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1. INTRODUCTION

Hammocks have been considered by Brenner [3] in order to give a
numerical criterion for a finite translation quiver to be the Auslander-—
Reiten quiver of some representation-finite algebra. Ringel and Vossieck
[13] gave a combinatorial definition of left hammocks, which generalizes
the concept of hammocks, in the sense of Brenner, as a translation quiver
H and an additive function 2 on H (called the hammock function)
satisfying some conditions. They also showed that a thin left hammock
with finitely many projective vertices is just the preprojective component of
the Auslander—Reiten quiver of the category of &, where % is a finite
partially ordered sets (abbreviated poset). An important role of posets in
representation theory is played by two differentiation algorithms. One of
the algorithms is due to Nazarova and Roiter [9] and it reduces a poset .
with a maximal element a €. to a new poset .’ =,d% with same
representation type. The second algorithm is due to Zavadskil [15] and it
reduces a poset . with a suitable pair (a, b) of elements a,b to a new
poset ¥’ = 4, ;- With same representation type. ZavadskiT s algorithm
is successfully used to give new proofs for characterizing posets of finite
type [5] and for characterizing posets of wild type [10] in studying posets of
finite growth [15]. In the paper [7], we discussed the relationship between
hammocks and the algorithm of Nazarova and Roiter. The main purpose
of the present paper is to construct some new left hammocks from a given
one, and to show the relationship between these new left hammocks and
the algorithm of ZavadskiT .

In Section 2, we recall some basic definitions and facts. Let H be a thin
left hammock with hammock function %, let p(a) a projective vertex of
H different from the source, and let g(b) an injective vertex of H different
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from the sink. In Section 3, we construct a new left hammock ,H, from
the given one by using the pair of points p(a) and g(b). We determine its
hammock function 4, ). It is shown that ,H, =,H N H,, where ,H and
H, are left hammocks induced from H by a point (see Section 2.5). In
Section 4, we prove that the subquiver, denoted by H/ H,, consisting of
all vertices x satisfying /,(x) — h y (x) # 0, is an “almost” left ham-
mock. If H is a thin left hammock with finitely many projective vertices,
the relation between the left hammock ,H,” induced by the pair of points
of H and the algorithm of Zavadskil is as stated in Theorem 5.1. The
proof of Theorem 5.1 will cover Sections 6 and 7. The corresponding
results concerning Z(.%), the category of .#*spaces, are also described.

Throughout this paper, all algebras are assumed to be finite-dimensional
(associative) basic algebras with unit over an algebraically closed field and
all modules are finitely generated right modules. We denote by 4-mod the
category of A4-modules. The composition of two morphisms f: M, - M,
and g: M, — M, is denoted by fg. All posets are assumed to be finite. We
denote by N, N,, and Z the set of natural numbers, positive integers, and
integers, respectively. For all unexplained notation, we refer to [11] and
[13].

2. PRELIMINARIES

2.1. Left Hammocks and Hammocks

Let H = (H,, H,, 7) be a proper translation quiver. We define induc-
tively the full subquivers ‘H of H. First of all, "*H is the empty quiver,
and z belongs to “H if and only if z=c’ 'H. Also, "H = U ,. y“H. Thus,
for all d € N U {=}, we see that “H is a predecessor closed subquiver, and
we may consider it as a translation quiver, using the restriction of 7.
Suppose H has a unique source w and H ="H. Then we define hy:
H, — Z inductively as follows. By abuse of notation, let /,(7x) = 0 for x
projective (note that, in this case, 7x is not defined). Now, let A ,(w) =1
and, for x # w, with A, already defined on all proper predecessors of x,
let hy(x) =X, _, hy(y) — hy(rx) (where the sum is taken over all ar-
rows ending at x). With these preparations, we are able to recall the main
definition: the translation quiver H is said to be a left hammock provided

(1) H ="H;

(2) H has a unique source w and h,(w) = 1;

(3) hy, takes values in the set N, of positive integers,

(4) if ¢ is an injective vertex, then h,(q) = X, hy(y).

When H is a left hammock, the function 4, is said to be its hammock
function.
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A vertex x of H is called thin if h,(x) = 1. A left hammock H is said
to be thin provided h,(p) = 1 for any projective vertex p of H. A left
hammock H is called a hammock if |Hy| < «. A hammock is always thin
and has a unique sink, say o'.

2.2. S-Spaces

Fix some field k. Given a poset .%#, an space V = (V,;V,), c o IS given
by a vector space V,, over k and subspaces V, of V,, for s €.%, such that
V., CV, for s < t. We call V,, the total space of V', and define its k-dimen-
sion by dim V' = dim,V,. Given two #spaces V, W, amap ¢: V — W is
given by a k-linear map y,: V, — W, satisfying y,(V,) c W, for all s €.7;
the induced map V, — W, will be denoted by ,. The posets we will
consider are always assumed to be finite. We denote the category of
Sspaces V' with dim,V, <o by Z(%). For convenience, we denote
Hom .., (V, W) for two .#*spaces V" and W by Hom (), W). We denote
by &#* the poset obtained from . by adjoining an element « with s < @
for all s €.%. Similarly we denote by .~ the poset obtained from . by
adjoining an element o’ with s > ' for all s €.%. The projective objects,
denoted P.(s) with s €.%*, and the injective objects, Q .(s) with s €.~
are defined as follows. For all t € 7,

k fort>s
Po(s): = {O fort ¢ s

and

k fort s
Q- (s), {0 fort <s.
For t €% and V €/(%), we have dim, Hom  (P.(¢), V) = dim,V, and
dim,Hom (V, Q.(¢)) = dim, V, — dim,V,. An Sspace V is thin if its
total space V, is one dimensional. We denote by 7. the Auslander—Reiten
translation in /(). It is well known that the Auslander—Reiten quiver of
/(%) always has a unique preprojective component, denoted by .., which
is standard.

Given a Krull-Schmidt k-category A, let us define the full subcategories
4\ First of all, _; A contains only the zero object. Second, an indecompos-
able object X of A belongs to ;A if and only if any indecomposable object
Y of A with rad(Y, X) # 0 belongs to ,_;A. Finally, ,A = U, y,A. Let
% be a poset. We observe that ./ (%) is just the full subcategory of /(%)
whose indecomposable objects occur in %,. So /(%) = add k(#.,),
where k(£,) denote the mesh category for .Z.,.
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There is a strong relationship between thin left hammocks and the
representation theory of posets which is due to Ringel and Vossieck (see
[13]) and is described as follows.

THEOREM 2.1. Let ¥ be a finite poset and let k be a field. Then the
preprojective component P, of the Auslander—Reiten quiver of /(%) is a
thin left hammock with finitely many projective vertices. The hammock
function on 2, is dim . Conversely, given a thin left hammock H with n
projective vertices, there exists a unique poset . =.(H) with n — 1 ele-
ments such that add k(H) = /(%) as categories and H = P, as translation
quivers.

From now on we will take any thin left hammock H as the preprojective
components %, for . =.%(H). Accordingly we have a bijective map
p: ¥+ — {projective vertices of H}, where p(s) is the vertex corresponding
to P.(s). Let (#7)° be the subset of .~ consisting of those elements s
such that the injective object Q.(s) occurs in /(). Then we have a
bijective map ¢: (&¥7)° — {injective vertices of H}, where g(s) is the
vertex corresponding to Q.(s). In particular, we obtain
Hom, »,(p(s), p(t)) = 0 if and only if s>¢ in »* and
Hom, ;(q(s), (1)) # 0 if and only if s > ¢ in (&¥7)°.

2.3. Incidence Algebras and Socle-Projective Modules

Let k be a field. Given a Krull-Schmidt k-category A, a A-module M is
a finitely presented functor A® — k-mod. We denote by A-mod the
category of all A-modules and by A-spmod the full subcategory of A-mod
generated by all modules M € A-mod which have a projective socle. A
module M in A-spmod is said to be thin if M has a simple socle. We will
use the following easy result.

LEmMmA 2.1.  Let A be a Krull-Schmidt k-category, M, N, L. € A-spmod.

(1) Assume that 0 # y € Hom (M, N) and M is thin. Then ¢ is a
monomorphism.

(2) Assume that 0 # 6 € Hom,(M, N),0 # ¢ € Hom (N, L), and M, N
are thin. Then 6¢ + 0.

Proof. Suppose that ¢ is not a monomorphism, then soc(ker()) =
soc M since M is thin. As a consequence, soc(Im(i)) = soc(M /ker(y)) is
not projective—a contradiction to the fact that A-spmod is closed under
submodules. Thus (1) holds and (2) follows at once. |

Let . be a poset and let k be an algebraically closed field. By
A(P) = k" we mean the k-incidence algebra of the enlarged poset .7 ™.
Note that P,(w) is the unique simple projective A(%)-module. The
following theorem is due to Ringel and Vossieck (see [13]).
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THEOREM 2.2. Let H be a left hammock with source w and let k be a
field. Let (H, k) be the full additive subcategory of k(H) whose indecom-
posable objects are just the projective vertices of H. Define the functor
M: k(H) - 2(H, k)-mod by M(x) = Homk(H)(—, )| 2(H, k). Then

(1) there is a unique simple projective object in P(H, k)-mod, namely,
M(w). An object X of #(H, k)-mod belongs to P(H, k)-spmod if and only
if its socle is generated by M(w);

(2) (P(H, k)-spmod) has Auslander—Reiten sequences;

(3) M induces the equivalence k(H) = ((H, k)-spmod) (as categories);

(4) H = L o4, 1) spmoay (as translation quivers), where T o5 1) spmod) 1S
the Auslander—Reiten quiver of ((H, k)-spmod).

For convenience, we put & :=2(H, k)-spmod. Thus we write
AP(H, k)-spmod) as .7 and we write instead of HOM, 4 4y somod( X, Y)
just Hom_,(X,Y). If the left hammock H has only finitely many projec-
tive vertices, 2(H, k) is a finite category; therefore 2(H,k)-mod =
A(H)-mod for some finite-dimensional algebra A(H) and k(H) = ,(A-
spmod), H = T, 4 moay, Where 4 = ACH). We call ACH) the finite-dimen-
sional algebra corresponding to H. Note that if H is a thin left hammock
with finitely many projective vertices, then A(H) is just the incidence
algebra of the poset .A(H).

2.4. Auslander—Reiten Translation in /(%)

In order to describe the Auslander—Reiten translate in Z (%), Simson
introduced the notion of prinjective modules (see [14]). Let . be a poset,
k be a field, A(%):=k>* be the incidence algebra, and k¥ =
A(P) /soc( A(F)). As we know, the incidence algebra A(%) is the one-
point coextension of k. by R = [ ,(w)/soc I ,(w). So we can identify the
right A-module X with the triple X =(X', X, ¢: X' ®_, R~ X,),
where X' is a right k%*module and X, is a k-vector space. A right
A-module X = (X', X, ¢) is called prinjective if X' is a projective
k#module. By prin(A(%)) we mean the full additive subcategory of
A(%)-mod whose objects are prinjective modules; prin(A(%)) is closed
under extension and kernels of epimorphisms. On the other hand, a
module X in A(%)-mod will be identified with a system X =

X b)) << Where X, s €7, are finite-dimensional k-vector spaces
and b X, > X, t <s, are k-linear maps such that ¢, = id for all
s ey+ and (, b, )( o) = (o, for t <s < u. Now, we recaII the functor
0: A(¥)-mod — /() defined by the formula (X, ,¢,) = (X, Im( ¢,
Xs - Xw))sey

Let . be a poset, k be a field, A(.%) be the incidence algebra, and
k7 = A(P)/soc(A(&)). Given an Fspace V, we put V=~ =
P(V)/soclker(o)), where o: P(VV) — V is the projective cover of 17 in
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/(). Then V'~ is in prin(A(%)), and 7,(V ) is an .#~space, where 7, is
the Auslander—Reiten translate in A4-mod. The following theorem is due
to Simson (see [14)).

THEOREM 2.3. The relative Auslander—Reiten translates in /(%) are
17 (V) =01,(V) and 7,(V) = 7,(VV ™).

For a given poset #and a €., set a'={x eFlx >aand a ,= {x €
Flx<al. If AcCc, then AV=U,.4a’ and A,=U,c a,. If
{aj,...,a,}, where r > 1, is a set of mutually incomparable points of the
poset ., we introduce a one-dimensional .#space Pg(a,, ..., a,) by setting
Pg(ay,...,a,) =, U)o, Where U = U, =k if x{a;,...,a,}" and
U, = 0 otherwise.

In the case when X is a nonprojective .%%~space and both X and 7.X are
thin, then we call X, 7.X a pair of thin #spaces. The following pairs of thin
S~spaces seem to be useful.

PropPosITION 2.1. Let . be a poset. Assume that a and b in . are
incomparable. Then t,P,(a,b) = P,(z,,...,z,), where {z,,...,z,]=
min(#\ {a, b} ,).

Proof. Itis clear that P,(a) & P.(b) — P.(a, b) is the projective cover
in /(%). S0 0 - P(w) = Py(a) ® P,(b) - P_(a,b)” — 0 is a minimal
projective resolution for P_(a, b))~ in prin( A(%)). We apply the Nakayama
functor DHom ,(—, A) to the sequence above, and by the definition of the
Auslander—Reiten translation, we obtain the exact sequence 0 —
7,(P(a,b)™) » [ (w) - [(a) ® [,(b) - 0. By Theorem 2.3, we get the
result. |

COROLLARY 2.1. Let . be a poset. Assume that a and b in ¥ are
incomparable and that b is the unique maximal element of ¥\ a". Then there

exists an irreducible map Py (a) 5 P (a,b).

Proof. The assumption that b is the unique maximal element of #\ a"

implies &#=b,Ua". So we have P.(z,...,z) =rad P (a), where

{zy, ..., z,} = min(#\ {a, b} ). Thus there is an irreducible map

P.(z,,...,z,) = Py(a). This yields the existence of y by Proposition 2.1.
1

PROPOSITION 2.2. Let % be a poset. Let X € /(). Then both X and
7, X are thin if and only if X = P.(s, t) for a pair of incomparable points s
and t.

Proof.  One direction follows from Proposition 2.1. For the converse, we
assume that @ _ . P,(s)/®) - X is the projective cover for X in / (%),
where d(s) > 0. Then 0 » &, P(w) = &, _ P(s)" > X~ - 0is a
minimal projective resolution for X in prin(A(%)). Thus X thin implies
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IJ| = X, »d(s) — 1. Apply the Nakayama functor to the sequence above.
By the definition of the Auslander—Reiten translation, we obtain the
following exact sequence 0 —» 7,(X)~ - &, ,(0) > & _ L(s) - 0.
Since 7.(X) = 7,(X 7) is thin, we see |J| = 1. This means X, . ..d(s) = 2.
Thus the projective cover of P.(a,b) is P,(s) ® P (¢). Finally, X thin
implies that s and ¢ are incomparable.

2.5. Hammocks Induced by a Point

Let A be a Krull-Schmidt k-category and let E be a class of objects of
A. For x,y € A, we denote by Hom (x, y)= the subspace of the all maps
in Hom,(x, y) which factor through some object of E. In the paper [7], we
obtained the following result.

THEOREM 2.4. Let k be a field. Let H be a thin left hammock with source
w and let hy; be the hammock function of H. Assume that p(a) # p(w) is a
projective vertex of H and q(a) # q(w') is an injective vertex of H. Then

1 H={xe HIHomk(H)(p(a), x) # 0} is a left hammock with source
pla). The hammock function on ,H is h = dim,Hom, ,(p(a),-) =
dim, Hom, ;;,( p(@), =) (a-

@ H/,H={x<= Hlhy(x) - h(aH)(x) # 0} is a left hammock with source
w. The hammock function on H/ H is hy , yy = hy — h .

(3) H, ={x € HHom, ,;(x, g(a)) # 0} is a hammock with source
and since q(a). The hammock function on H, is hg , =
dim,Hom, (-, g(a)).

W H/H, ={x € Hlhy(x) — h(Hu)(x) # 0} is a left hammock with source
p(a). The hammock function on H/H, is hy ) = hy — hey .

(5) H, = H/,H and ,H = H/H,.

(6) Let A(H) be the poset corresponding to H. Then A(,H) ((H,),
respectively) is obtained from F(H) by a finite sequence of differentiations
with respect to maximal (minimal, respectively) elements in the sense of
Nazarova and Roiter.

3. HAMMOCKS INDUCED BY A PAIR OF POINTS

Let k be a field. Let H be a left hammock and let k(H) be the mesh
category of H. For a given projective vertex p(a) of H, let ,.# be the class
of all objects x with Hom, , (p(a), x) = 0. For a given injective vertex
q(b) of H, let .z, be the class of all objects x with Hom, , (x, (b)) = 0.
There should be no confusion if we denote by ,.# the class of all objects X
with Hom(P(a), X) = 0 for a given projective object P(a) of Z. Simi-
larly, for a given injective object Q(b) of 7, let .#, be the class of all
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objects X with Hom_(X, Q(b)) = 0. Let . be a poset. We denote by ./
the class of all objects X with Hom (P.(a), X) = 0 for a given projective
object P,(a) of Z(%), and let .#, be the class of all objects X with
Hom (X, Q.(b)) = 0 for a given injective object Q.(b) of /().

LEMMA 3.1. Let k be a field. Let H be a thin left hammock, p(a) # p(w)
be a projective vertex, and q(b) + q(w') be an injective vertex of H. Assume
that Hom, ,;\(p(b), p(a)) = 0. Then we have

O (H), ={x € ,HHom, 4 (x, q(b)) /Hom, ,(x, q(b)),, # O} is a
hammock, and the hammock function is h( g, = dim, Hom, ,(x, q(b))
— dim, Hom,  (x, ¢(b)),,.

(2) Also, (H},) = {x € HHom, ;; (p(a), x)/Hom, ; (p(a), x), + O} is
a hammock, and the hammock function is h (y 5, = dim,Hom, . (p(a), x)
— dim, Hom, ., (p(a), x) ,,.

Proof. We claim that g(b) € ,H. Assume g(b) €’H. We consider the
full subcategory <(d + 2) of %(H, k) given by all projective vertices p
with p €*"?H. We can consider 2(d + 2)-modules as #(H, k)-modules.
Since #(d + 2) is a finite category, there is a finite-dimensional algebra A
with  A-mod = 2(d + 2)-mod and k(**’H) =,, ,(2(H, k)-spmod) =
4+ (A-spmod). We denote by M the corresponding equivalence functor M:
k(“*2H) =, ,(A-spmod). We can write M(p(a)) = P,(a), M(p(b)) =
P,(b), and M(¢(b)) = Q,(b). Note that Hom, ,;,(p(b), p(a)) = 0 implies
Hom ,(P(b), P(a)) = 0. It follows that Hom ,(P(a), I,(b)) = 0, where
I1,.(b) is the injective hull of the top of P,(b). By the definition of
Auslander—Reiten translate, there is an exact sequence 0 — 7,B(b) —
®,1,(w) - 1,(b) — 0. Applying Hom ,(P,(a), -) to this sequence, we get
Hom ,(P,(a), 7,B,(b)) # 0, since Hom ,(P,(a), [,(w)) = 0 and
Hom ,(P,(a), I,(b)) = 0. Thus, Hom, ;(p(a), g(b)) # 0. Therefore g(b)
e H.

Of course, g(b) is also an injective vertex of ,H. By Theorem 2.4,
(H), = {x € ,HHom, ,(x,q(b)) # 0} is a hammock with hammock
function & ) = dim,Hom,  (x, q(b)). As we know, k(H) =.%, so
k(,H) =,.%/,#. Thus, we have Hom, ,(x, qg(b)) =
Hom ., ,(x,q(b)) = Hom ,(x, q(b))/Hom (x,q(b),, = Hom,
(x, g(b))/Hom, 1 (x, q(b)), ,. Therefore we obtain (1). The proof of (2) is
similar. |

Note that for H a thin left hammock with only finitely many projective
vertices, Hom, ,;,(p(b), p(a)) = 0 means that a « b in A(H).

LEMMA 3.2. Let k be a field. Let H be a thin left hammock, let
pla) # p(w) be a projective vertex, and let q(b) # q(®') be an injective
vertex of H. Assume that Homk(H)(p(b), p(a) =0. Let ,H,={xe
HI|Hom, ;,(p(a), g(b)),, # O}. Then ,H, = (,H), = ,(H,).
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Proof. First, assume that there are f& Hom, . (p(a),x) and g€
Hom y(x, ¢(b)) in k(H) with fg # 0. We claim that 0+ f in
Hom ,(p(a), x)/Hom, 4 (p(a), x), . For, otherwise, f €
Hom, ;,(p(a), x),, means that f factors through some object in .7, say
z. We write f = f,f,, where f, € Hom,,(p(a),z) and f, €
Hom, ,(z, x). Then z €.#, implies f,g =0 and fg = 0—a contradic-
tion. Thus we have proved ,H, < (,H),.

Next, let 0 # f in Hom,,,(p(a), x)/Hom, 4 \(p(a), x), . This implies
that 0 # f € Homy  p,,(p(a), x). So there exists 0 # g €
Hom, .,(x, g(b)) such that fg # 0 € k(,(H,)) (see [13], Corollary 5).
This shows fg # 0 in k(H), and therefore ,H, > (,H),.

The proof of ,H, = ,(H,) is similar. |

THEOREM 3.1. Let k be a field. Let H be a thin left hammock, let
pla) # p(w) be a projective vertex, and let q(b) + q(w') be an injective
vertex of H. Assume that Hom, ., (p(b), p(a)) = 0. Then ,H, =
{x e HIHomk(H)(p(a), q(b))m # 0} is a hammock with hammock func-
tion h = dimHom, ., (p(a), -) — dim,Hom, , (p(a), ), = dim;
Hom, (=, (b)) — dim, Hom, (-, q(b)),,.

Proof. By Lemma 3.2 we know that ,H, = (,H), =,(H,) is a ham-
mock. Since the hammock function is uniquely determined, we have

b,y = Py = Moy 1

Remark. Note that if Hom, . (p(b), p(a)) # 0 and a # b, then
Hom, , (p(a), q(b)) = 0. So ,H, = .

Remark. Let H be a hammock. According to Theorem 2.4, we can
obtain the poset #(,H,) corresponding to the hammock ,H, from the
poset .(H ) corresponding to the hammock H by a finite sequence of the
algorithms of Nazarova and Roiter (see [7]).

THEOREM 3.2. Let k be a field. Let H be a thin left hammock, let
pla) # p(w) be a projective vertex, and let q(b) + q(w') be an injective
vertex of H. Assume that Hom, ,(p(b), p(a)) = 0. Then ,H, =,H N H,.

In order to prove Theorem 3.2, we need some properties of .#~spaces.
The following lemma is due to Zavadskil (see [16]).

LEMMA 3.3. Let . be a poset. Assume that {a,,...,a,}, wheret > 1, isa
subset of & with ay, ..., a, mutually incomparable. Then a morphism ¢ €
Hom (U, V) factors through a direct sum (Py(ay,...,a))" if and only if
#WU,) € Ni_V, and $(U) =0 forx €eX\{ay,...,a}".
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ProposITION 3.1. Let . be a poset. Assume that a and b in & are
incomparable. Then

(1) ¢ € Hom (P (a), X),. if and only if ¢ € Hom ,(Po(a), X)p_ (4 py-

(2) x € Hom (X, Qy(b))w if and only if x e
Hom (X, Qo (bDp (s, .y Where {z, ..., z,} = min(#\ {a, b} ).

Proof. (1) For ¢ € Hom (P,(a), X),., there is some Y €.7; such that
¢ = 6y, where 6 € Hom (P (a),Y) and ¢ € Hom (Y, X). Since Y €
A,, then Hom (Y, Q.(b)) =0 and Y, =Y,. So 6(P.(a,b),) =
0(Py(a,b)) Y, =Y, UY =Y, NY, and 6(P,(a,b),) =0 for x €
\ {a, b}V, since P.(a, b), = 0. Thus, according to Lemma 3.3 we see that 6
factors through P.(a, b) and ¢ factors through P.(a, b). This means that
¢ € Hom ,(P,(a), X)p .y The other implication is obvious, since

P.(a,b) e,
(2) The proof is similar to (1). |

The following consequence of the Proposition 3.1 will be useful.

CoROLLARY 3.1. Let k be a field. Let H be a thin left hammock with
finitely many projective vertices, let p(a) # p(w) be a projective vertex, and let
q(b) # q(w') be an injective vertex of H. Assume that Hom . (p(b), p(a))
= 0. Then the following statements are equivalent for x € k(H).

1) x €,H,;

(2) there is a map € Hom ,;(p(a), x) which does not factor through
pla, b);

(3) there is a map ¢ € Hom, ,;(x, g(b)) which does not factor through
p(zy,..., 2,), where {zy, ..., z,} = min(Z\ {a, b} ,).

Proof. It follows from Proposition 3.1 and Lemma 3.2. |

Proof of Theorem 3.2. It is easy to see that ,H, <, ,H N H,. In order to
show the other inclusion, assume that g(b) edH \" 'H. We denote by
Ad) the poset formed from all projective vertices p of H with p ‘H.
Then a,b € Ad) and /(%) = k(“H). Now, assume that x € ,H N H,.
Then there are 0 # f € Hom,,(p(a), x) and 0 # g € Hom, ., (x, q(b)).
If f& Homy(pa) x),, then x €, H, by Corollary 3.1. If g¢&
Hom, ;(x, g(b)),,, then x €, H, by Corollary 3.1 again. Suppose f €
Hom,;(p(a), x),, and g € Hom, ., (x, q(b)),,. From Proposition 3.1, we
have Homy(d)(Py(a b),F'(x)) # 0 and Hom, ,\(F'(x), Po(zy,...,2,)) #
0, where F’ is the functor F': k(‘H) _d(/(y(d))) and {zl,...,z,} =
min(#\ {a, b} ,). This is impossible, since 7, P (a,b) = P,(z,,...,z,) by
Theorem 2.3 and since the preprojective component of /(%) is directed.

COROLLARY 3.2. Let k be a field. Let .¥ be a poset. Let P, be the
preprojective component of the Auslander—Reiten quiver of / (%), let P, (a)
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be a projective object in P, different from P, (w), and let Q(b) be an
injective object on P, different from Q. (w'). Assume that
Hom (P.(b), P.(a)) = 0. Then ,H, ={X € 2, Hom_(P.(a), X) # 0
and Hom (X, Q.(b)) # 0} = {X € Z,min{dim, X, dim, X, — dim, X}
# 0} is a hammock with hammock function

Ly [ dmX, Hom (P, (a,b), X) =0
(,,Hh)( ) = dim, X, — dim, X, otherwise

dim, X, — dim, X, Hom,(X,P,(z,...,2,)) =0
dim, X, otherwise

min{dim X ,,dim, X — dim, X,},

where {z, ..., z,} = min(*\ {a, b} ,).

Proof If Hom(Py.(a,b), X) =0, then Hom,(P.(a), X), =0. So
hi y,(X) = dim,Hom ,(P,(a), X) = dim, X, and

dim, Homy(Py(a) X) = dim, Hom_.(X, Q.,(b) - dim,
Hom (X, Q.(b)),, < dim ,Hom (X, Q.(b)) = dim X6 — dim X,. If
Hom _(P.(a, b), X) # 0, then Hom (X, P.(z,,...,2)) =0 and

Hom (X, Q.(b)),, = 0. So h(y(X) = dim Homy(X 0.(b)) =
dim, X, — dim, X, and dim Homy(X Q.(b)) = dim,Hom (P (a), X)
- dlm Homy(P (), X),, < dim;Hom (P, (a), X) = dim, X,. |

COROLLARY 3.3. Let k be a field. Let % be a poset. Let U €_./().
Assume that Hom _(P.(a,b),U) =0 and Hom (U, P.(z,,...,z,)) =0,
where {z,, ..., z,} = min(*\ {a, b} ). Then dim U, — dim, U, = dim, U,.

PROPOSITION 3.2. Let k be a field. Let H be a thin left hammock, let
pla), p(c) be projective vertices of H different from p(w), and let q(b), g(d)
be injective vertices of H different from qg(w'). Assume that
Hom, ;;,(p(b), p(a)) = 0, Hom, ;;\(p(d), p(a)) = 0, Hom, ,;,( p(b), p(c))
=0, Homk(H)(p(c), pla)) # 0, and Homk(H)(p(b), p(d)) + 0. Then we
have

) H, C,H, and ,H, = (,H,),;

2 ,H, c.H, and ,H, = (. H,);

3 H, =,.H),.

Proof. Let x € ,H,. Then there exist f € Hom, , (p(a),x) and g €
Hom, ; (x, q(b)) such that fg +0. So 0 # fg/ by Lemma 2.1, where
0 # 1 € Hom, 4 (q(b), g(d)). This means x € ,H, and x € (,H,),. There-
fore ,H, c,H, and ,H, c (,H,),. On the other hand, let f e
Hom,  (p(a), x) and g € Hom, ,; (x, (b)) with fg # 0. It follows that
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fg # 0 in k(H). Therefore ,H, > (,H,),. The proof of (2) is similar. For
(3), from Lemma 3.2 and (1) and (2), we have (. H,), = (,(.H,)), =
(aHd)b =,H,. |

4. “ALMOST” LEFT HAMMOCKS INDUCED BY A PAIR
OF POINTS

Let k be a field. Let H be a thin left hammock with finitely many
projective vertices, let p(a) # p(w) be a projective vertex, and let g(b) #
q(®') be an injective vertex of H. Assume that Hom, ,(p(b), p(a)) = 0,
that is, a £ b in S(H). In this section, we consider H/ H, = {x
Hlhy(x) = h¢ y,(x) # 0}. Note that in the case when a > b, if z € p(b)”,
then z € H, and furthermore p(b) is a source of H/, H, and is different
from . So we only consider the case when a and b are incomparable.

LEMMA 4.1. Let H be a thin left hammock with finitely many projective
vertices and let 7 == A(H) be the poset corresponding to H. Let p(a) # p(w)
be a projective vertex and let q(b) # q(w') be an injective vertex of H.
Assume that a and b are incomparable in 7. Then hy(x) = hy (x) for
x € H, where we put h y (x) = 0 forx € H\ ,H,.

Proof.  Since dim,Hom, ,,(p(a), x) = dim,Hom, ;\(p(w), X); (4 ac-
cording to [6, Lemma 3.1], we have h , (x) = dim,Hom, . (p(a), x) —
dim,Hom, , (p(a), x), < dim,Hom, , (p(a), x) =
dim, Hom, ,;,(p(@), X,y < dim,Hom, ;\(p(w), x) = hy(x). |

LEMMA 4.2. Let H be a thin left hammock and let 7 := #(H) be the
poset corresponding to H. Let p(a) # p(w) be a projective vertex and let
q(b) # q(w') be an injective vertex of H. Assume that a and b are incompa-

rable in . Let 0 - 7, X £ &/ Y, X -0 be an Auslander-Reiten
sequence in .,/ (7). Then the following conditions are equivalent.

1) X,7.X &,H, and Y, € ,H, forsomej € {1,...,t}

(2) X = P(a, b).

Proof. (1) = (2): Note that Y; € H, for some j implies that there are
0 # ¢ € Hom (Py(a), ®/_,Y;)and 0 # ¢y € Hom (®,_,Y;, 0.(b)). Now
X &,H, means &+ 0. So &b factors through Po(zy,...,z,), where
{z,,...,z,} = min(¥\ {qa, b} ,). This follows from Corollary 3.1, since 7, X
&, H,. Thus we have Hom (7, X, P,(z,,..., z,)) # 0. Similarly, we know

Hom (P,(a, b), X) # 0. Now we get the sequence of maps
¥ ¥ U 1
TyX—l>Py(zl, cenz,) = Z, —3>Py(a, b) - X, where Z, is a summand of

the module which occurs in the middle term of the Auslander—Reiten
sequence ending in P.(a, b), i, and i, are irreducible maps, and ¢, and
i, are nonzero maps. Suppose that ¢, is not an isomorphism. Then i, is
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not an isomorphism either, since 7, P.(a,b) = P,(z,,...,z,). So ¢, fac-
tors through @/ Y, This means that there is 0 # (¢,,...,¢,) €
Hom (P (a, b), ®/ ,Y), and ¢, also factors through @/_,Y.. This means
that there is 0 # (xq,..., x,) € Hom (®/_,Y;, P.(z,,..., z,)). Consider

the case when there is some i such that ¢, # 0 and y; # 0. We obtain a

Xi U2 V3 i .-
cycle sequence Y; = P.(z,,...,z,) = Z, = P,(a, b) = Y,—a contradiction

to the fact that the preprojective component of the Auslander—
Reiten quiver of /(%) is directed. If the case above does not occur, we
can choose ¢; # 0 and x; # 0, where i # j. Then we obtain a subgraph of
the orbit graph of the preprojective component of the Auslander—Reiten
quiver of /(%) as follows

Pyga,\b)

where a dotted line denotes the composition of some edges. This is a
contradiction, because the orbit graph of the preprojective component of
the Auslander—Reiten quiver of /(%) is a tree. Note that obviously
P_(a, b) # X. Therefore, iy, is an isomorphism, i.e., X = P_(a, b).

(2) = (1): Proposition 2.1 shows that 7,P.(a,b) = P.(z,,...,z,).
Clearly, P,(a,b) ¢ H, and P.(z,,...,z,) &,H. So P,(a,b), 7,P.(a,b)
&, H,. Since both P, (a,b) and 7,P.(a, b) are thin, we know ¢ < 2. In
case t = 2,Y,,Y, both are thin. By Lemma 2.1 we know that P.(z,,..., z,)
is a .#~subspace of Y; and Y; is a .#subspace of P.(a,b), for i = 1,2. So
P(z,,...,z,) is a Ssubspace of P.(a,b) and {z,,..., z,} = min({a, b}’
\la, b}). Thus, comparing P.(z,,..., z,),, P.(a, b), with (Y)), for i = 1,2
and s €%, we can obtain that Y, = P.(a,u,,...,u;) and Y, =
P.(b,v,,...,v,), where u; €{z;,...,2,}, u;€a”, for i=1,...,s, and
v €{zy,.... 2}, v, €bY, for j=1,...,t Therefore Y, € H, and Y, &
.H,. Consider now the case ¢ = 1. Since Hom .(P.(a), P,(a, b)) # 0 and
Hom (7, P (a), Q (b)) + 0, we have Hom . (P,(a),Y;) # 0 and
Hom (Y, Q.(b)) # 0. Thus Y; €,H, follows from Theorem 3.2. |

Let H be a left hammock with translation 7 and let w be a
projective—injective vertex of H with u*= {g}. If u~ = {re}, then we call
the subquiver H \ { u}, together with the restriction of r on it, an “almost”
left hammock with respect to . An “‘almost” left hammock H\ {u} is
called an “almost” hammock, if H is a hammock. If L is an “almost” left
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hammock obtained from some left hammock H with respect to &, we
write H = L U {u} with u™= {&}, and we call the vertex u the additional
vertex.

THEOREM 4.1.  Let H be a thin left hammock with finitely many projective
vertices and let 7 == (H) be the poset corresponding to H. Let p(a) #+ p(w)
be a projective vertex and let q(b) # q(') be an injective vertex of H.
Assume that a and b are incomparable in . Then H/ ,H, = {x € H|hy(x)
— h yy(x) # O} is an “almost™ left hammock with respect to p(a, b). For
convenience, we denote by ,H, the left hammock (H/,H,) U { u}, where
w*={p(a, b)}. Then the hammock function of ,Hy is

hy(x) — h(ng)(x) xeH/ H,
1 X = .

h({,H,,O)( x) = {

Proof. Consider a given vertex x €, H, different from p(w). Let

AN,
N\

be the mesh in k(H) (we put 7x = 0 in case x is projective). We can
observe combinatorially that the equality &, (x) + hgy (1x) =
X, xhu,(y) holds (if z &, H,, let h  (z) = 0) except in the following
cases: (i) x = p(a); (i) x,7x & ,H, and y € H, for some y € x™.

Now, we check that ,H; and h( ) satisfies the conditions of a left
hammock.

(1) Clearly, o is a source of H/, H,. Suppose there is another source z
in H/,H,. We can suppose that i ,o(r2) =0, X, _, ,hyo(y) =0, and
h no(z) # 0. Clearly, the case (i) and the case (ii) both do not occur. So
he y(2) + he y(t2) = X, hy(y). This together with h,(z) +
hy(rz) = X, hy(y) implies A yof2) + he yo(72) = X, A o)
and h yo,(z) = 0—a contradiction.
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(2) Let

be a mesh in k(H) with A o (x) # 0. This implies that the case (i) does
not oceur, since hy(p(a)) = hy (p(a)). If the case (ii) does not occur,
he yy(X) + he g (tx) = X, h gy (y). This together with h,(x) +
hy(rx) = X, hy(y) shows that h yo(x) + h yo(Tx) =
X, o h ue(y). Inthe case (i), by Lemma 4.2 and Proposition 2.1 we know
that x = p(a,b) and 7x = p(z,...,z,), where {z,,...,z} = min(\
{a,b},), and F(p(a,b)) = P(a, b),F(p(z,,...,2,)) = P(z},...,2,) un-
der the equivalence functor F: k(H) — .,/ (%). S0 h,(x) = hy(rx) = 1,
X, xhy(y) =2 and X _ Ay (y) =1 Thus, after adding an excep-
tional vertex w with pw*={p(a,b)} and u=={p(z,,...,z,)}, we have
By (0O + By (70) = Iy b ().

(3) Assume that z is an injective vertex of ,H, . We have to prove that
he yo2) = X, b yo(y). First, we consider the case when z is an
injective vertex of H. It is clear that [z*| = 1 and h,(z) = h,(y,) with
z"={yo}. Now z € H/ H, implies z # q(b), s0 h( y (z) = h_y (y,) and
he no(2) = h yo(yo). Next, in the case when z is not an injective vertex
of H, we have the mesh h,(2) + hy(r"2) =X, hy(y), hy(z)+
he n,(2), and hy(r7z) = h( g (772). So the case (i) and (ii) both do not
occur and h y (2) +h g (772) =X, h g (y). Thus, h yo(z) =
X, yh yey(y). Finally, in case z = u, we have hg yo(z) =1 =
h(”Hl?)(P(a, b)) I

Remark. From Theorem 5.1 below, we know that the left hammock
JHy corresponds to /(") for some poset .#'. So ,H; is a thin left
hammock with finitely many projective vertices.

From Theorem 4.1 and Corollary 3.2, we have the following result:

COROLLARY 4.1. Let k be a field. Let . be a poset and let P, be the
preprojective component of the Auslander—Reiten quiver of /(). Let P,(a)
be a projective object in .,/ (%) different from P_(w) and let Q_(b) be an
injective object in /(&) different from Q (w'). Assume that a and b are
incomparable in . Then H/,H, = {X € #,max{dim X,,dim, X 6 —
dim, X} # 0} is an “almost™ left hammock with respect to P,(a,b). We
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denote by ,HyY the left hammock (H/,H,) U {u} with u*={P,(a,b)}.
Then the hammock function of ,H, is
max{dim, X,,dim, X, —dim X,} Xe€H/,H,
h(ngQ)(X) = 1 X=p.

5. HAMMOCKS AND THE ALGORITHM OF ZAVADSKII

First, we recall the algorithm of ZavadskiT . Let us fix some notation.
Let . be a poset. We write ¥ =A4, + - +A4, if A, U--UA, =% and
A;NA; = for i #j (note that the points from different 4, can be
comparable). Let a pair of points a, b be incomparable. We put % =a"+
b,+Ja,b)and J == J(a,b) =J, +J, +J,, where J, = {x € J|x < a} and

= {x € J|x > b} (see the diagram below). Then we have the following
facts: points x, a, b are mutually incomparable for x € J,, points y, a are
incomparable for y € J, U J,, and z, b are incomparable for z € J, U J,.

Let . be a poset. A pair of points (a,b) is called suitable (for a
stratification) if a and b are incomparable, and ¥ =a"+ b ,+ J, where
J={z; < -+ <z,). Following [17], we construct the (a, b)-stratified poset
4.5y as follows: The points of 4, ,.* consist of (1) x, for x €a’U b ,;
@ a+x,forxeJ,UlJ,; (3 bnux, for x €J, UJ, The order relation in
dia by is defined as follows: (1) we keep all relations in . between
elements in a¥Ub,; (2) we set bNx <a+x for x €Jy; (3) we set
a+x<a+y ifx<yinJ UJy;; @D weset bNnx<bny, if x <y in
J,UJy; B)weset a+x<y, if x<yforxel UJ,and y > a; (6) we
set x <bny,if x<yforxelJ, UJ,and y < b; (7) we add the relation
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a<a+xforxel,UJy,and bny<bforyel, NnJ; @) if xand y
are such x >y and x <y under the relation above, then we identify x
and y.

/
T /y /b — V7 \
b
z // b,\\ zﬂ/b/djn /b,A_
EXAMPLE.

Now, we can state the theorem concerning left hammocks and Zavadskir
stratification algorithms.

THEOREM 5.1.  Let H be a thin left hammock with finitely many projective
vertices and let S(H) be the poset corresponding to H. Let p(a) be a
projective vertex different from p(w) and let g(b) be an injective vertex of H
different from g(w'). Assume that a and b are incomparable in #(H).
Denote by A(,H,) the poset corresponding to the left hammock ,Hy . Then
A HY) is obtained from F(H) as follows: there is a finite sequence of pairs
of points (¢y, dy),(c,, d,), ..., (c;, d) = (a, b), and a finite sequence of posets

=AH), S, ..., S such that

(1) (¢;, d)) is a suitable pair of points of L fori=1,...,1;

@ S =3¢ .a. 1)9 for i = A that is, % is the (c;_q,d;_)-
stratified poset of <7 n

37 =y(aHf).

The proof of this theorem will be covered in Sections 6 and 7.

We point out that ZavadskiT only considers the case J, = & = J,. Let
us make some remarks here. In [15], ZavadskiT introduced the algorithm
called “differentiation with respect to a pair of points.” In [17], he used the
two meticulous algorithms, which he called “stratification” and “‘replenish-
ment,” instead of the differentiation with respect to a pair of points. In the
rest of this section, we will discuss the correspondence between two classes
of left hammocks, in which replenishment will be completely explained.

The left hammock ,H;, by definition, has the property that it includes a
projective—injective vertex u with u™= {g} and u~= {re}. The following
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proposition shows a bijection between the class of left hammocks with this
property and the class of left hammocks including a projective vertex p
and an injective vertex g with p~=g™.

PROPOSITION 5.1.  Let ® be the set of pairs (H, w), where H is a thin left
hammock, and let . be a projective—injective vertex of H with u* = {&} and
w = {re}. Let ¥ be the set of triples (L, p,q), where L is a thin left
hammock, p is a projective vertex, and q is an injective vertex of L with
p =q". We define & ® —» ¥ by sending (H, w) to (L, &), where L = H\
{ ), and omitting the translation v on e in L. Then & is a bijective
correspondence.

Proof. Let (H, u) € ®. We consider its translation subquiver L :== H \
{ w} and forget the translation 7 on ¢ in L. Thus ¢ is a projective vertex
and re is an injective vertex in L. Since u*={&} and u~ = {7}, we see
that h,(w) = hy(e) = hy(re) = 1. So |e7| = 2, say, e~ = {u, z}. There-
fore, in H\ { ), we have hy | () = hyl(2) = hyli(re) = 1. Hence L is
a left hammock with hammock function hyl;, and L has a projective
vertex ¢ and an injective vertex te with e = 7= {z}. Thus (L, &, 7¢) €
V. On the other hand, for (L, p,q) € ¥, we know |p~| = lg"| = 1, say,
qgt={z}. We construct a new left hammock H from L by adding an
additional vertex u with u*={g} and w~ = {p}, and define 7q = p. It is
easy to see that H is a left hammock with hammock function

h,(x x €L
() = {14 e

In this way, we define the map ¢: ¥ — @ by sending (L, p, g¢) to (H, w).
Finally, it is obvious that ¢/ =/, and {é=1,. |

PROPOSITION 5.2. Let @' be the set of triples (%, a,b), where % is a
poset and a and b are vertices in ¥ with ¥ =a"+ b . Let W' be the set of
triples (%, a, b), where 7 is a poset, and a and b are vertices in & with a < b
and with ¥ = a "\{b} + b .. We define ¢': ® — V' by sending (¥, a, b) to
itself and adding the order relation a < b in £'(%, a, b). Then & is a bijective
correspondence.

Proof. Define {': ¥ — @’ by deleting the relation a < b in {'(%, a, b).
Then we have ¢7' =1, and ¢ =1,. |

Following ZavadskiT [17], a pair of incomparable points (a, b) of a poset
& is called specific if #=a"+ b ,. The new poset vy, ,.# obtained from
% by adding the relation a > b is called the replenished poset. We define
the replenishment functor y: /() - /(y, ,) by setting y(1), = V,, for
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x#b, y(V), =V, +V,, and y(¢) = . The following result is owing to
ZavadskiT and is presented in [17] as Theorem 2 and Corollary 2.

THEOREM 5.2.  The replenishment functor y: /() — /(y, %) induces
an equivalence of factor categories: /(%)/{Py(a), P.(a, b)} =
VYa )/ {P (@)} and an equivalence of translation quivers T \ {P(a)}

= I", where T’ and I’ are the Auslander—Reiten quiver of the categories /(%)
and /(Y pyS)-

It is easy to see that the left hammock H has a projective—injective
vertex w if and only if the poset .#(H) has a specific pair of points (a, b)
with u = P_(a) = Q.(b). Now from Theorem 5.2 and Proposition 5.2, we
have the following theorem.

THEOREM 5.3.  Let H be a thin left hammock with finitely many projective
vertices and with a projective—injective vertex u. Let (H) be the poset
corresponding to H. Assume that £€(H, u) = (L, p, q) in the sense of Proposi-
tion 5.2. Then #(L) is just the replenishment poset vy, , " for the specific
pair (a, b) with u = P,(a) = Q(b).

6. THE PROOF OF THEOREM 5.1 IN A SPECIAL CASE

Under the hypothesis of Theorem 5.1, we put SA(H) =a"+J + b, as
in Section 5. If width(J) = 1, then (a, b) is a suitable pair and Zavadskil ’s
algorithm is valid. But in general, width(J) > 1. In this section we will
prove Theorem 5.1 in the case width(J) = 1. We will establish the general
case by induction in the next section. Now, we first consider the special
case J = .

PrROPOSITION 6.1. Let H be a thin left hammock with finitely many
projective vertices and let S(H) be the poset corresponding to H. Let p(a) be
a projective vertex and let q(b) be an injective vertex of H. Assume that a and
b in A(H) are incomparable. Then the following conditions are equivalent.

(1) (a, b) is specific, that is, A(H) =a"+b ,;

(2) |aHb| =1,
(3 H, = {pla)} = {q(b)};
(4) ,HY = H.

Proof. It is obvious. |

Now we consider the case width(J) = 1.

Let . be a poset, let (a, b) be a suitable pair of points of ., and let
9,5 be the (a, b)-stratified poset. Following Zavadskil , we define the
stratification functor 9, . /(%) =2 (9, ,) by setting (9, ,(U)), =T
and d,, ,(U), = U, whenever x €a”’Ub, and J, ,U),., =U, + U,

a+x
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Oy, = U, N U, for an S~space U, and 4,, , () = 4. The follow-
ing theorem is owing to Zavadskil (see [17]). ZavadskiT has considered
only the case J, = &J = J,. Although we allow J, U J, # &, the proof is
the same.

THEOREM 6.1. Let & be a poset. Assume that the points a,b €.% are
incomparable. Assume that width(J) = 1, and write J = {z,, ..., z,}, where
z; < -+ <z,. Then the functor 8, ,. /(%) —>7/(3, ) induces an
equivalence of the factor categories J, . /() /Q =7(d, ;) /Y, where

= {P,(a), P(a, z),..., Pa, z,)} and Q' = {P&(” b)y(a)} (we put

P.(a, z;) = P(z;) ifa > z,). '

Moreover, let T';, be the Auslander—Reiten quiver of /() and let T,
be the Auslander Rezten quiver of /(0. ). Then F \
{Pla), Pyla, z,),..., Pola, z, )} =T, N\AP, | (a)}

Remark. Observe that P,  .(a)=Q,  -(b) and P, .(a,b)=
I, )\ Pola, b)) in (3, 1)) ‘ ‘

LEMMA 6.1. Let k be a field. Let H be a thin left hammock with finitely
many projective vertices and let .7 = S(H) be the poset corresponding to H.
Let p(a) be a projective vertex and let q(b) be an injective vertex of H.
Assume that a and b are incomparable in 7. Assume that width(J(a, b)) = 1,
and write J(a,b) = {z,,...,z,}, where z, < - < z,. Given x € k(H), as-
sume that x corresponds to the object X in /(%) under the equivalence
k(H) =,./(%). Then the equality hy(x) = hy (x) holds if and only if
X € Q.

Proof. Note that the objects in ) occur on the preprojective compo-
nent of the Auslander—Reiten quiver of Z(%), since ¢(b) € H. For
X € Q, it is easy to see that h,(x) =1, x € ,H,, and h, ,(x) # 0. So
he ny(¥) =1 =hy(x) by Lemma 4.1.

On the other hand, hy,(x) = h g, (x) means dim,Hom, 4,
(w,x) = dimHom,,(p(a), x) — dimHom,,(p(a) x), = dim,
Hom, ;,(x, g(b)) — dim,Hom, ;,(x, g(b)),,. This implies that dim, X =
dim, X, and dim, X, = 0.

Let &' =AH)\(a"U b ,); the order relation of .’ follows from
FA(H). We define a functor G: /(') - /(%) by setting G(U), = U,
G(U), = U whenever x € a”, G(U), = 0 whenever x € b, and G(U), =
U, for x e Z(H)\a"Ub,, and G(¢) = ¢. Clearly, G is indeed a func-
tor. Moreover, G induces an equivalence between /(') and the full
subcategory of /(%) consisting of the objects IV with IV, = 0and V, = V.

Since width(J) < 1, each indecomposable #’-space V' is thin. This
implies that X is thin. Therefore X € Q, since X, =0and X, =X_. |
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THEOREM 6.2. Let H be a thin left hammock with finitely many projective
vertices and let %= S(H) be the poset corresponding to H. Let p(a) be a
projective vertex and let g(b) be an injective vertex of H. Assume that (a, b) is
a suitable pair of points in #(H) with width J(a, b) = 1 and that 3, .7 is
the (a, b)-stratification of F(H). We denote by #(,H;) the poset corre-
sponding to the left hammock Hb , where Hb =H/,H,U{u and
H/ ,H, ={x € Hlhy(x) — h(qu)(x) # 0}. Then A(,Hy) = d(, S

Proof. By definition, we know k(H/,H,) = k(H)/{x € Hlhy(x) =
h u,,(x)}. Note that the objects of O occur in -2 (). This together with
Lemma 6.1 implies k(H)/{x € H|h,(x) = h_y ()} =,./(>)/Q. Corol-
lary 2.1 means P, (a)"= {P Aa, b} It foIIows that the objects of '
oceur in ./ (4, b)y) since &a b) y(a b) =P, , o(a,b). So by Theorem
6.1 we have ./ (¥)/Q = /(a(a 5 )/ Thus ‘We obtain k(H/ H,) =

4 apy?)/Q and H/ H, =2, NP,  (a). Since H/ H, is an
“almost” left hammock with respect to p(a,b), we see that & P an® \
{p, ,a)} is an “almost” hammock with respect to P, y(a b) Note
agaln that d, ,(Py(a, b)) = P, )y(a b). Thus we have H,, =%,

Note that the projective objects of /(%) oceur in L2 (). This, together
with the fact that /() /Q =74, ,.%)/€', implies that the projective
objects of Z(d, ,.%) oceur in .2 (4, ,). Therefore S Hy) = 3, ,.%.

1

7. THE PROOF OF THEOREM 5.1: THE INDUCTION
PROCESS

In this section, we will prove Theorem 5.1 in the general case. First, we
have the following lemma.

LEMMA 7.1.  Let % be a poset and let P, be the preprojective component
of the Auslander—Reiten quiver of /(). Let b be a point in .%. Assume that
there is a subset {y., y,, V3. ¥4} of ¥ with mutually incomparable elements
and let y, > b. Then Q (b) does not occur in P.,.

Proof. Put %' ={y,, y,, 3 y4} . Define a functor G: /(&') = /(%)
by setting (G(U)), = U,, G(U), = U, for x € {y,, y,, ¥3, ¥4} ¥, and GU),
=0 for x e\ {yy, ¥, V3, ¥4} ¥, and G(¢p) = . If y, > b, then clearly
dim,G(U) # dim,G(U), for each U €/(’). So Hom (G(U), Q.(b)) +#
0 for each U €/(%’'). Note that width(*') > 4 implies that .’ is
infinite type. Thus Q.(b) does not occur in Z,. If y, = b, we denote by
Q'.(b) the injective object corresponding to b in Z(~’). Clearly,
Hom (G(Q'..(b)), O (b)) # 0. Note that width(-#") > 4 implies that .’
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is of infinite type. Thus there are infinitely many V e/(%’) with
Hom_..(V, Q..(b)) # 0 and Hom _(G(}'), Q.(b)) # 0. So Q_(b) does not
occur in %,. |

CoRoOLLARY 7.1. Let H be a thin left hammock with finitely many
projective vertices and let %= S(H) be the poset corresponding to H. Let
pla) be a projective vertex and let q(b) be an injective vertex of H. Assume
that a and b are incomparable in . Let ¥=a"+ J(a,b) +b, and
J(a,b) =J, +J, +J, as above. Then width(J(a, b)) < 3, width(J,) < 1,
width(J, U J,) < 2, and width(J, U J,) < 2.

Proof.  As we know, x, a, b are mutually incomparable for x € J; also,
y,a are incomparable for y €J, UJ,, and z,b are incomparable for
z € J, UJ,. Suppose that width(J,) > 2 and say x,, x, € J, are incompa-
rable. Then a, x;, x,, b are mutually incomparable—a contradiction to
Lemma 7.1. Suppose that width(J, U J,) > 3 and that x;, x,,x; €J, U J,
are mutually incomparable. Then x,, x,, x5, b are mutually incomparable
—a contradiction to Lemma 7.1 again. Similarly, we can prove width(J, U
J,) < 2. Now, we suppose that width(J(a, b)) > 4 and that x,, x,, x5, x, €
J(a, b) are mutually incomparable. If b, x; are incomparable for each i,
i =1,2,3,4, then {x,, x,, x5, b} is a subset of .# with mutually incompara-
ble elements—a contradiction to Lemma 7.1. If there is some x; > b, then
we also get a contradiction to Lemma 7.1 again. ||

LEMMA 7.2. Let H be a thin left hammock with finitely many projective
vertices and let .= (H) be the poset corresponding to H. Let p(a) be a
projective vertex and let g(b) be an injective vertex of H. Assume that a and b
are incomparable in &, and = a"+ J(a,b) + b, and J :=J(a,b) =J,
+ J, +J, as before. Assume that width(J(a, b)) = 2. Then either there exists
c € J, with width(J(c, b)) = 1 or there exists d € J, with width(J(a, d)) = 1,
where & =c'+J(¢,b) +b, and ¥ =a"+ J(a,d) +d,.

Proof. Let Q ={x J |thereis y J such that x and y are incompa-
rable}.

If O # &, we choose a minimal element of (), say ¢, such that first, ¢
and y. are incomparable for some y, €J and, second, for z <c, the
element z is comparable to each x € J. We claim that J\ ¢ " is linear. In
fact, the first condition implies that J\ ¢ "# . Now suppose that x,, x,
in J\c¢" are incomparable. Then the second condition implies that
¢, x,, x, are incomparable—a contradiction to the hypothesis. So J\ ¢ " is
linear, say J\c¢V={z, < -+ <z} Clearly, ¢,b are incomparable and
F=cV+J(c,b)+b,, where J(c,b) =J\ ¢V is linear.

If QO =, then for each x €J,, x is comparable to each y € J. Then
we consider ) = {x € J,|there is y € J such that x and y are incompara-
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ble}. Since width(J(a, b)) = 2, we see that )’ # . A discussion similar to
the one above proves that there exists d € J, with width(J(a,d)) = 1. 1

LEMMA 7.3. Let H be a thin left hammock with finitely many projective
vertices and let %= (H) be the poset corresponding to H. Let p(a) be a
projective vertex and let g(b) be an injective vertex of H. Assume that a and b
are incomparable in ., and = a"+ J(a,b) + b, and J(a,b) =J, +J,
+ J, as before. Assume that width(J(a, b)) = 3. Then there exists c € J, and
d € J, with ¢, d incomparable such that width(J(c, d)) = 1.

Proof. Let Q ={xeJ,|x,x;, and x, are mutually incomparable for
some x,,x, € J}. From Corollary 7.1, we have width(J, U J,) < 2. To-
gether with width(J(a, b)) = 3, this implies Q # . So we can choose a
minimal element, say ¢, such that first, ¢, x_,, x., are mutually incompara-
ble for some x_,, x., € J, and, second, for y < ¢, there does not exist a
pair of points x,, x, in J with y, x,, x, mutually incomparable. We claim
that width(J \ ¢Y) = 2. In fact, the first condition implies width(/\ ¢") >
2. Suppose that there are x,, x,, x; € J\ ¢ mutually incomparable. Then
the second condition implies that c, x,, x,, x5 are mutually incomparable
—a contradiction with the hypothesis. Now consider ' = {x €J, N (J\
¢¥)lx and y are incomparable for some y € J\ ¢ "}. Obviously, x., or x,
are in (), since width(J, U J,) < 2,50 Q' # J. We can choose a maximal
element of ', say d. A similar discussion to that above shows that
(J\cY)\d, islinear,say (J\c")\d,=1{z, < - <z} Note that ¢, d
are incomparable, since d € J\ ¢". Thus #=c¢"+ J(c,d) + d ,, where

Je,d)=U\c")\d,. 1

Let H be a thin left hammock with finitely many projective vertices and
let ¥ :=.(H) be the poset corresponding to H. Let p(a) be a projective
vertex and let g(b) be an injective vertex of H. Assume that a and b are
incomparable in .%. In the case when width(J(a, b)) < 3, Lemmas 7.2 and
7.3 show that we can use the Zavadskil 's algorithm for some suitable pair
of points ¢ and d with ¢ < a,d > b. From Theorem 6.2 we obtain the thin
left hammock of _H. Note that ¢ < a,d > b means that a,b € S,y
and that a,b are incomparable in §, ,. So we can consider the
hammock (. Hy),. Now, we will consider the relation between the ham-
mocks ,H, and (. Hy),, as well as between the *“almost” hammocks
H/aHb and (LHy)/a(LHf)b Since aHb' a(cH(?)b' H/aHb’ and
( HY)/ (HY), all are subquivers of H, we will not distinguish between
the vertices in H and the vertices in these subquivers.

PropPosITION 7.1. Let H be a thin left hammock with finitely many
projective vertices and let %= .S(H) be the poset corresponding to H. Let
pla), p(c) be projective vertices and let q(b), g(d) be injective vertices of H.
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Assume that a and b are incomparable, ¢ and d are incomparable and
a>c,d=bin & and J(c,d) is linear, where #=c"+ J(a,b) +d ,.
Then, as subsets of vertices of H, we have ,H, = (.H,) U (,(.H?), \ {u}).

Proof. First, a > c,d > b means that Hom, , (p(a), p(c)) # 0 and
Hom, ;,(q(d), q(b)) # 0. So .H, = (,H,), <,H, by Proposition 3.2.

Next, let x €,(,H; ), \ { }. Then there are f € Hom, - (p(a), x) and
g € Homy yo\(x, q(b)) with fg # 0. If neither f nor g factors through the
additional vertex u, then fg =+ 0 in k(H/ H,), and, further, fg # 0 in
k(H). Thus we have x € H,. If f factors through w, then f factors
through p(c, d), and g does not factor through w. This means that there is
h € Hom,;;(p(c, d), x) with hg # 0 € Hom, ., 4 \(p(c, d), q(b)),,,, and
hg # 0 € Hom, ,,(p(c, d), q(b)),,. We claim that g does not factor
through p(z,,...,z,) in k(H), where {z,...,z} = min(¥\{qa, b} ,).
In fact, if g factors through p(z,,..., z,), then
Hom, ,(p(c,d), p(z,,...,2,)) # 0. This is impossible, since ¢ <a and
Hom, ;\(p(c), p(zy, ..., z,)) = 0. Thus, by Corollary 3.1, we have x €,H,.
Similarly, if g factors through u, then f € Hom,,,(p(a), x) and f does
not factor through p(c,d). So x € ,H, also. Thus, we have proven that
aHh 2a(cI_If)b \{/“L}

Finally, let x €, H,. Let us assume that x & _HS. Then x = p(c, z,),
where z;, € J(c,d). Note that x €,H, means that there are fe
Hom, ;(p(a), x) and g € Hom,  (x, g(b)) with fg + 0. Thus f factors
through p(c) and g factors through ¢(d) by Lemma 3.3. This means
x €,HNH, so x € _H, according to Theorem 3.2. In the case x € _H,
we have x € ,( HY),, clearly. |

PROPOSITION 7.2. Let H be a thin left hammock with finitely many
projective vertices and let %= .(H) be the poset corresponding to H. Let
pla), p(c) be projective vertices and q(b), q(d) injective vertices of H. As-
sume that a and b are incomparable, that ¢ and b are incomparable, that
a>c, d=>bin.? and that J(c,d) is linear. Let Hy = (H/ ,H,) U {u},
with p* = {p(c, d)}. Then we have h( ; (x) = h g (X) + h¢ o (x). (Let
h(cHd)<(>x) =0 for x€,H,\ H, and let h  yo (x) =0 for x € H,\

a cHd b+

Proof. If x & HY, then x = p(c, z,) for some z, € J(c, d). This implies
x € Hyand h p(x) =1 =hy  (x). Now we assume that x €,(.Hy), \
{ ). o

First, we consider a vertex x with Hom, . (p(c,d),x) =0. Let
h(u,x¥) =n and let f,...,f, be a basis of Hom,.,
(pla), x)/Hom, ; (p(a), x),, . Assume that fi, ..., f, factor through p(c)
and f,, ..., f, do not factor through p(c). Let f; =1Ih;, 1 <i < t, where
[ is a fixed nonzero map in Hom, . (p(a), p(c)) and h; €
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Hom,  (p(c), x). Then Ay, ..., h, are linearly independent, since f,, ..., f,
are linearly independent. Now Hom, ., (p(c), x), =0 follows from
Hom, ;;,(p(c,d), x) = 0 by Proposition 3.1. So hy,...,h, are linearly
independent in Hom, ,,(p(c), x)/Hom; (p(c), x), . Further
fis1,---, f, donot factor through add &, _ ;. , p(c, z), since f,.y,..., f,
do not factor through p(c). So f,+1,...,tn are linearly independent in
k(H/.H,). Moreover, f, ,,...,t, are linearly independent in k(, HY),
since. Hom,,(p(c, d), x) = 0. Thus, we have shown dim,
Hom, ,(p(a), x) — dim Hom,, (p(a), x), < dim,Hom, , (p(c),
x) — dim,Hom, ,,(p(c), x), + dim Hom, ,o(p(a), x) —
dim Homk( Ho)(p(a) x) 4, Where .z, is the objects class of all objects y
in HY with Hom, Ho)(y q(b)) = 0. On the other hand, let f,,...,f,
induce a basis of Homk(H)(p(c) x)/Homy (p(e), x), and let g, ..., g,
induce a basis of Hom, e (p(a), x)/Homk([va)(p(a), x) 4. Note that
Hom , ,,(p(c, d), x) = 0 implies that g, s in
Hom, ;,(p(a), x)/Hom, ;\(p(a), x),,, for j=1,...,5. We claim that
Ify,....If., g ..., g are linearly independent, where [ is a fixed nonzero
map in Hom, ,,(p(a), p(c)). Consider Yi_,kf; + Xi_,kjg; = 0. Since

_1k;lf; factors through p(c), we see that X:_,kg; = 0. So k;, = 0 and
ki=0 for 1<i<r and 1<j<s Thus we have shown dim,
Hom, ,(p(a), x) — dim,Hom, ,(p(a), x), > dim,Hom,,(c, x) -
dim,Hom, (¢, x), + dim Hom, o (p(a), x) — dim Hom, o,
(p(a), x) 4.

Now we consider the case when Hom, . (p(c,d), x) # 0. We have
Hom, ;(x, p(z;,...,2)) =0, where {z,...,z}=min(X\ {c, d},).
Using a similar argument to that above, we have dim, Hom, . (x, (b)) —
dim,Hom, 4 ,(x, g(b)),, = dim,Hom, . (x, q(d)) — dim,Hom ;. (x,

(d))/, + dim,Homy yo(x, q(b)) — dim Homk( (X, q(b))w, where
.7 is the object class of all objects y in k( JHY) W|th Hom, o, (p(a), y)
= 0. Thus, the expected result follows from Theorem 3.1. |

From Propositions 7.1 and 7.2, we have the following result.

THEOREM 7.1. Let H be a thin left hammock with finitely many projective
vertices and let = F(H) be the poset corresponding to H. Let p(a), p(c)
be projective vertices and let q(b), g(d) be injective vertices of H. Assume that
a and b are incomparable, that c and d are incomparable, that a > ¢, d > b
in &, and that J(c,d) is linear. Let HY = (H/,H,) U {u} with p*=
{p(C, d)} Then H/aHb = (CHI?)/Q(CHI?)[)'

Proof. We claim that u € (. H;),. Infact,a > ¢,d > bin 4., 35” and
p(c) = g(d). So it follows that w = p(c) = ¢g(d) in k(.Hy) and
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Hom, o/(p(a), p(c)) # 0, Hom, ;- (q(d), (b)) # 0. Thus u € (. HJ)
N( HY), implies u € ,(_HY), by Theorem 3.2. Note that

hy(x) — hme(x) X#

h((.Hy)(x) = 1 X=n

So we have HY/,/(.HJ), = {x € Hd A o () = B (uoy,y
(X) #* O} = {X € H/CHdl(hH(x) - (H )(X)) ((HQ )(X) * 0} = {x €
HIhyy(x) = G gy () F o () #0) = (x € Hlhy(x) = hy () # 0.
Note that the last equality holds by Proposition 7.2. Therefore
Hi/(H), =H/H,. 1

Proof of Theorem 5.1. Given a thin left hammock H with finitely many
projective vertices, let .:=.%(H) be the corresponding poset. If J(a, b)
= &, we have A, Hy) =.% by Proposition 6.1. If J(a, b) > 1, by Lemmas
7.2 and 7.3, we can use Zavadskil s stratification algorithm for a suitable
pair of vertices (c¢,, d;) with a > ¢, and d, > b. Then we get the poset

e,y and the thin left hammock o Hi with 9, , 7= H) by
Theorem 6.2. We also obtain e Hd )b as a subquwer of H. Note that if
a=c, we have p = p(a) in Hd, and if b = d,, we have p = q(b) in

. Hj . We point out that #(x € (. Hf)b\{,u,})} < #{x €,H,}. Now, if
Wldth(J (a,b)) = 1, where 4. d)S’ a"+J'(a,b)+b,, we can use
ZavadskiT ’s stratification algorlthm again. Since ,H,, is finite, after finitely
many steps, say after [ steps, this process will stop. So we obtain a
sequence of suitable pairs of points (¢, d,),(c,,d,),...,(¢c;,d)) = (a,b), a
sequence of left hammocks H, = H, H,, ..., H;, and a sequence of posets

=AH),S,..., such that

(1) (¢;, d,) is a suitable pair of points in .%;

@ S =0, ,a i fori=2,...1 thatis, & is the (¢;,_,d,_,)-
stratified poset;

() H,=,(H,_)y for i=2,....1

@ (H)I\ () =

By Theorem 6.2,

(5) 7 = A(H)).

Now, ,(H)y \ {u} = @ means that u = p(a) = q(b) in ., and ,(H));
= H, follows from Proposition 6.1. Hence H/,H, = H,/,(H)), =

H,/, (H ), = -+ =H,/ ,(H), by Theorem 7.1 again and again. Note that
e, ) y (a, b) = Py(a,b) for i=2,...,1 Therefore S H,) =
A (H,)b) =.(H,) =.%, this completes the proof. [
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