



HAMMOCKS AND ZAVADSKII ALGORITHMS˘ 719

Ž Ž . Ž .. Ž Ž . Ž .. Ž e.e eHom p a , p c / 0, Hom q d , q b / 0. Thus m g HkŽ H . kŽ H . a c dc d c d

Ž e. Ž e.l H implies m g H by Theorem 3.2. Note thatc d b a c d b

h x y h x x / mŽ . Ž .H H Ž H .c d
eh x sŽ .Ž H .c d ½ 1 x s m.

e Ž e . � e < Ž .e eSo we have H r H s x g H h x y hc d a c d b c d Ž H . Ž Ž H . .c d a c d b
Ž . 4 � <Ž Ž . Ž .. Ž . 4 �ex / 0 s x g Hr H h x y h x y h x / 0 s x gc d H Ž H . Ž Ž H . .c d a c d b

< Ž . Ž Ž . Ž .. 4 � < Ž . Ž . 4eH h x y h x qh x /0 s xgH h x yh x / 0 .H Ž H . Ž Ž H . . H Ž H .c d a c d b a b

Note that the last equality holds by Proposition 7.2. Therefore
e eŽ .H r H ( Hr H .c d a c d b a b

Proof of Theorem 5.1. Given a thin left hammock H with finitely many
Ž . Ž .projective vertices, let SS [ SS H be the corresponding poset. If J a, b

Ž e. Ž .s B, we have SS H s SS by Proposition 6.1. If J a, b G 1, by Lemmasa b
7.2 and 7.3, we can use Zavadskiı ’s stratification algorithm for a suitable˘

Ž .pair of vertices c , d with a G c and d G b. Then we get the poset1 1 1 1
e Ž e. SS and the thin left hammock H with  SS ( SS H byŽc , d . c d Žc , d . c d1 1 1 1 1 1 1 1

Ž e.Theorem 6.2. We also obtain H as a subquiver of H. Note that ifa c d b1 1
Ž . e Ž .a s c , we have m s p a in H , and if b s d , we have m s q b in1 c d 11 1

e � Ž Ž e. � 4.4 � 4H . We point out that a x g H _ m - a x g H . Now, ifc d a c d b a b1 1 1 1
Ž XŽ .. k XŽ .width J a, b G 1, where  SS s a q J a, b q b , we can useŽc , d . n1 1

Zavadskiı ’s stratification algorithm again. Since H is finite, after finitely˘ a b
many steps, say after l steps, this process will stop. So we obtain a

Ž . Ž . Ž . Ž .sequence of suitable pairs of points c , d , c , d , . . . , c , d s a, b , a1 1 2 2 l l
sequence of left hammocks H s H, H , . . . , H , and a sequence of posets1 2 l

Ž .SS s SS H , SS , . . . , SS such that1 2 l
Ž . Ž .1 c , d is a suitable pair of points in SS ;i i i
Ž . Ž .2 SS s  SS for i s 2, . . . , l, that is, SS is the c , d -i Žc , d . iy1 i iy1 iy1iy1 iy1

stratified poset;
Ž . Ž .e3 H s H for i s 2, . . . , l;i c iy1 di i
Ž . Ž .e � 44 H _ m s B.a l b
By Theorem 6.2,
Ž . Ž .5 SS ( SS H .i i

Ž .e � 4 Ž . Ž . Ž .eNow, H _ m s B means that m s p a s q b in SS and Ha l b l a l b
Ž .( H follows from Proposition 6.1. Hence Hr H ( H r H (l a b 1 a 1 b

Ž . Ž .H r H ( ??? ( H r H by Theorem 7.1 again and again. Note that2 a 2 b l a l b
Ž . Ž . Ž e. P a, b s P a, b for i s 2, . . . , l. Therefore SS H (Žc , d . SS SS a bi i iy1 i

eŽ Ž . . Ž .SS H ( SS H ( SS , this completes the proof.a l b l l
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