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a b s t r a c t

The dynamic behaviors of an impulsive periodic predator–preymodel with n-preys andm-
predators are studied in this paper. By constructing a suitable Lyapunov function and using
the Comparison theorem of impulsive differential equation, sufficient conditions which
ensure the permanence and global attractivity of the system are obtained. At the same
time, a set of criteria which guarantee that some species in the system are permanent and
globally attractive while the remaining species are driven to extinction is obtained. Our
results show that, for the multi-species predator–prey community, impulsivity is one of
the important reasons that can change the long time behaviors of species.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A traditional periodic predator–prey system with periodic coefficients has been studied extensively (see [1–5]). In [6],
Yang and Xu considered the following periodic Lotka–Volterra system of differential equations

x′i(t) = xi(t)

[
bi(t)−

n∑
k=1

aik(t)xk(t)−
m∑
k=1

cik(t)yk(t)

]
, i = 1, 2, . . . , n,

y′j(t) = yj(t)

[
−rj(t)+

n∑
k=1

djk(t)xk(t)−
m∑
k=1

ejk(t)yk(t)

]
, j = 1, 2, . . . ,m,

(1.1)

where xi(t) denotes the density of the prey species xi at time t , yj(t) denotes the density of the predator species yj at time
t; bi(t), rj(t), aik(t), cil(t), djk(t) and ejl(t)(i, k = 1, . . . , n; j, l = 1, . . . ,m) are continuous periodic functions defined on
[0,+∞)with a common period T > 0; rj(t), aik(t), cil(t), djk(t) and ejl(t) are nonnegative; aii(t), ejj(t) are strictly positive.
Under the assumption that bi(t) are positive periodic functions, they studied the existence, uniqueness and stability of the
periodic solution of system (1.1). Recently, under the assumption that bi(t)may be negative but

∫ T
0 bi(t)dt > 0, that is, the

intrinsic growth rate of the prey species may be negative while the total intrinsic growth rate in a period is positive, Zhao
and Chen [7] gave sufficient conditions for the existence and global asymptotic stability of system (1.1). Xia et al. [8] further
generalized the above system to the almost periodic case; by constructing a suitable Lyapunov function, sufficient conditions
for the existence and global asymptotic stability of an almost periodic solution to system (1.1) is obtained. Recently, Zhao
and Jiang [9] and Zhao, Jiang and Lazer [10] further considered the general nonautonomous case of system (1.1). Average
conditions are obtained for the permanence and global attractivity of the system. The results of Zhao and Jiang [9] generalized
the main results of Yang and Xu [6] and Zhao and Chen [7]. For more works in this direction, one could refer to [11–19] and
the references cited therein.
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However, the ecological system is often deeply perturbed by activities of human exploitation such as planting and
harvesting etc., which are not suitable to be considered continually. To accurately describe the system, one needs to use
the impulsive differential equations. The theory of impulsive differential equations is now being recognized as having
much richer content than the corresponding theory of differential equations without impulses, also it represents a more
natural framework for mathematical modeling of many real world phenomena [20]. In recent years, impulsive differential
equations have been intensively researched, see [20,21] and the references cited therein. Some impulsive equations
have been recently introduced in population dynamics in relation to: population ecology [22–31] and chemotherapeutic
treatment of disease [19,32]. Tang and Chen [29] investigated the persistence and existence of at least one strictly positive
periodic solution of periodic Lotka–Volterra predator–prey system with impulses. Ahmad and Stamova [22] studied the N-
dimensional Lotka–Volterra system with fixed moments of impulsive perturbations. However, to the best of the author’s
knowledge, to this day, still no scholar has investigated the dynamic behaviors of the periodic multi-species predator–prey
system with impulses.
The main purpose of this paper is to study the following T -periodic multi-species predator–prey system with impulses:

x′i(t) = xi(t)

[
bi(t)−

n∑
l=1

ail(t)xl(t)−
m∑
l=1

cil(t)yl(t)

]
,

y′j(t) = yj(t)

[
−rj(t)+

n∑
l=1

djl(t)xl(t)−
m∑
l=1

ejl(t)yl(t)

]
, t 6= τk,

xi(τ+k ) = (1+ hik)xi(τk),
yj(τ+k ) = (1+ gjk)yj(τk), t = τk, k = 1, 2, . . . ,

(1.2)

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m; xi(t) denotes the density of the prey species Xi at time t; yj(t) denotes the density of
the predator species Yj at time t; bi(t), rj(t), aik(t), cil(t), djk(t), and ejl(t) (i, k = 1, . . . , n; j, l = 1, . . . ,m) are continuous
periodic functions defined on [0,+∞) with a common period T > 0; rj(t), aik(t), cil(t), djk(t) and ejl(t) are nonnegative;
aii(t), ejj(t) are strictly positive; τk → +∞(t → +∞) and 0 = τ0 < τ1 < τ2 < τ3 < · · · < τk < τk+1 < · · ·. Assume that
hik, gjk, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , are constants and there exists an integer q > 0 such that

hi (k+q) = hik, gj(k+q) = gjk, τk+q = τk + T .

In this paper, the growth rate bi(t) of species is not necessarily positive, and this is realistic since the environment fluctuates
randomly (e.g. seasonal effect of weather condition, temperature, mating habits and food supplies) and in some bad
conditions bi(t)may be negative. So we assume that:

m[bi] =
1
T

∫ T

0
bi(t)dt > 0, i = 1, 2, . . . , n,

and natural biological meaning:

1+ hik > 0, 1+ gjk > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m; k = 1, 2, . . .).

Definition 1.1. System (1.2) is said to be permanent, if for any positive solution F(t) = (X(t), Y (t))T =

(x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T of (1.2), there exist positive constants λ1i , λ
2
j , θ

1
i and θ

2
j such that

λ1i ≤ lim inft→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤ θ1i , i = 1, 2, . . . , n;

λ2j ≤ lim inft→+∞
yj(t) ≤ lim sup

t→+∞
yj(t) ≤ θ2j , j = 1, 2, . . . ,m.

Definition 1.2. System (1.2) is said to be globally attractive if any two positive solutions F(t) = (X(t), Y (t))T =
(x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T and W (t) = (U(t), V (t))T = (u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . ,
vm(t))T of system (1.2) satisfy

lim
t→+∞

|xi(t)− ui(t)| = 0, i = 1, 2, . . . , n;

lim
t→+∞

|yj(t)− vj(t)| = 0, j = 1, 2, . . . ,m.

Definition 1.3. For any (t, F(t)) ∈ [τk−1, τk)× Rn+m+ , the right-hand derivative D+V (t, F(t)) along the solution F(t, F0) of
system (1.2) is defined by

D+V (t, F(t)) = lim inf
h→0+

1
h
[V (t + h, F(t + h))− V (t, F(t))].
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By the basic theories of impulsive differential equations in [20,21], system (1.2) has a unique solution F(t) = F(t, F0) ∈
PC([0,+∞), Rn+m) and PC([0,+∞), Rn+m) = {φ : [0,+∞) → Rn+m, φ is continuous for t 6= τk, φ(τ−k ) and φ(τ

+

k ) exist
and φ(τ−k ) = φ(τk), k = 1, 2, . . .} for each initial value F(0) = F0 ∈ R

n+m.
The organization of this paper is as follows: In Section 2, necessary preliminaries are presented. The dynamic behaviors

such as the permanence, extinction and the global attractivity of the system are investigated in Section 3; Three examples
togetherwith their numerical simulations are presented in Section 4 to illustrate the feasibility ofmain results and the effect
of impulses on the dynamic behaviors of the system.

2. Preliminaries

Now let us state several lemmas which will be useful in proving the main results.
Firstly, we introduce an important Comparison theorem on impulsive differential equation [21].

Lemma 2.1. Assume that m ∈ PC[R+, R] with points of discontinuity at t = tk and is left continuous at t = tk, k = 1, 2, . . .,
and {

D_m(t) ≤ g(t,m(t)), t 6= tk, k = 1, 2, . . . ,
m(t+k ) ≤ φk(m(tk)), t = tk, k = 1, 2, . . . ,

(2.1)

where g ∈ C[R+× R+, R], φk ∈ C[R, R] and φk(u) is nondecreasing in u for each k = 1, 2, . . .. Let r(t) be the maximal solution
of the scalar impulsive differential equationu̇ = g(t, u), t 6= tk, k = 1, 2, . . . ,

u(t+k ) = φk(u(tk)) ≥ 0, t = tk, tk > t0, k = 1, 2, . . . ,
u(t+0 ) = u0,

(2.2)

existing on [t0,∞), then m(t+0 ) ≤ u0 implies m(t) ≤ r(t), t ≥ t0.

Remark 2.1. In Lemma 2.1, assume that inequality (2.1) reversed. Let p(t) be the minimal solution of (2.2) existing on
(t0,+∞). Then,m(t+0 ) ≥ u0 impliesm(t) ≥ p(t), t ≥ t0.

Lemma 2.2. Let F(t) = (X(t), Y (t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T be any solution of system (1.2)
such that xi(0+) > 0 and yj(0+) > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), then xi(t) > 0 and yj(t) > 0 for all t ≥ 0.

Proof. From the ith equation of (1.2), one has

x′i(t) = Pi(t)xi(t), t 6= τk, i = 1, 2, . . . , n,

where

Pi(t) = bi(t)−
n∑
l=1

ail(t)xl(t)−
m∑
l=1

cil(t)yl(t), i = 1, 2, . . . , n.

Thus we have

xi(t) =
∏
0<τk<t

(1+ hik)xi(0+) exp
(∫ t

0
Pi(s)ds

)
> 0,

because of xi(0+) > 0.
From the (n+ j)th equation of (1.2), one has

y′j(t) = Qj(t)yj(t), t 6= τk, j = 1, 2, . . . ,m,

where

Qj(t) = −rj(t)+
n∑
l=1

djl(t)xl(t)−
m∑
l=1

ejl(t)yl(t), j = 1, 2, . . . ,m.

Thus we have

yj(t) =
∏
0<τk<t

(1+ gjk)yj(0+) exp
(∫ t

0
Qi(s)ds

)
> 0,

because of yj(0+) > 0. This completes the proof of Lemma 2.2. �
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Consider the periodic logistic equation with impulses{
x′(t) = x(t) (b(t)− a(t)(x(t))) , t 6= τk,
x(τ+k ) = (1+ hk)x(τk), t = τk, k = 1, 2, . . . ,

(2.3)

where a(t), b(t) are continuous T -periodic functions with a(t) > 0, m[b] > 0 and hk+q = hk, τk+q = τk + T .

Lemma 2.3 ([27]). (1): If

q∑
k=1

ln(1+ hk)+ Tm[b] > 0, (2.4)

then system (2.3) has a unique T-periodic solution x∗(t), and x∗(t) is globally asymptotically stable in the sense that

lim
t→+∞

|x(t)− x∗(t)| = 0,

where x(t) is any solution of system (2.3) with initial value x(0+) > 0.
(2): If

q∑
k=1

ln(1+ hk)+ Tm[b] < 0, (2.5)

then

lim
t→∞

x(t) = 0,

where x(t) is any solution of system (2.3) with initial value x(0+) > 0.

From Theorem 3.1 in [29], we can get the following lemma.

Lemma 2.4. If x∗(t) is the unique T-periodic positive solution of system (2.3), and x̃∗(t) is the unique T-periodic positive solution
of the following system{

x′(t) = x(t)
(
b̃(t)− a(t)(x(t))

)
, t 6= τk,

x(τ+k ) = (1+ hk)x(τk), t = τk, k = 1, 2, . . . ,

where b̃ is the continuous T-periodic function with m[b̃] > 0 and limt→+∞ b̃(t) = b(t). Then

lim
t→+∞

|x̃∗(t)− x∗(t)| = 0.

(I) Consider the periodic logistic equation with impulses{
x′i(t) = xi(t) (bi(t)− aii(t)xi(t)) , t 6= τk,
xi(τ+k ) = (1+ hik)xi(τk), t = τk, k = 1, 2, . . . ,

(2.6)

where i = 1, 2, . . . , n.
If
∑q
k=1 ln(1 + hik) + Tm[bi] > 0 holds, it follows from Lemma 2.3 that system (2.6) has a unique T -periodic solution

X∗i (t), which is globally asymptotically stable in the sense that

lim
t→+∞

|xi(t)− X∗i (t)| = 0,

where xi(t) is any solution of system (2.6) with initial value xi(0+) > 0.
(II) Consider the periodic logistic equation with impulsesy

′

j(t) = yj(t)

(
−rj(t)+

n∑
l=1

djl(t)X∗l (t)− ejj(t)yj(t)

)
, t 6= τk,

yj(τ+k ) = (1+ gjk)yj(τk), t = τk, k = 1, 2, . . . ,

(2.7)

where j = 1, 2, . . . ,m.
If

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)X∗l (t)

]
> 0
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holds, it follows from Lemma 2.3 that system (2.7) has a unique T -periodic solution Y ∗j (t), which is globally asymptotically
stable in the sense that

lim
t→+∞

|yj(t)− Y ∗j (t)| = 0,

where yj(t) is any solution of system (2.7) with initial value yj(0+) > 0.
(III) Consider the periodic logistic equation with impulsesx

′

i(t) = xi(t)

(
bi(t)−

m∑
l=1

cil(t)Y ∗l (t)−
n∑

l=1,l6=i

ail(t)X∗l (t)− aii(t)xi(t)

)
, t 6= τk,

xi(τ+k ) = (1+ hik)xi(τk), t = τk, k = 1, 2, . . . ,

(2.8)

where i = 1, 2, . . . , n.
If

q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m∑
l=1

cil(t)Y ∗l (t)−
n∑

l=1,l6=i

ail(t)X∗l (t)

]
> 0

holds, it follows from Lemma 2.3 that system (2.8) has a unique T -periodic solution X∗i(t), which is globally asymptotically
stable in the sense that

lim
t→+∞

|xi(t)− X∗i(t)| = 0,

where xi(t) is any solution of system (2.8) with initial value xi(0+) > 0.

3. Main results

In this section, we present out our main results for system (1.2). Let

αi =

q∑
k=1

ln(1+ hik)+ Tm[bi], i = 1, 2, . . . , n;

βj(n) =
q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)X∗l (t)

]
, j = 1, 2, . . . ,m.

For integers n1 andm1 such that 1 ≤ n1 ≤ n and 1 ≤ m1 ≤ m, assume that

αi > 0, βj(n) > 0, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, (H1)

and {
αi > 0, αp < 0, i = 1, 2, . . . , n1; p = n1 + 1, . . . , n;
βj(n1) > 0, βq(n1) < 0, j = 1, 2, . . . ,m1; q = m1 + 1, . . . ,m.

(H2)

Under condition (H1), we study the permanence and global attractivity of system (1.2).

Theorem 3.1. Assume that (H1) holds and F(t) = (X(t), Y (t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T is any
solution of system (1.2) with xi(0+) > 0 and yj(0+) > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), then there exist constants
θ1i > 0, θ

2
j > 0, (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) such that

lim sup
t→+∞

xi(t) ≤ θ1i , i = 1, 2, . . . , n;

lim sup
t→+∞

yj(t) ≤ θ2j , j = 1, 2, . . . ,m.

Proof. From system (1.2), we obtain{
x′i(t) ≤ xi(t) (bi(t)− aii(t)xi(t)) , t 6= τk, i = 1, 2, . . . , n,
xi(τ+k ) = (1+ hik)xi(τk), t = τk, k = 1, 2, . . . .

(3.1)

Consider the following system{
w′i(t) = wi(t) (bi(t)− aii(t)wi(t)) , t 6= τk, i = 1, 2, . . . , n,
wi(τ

+

k ) = (1+ hik)wi(τk), t = τk, k = 1, 2, . . . .
(3.2)
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By Lemma 2.1, we have xi(t) ≤ wi(t), where wi(t) is the solution of (3.2) with wi(0+) = xi(0+), i = 1, 2 . . . , n. By αi > 0,
from Lemma 2.3, system (3.2) admits a unique T -periodic solution X∗i (t), which is globally asymptotically stable.
For any positive constant ε > 0, there exists a Ti1 > 0 (i = 1, 2, . . . , n) such that for t > Ti1

|wi(t)− X∗i (t)| < ε.

Let θ1i = sup
{
X∗i (t)

∣∣ t ∈ [0, T ]} , i = 1, 2, . . . , n, then it follows that
xi(t) ≤ wi(t) < X∗i (t)+ ε ≤ θ

1
i + ε, for t > Ti1, i = 1, 2, . . . , n.

Setting ε→ 0, we obtain

lim sup
t→+∞

xi(t) ≤ θ1i , i = 1, 2, . . . , n.

By condition (H1), one has

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)(X∗l (t)+ ε)

]
> 0. (3.3)

Let T1 = max{Ti1|i = 1, 2, . . . , n}. From system (1.2), for t > T1 and t 6= τk (k = 1, 2, . . .), we obtain

y′j(t) ≤ yj(t)

(
−rj(t)+

n∑
l=1

djl(t)(X∗l (t)+ ε)− ejj(t)yj(t)

)
, j = 1, 2, . . . ,m.

Consider the following systemw
′

j(t) = wj(t)

(
−rj(t)+

n∑
l=1

djl(t)(X∗l (t)+ ε)− ejj(t)wj(t)

)
, t 6= τk,

wj(τ
+

k ) = (1+ gjk)wj(τk), t = τk, k = 1, 2, . . . , j = 1, 2, . . . ,m.

(3.4)

By Lemma 2.1, for all t > T1, we have yj(t) ≤ wj(t), where wj(t) is the solution of (3.4) with wj(T+1 ) = yj(T
+

1 ), j =
1, 2 . . . ,m. By (3.3) and Lemma 2.3, system (3.4) admits a unique T -periodic solution Y ∗jε(t), which is globally asymptotically
stable. Setting ε→ 0, from Lemma 2.4, we have

Y ∗jε(t)→ Y ∗j (t).

Let θ2j = sup
{
Y ∗j (t)

∣∣ t ∈ [0, T ]} , j = 1, 2, . . . ,m, and for any positive constant ε0 > 0, there exists a Tj2 > T1 (j =
1, 2, . . . ,m) such that

yj(t) ≤ wj(t) < Y ∗j (t)+ ε0 ≤ θ
2
j + ε0, for t > Tj2, j = 1, 2, . . . ,m.

Setting ε0 → 0, we obtain

lim sup
t→+∞

yj(t) ≤ θ2j , j = 1, 2, . . . ,m.

The proof is completed. �

Theorem 3.2. Assume that
q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m∑
l=1

cil(t)Y ∗l (t)−
n∑

l=1,l6=i

ail(t)X∗l (t)

]
> 0, i = 1, 2, . . . , n; (A1)

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)X∗l(t)−
m∑

l=1,l6=j

ejl(t)Y ∗l (t)

]
> 0, j = 1, 2, . . . ,m, (A2)

where X∗i (t), Y
∗

j (t) and X∗i(t) are the unique T-positive solutions of systems (2.6), (2.7) and (2.8), respectively, then the
species xi, yj (i = 1, 2, . . . , n, j = 1, 2, . . . ,m) are permanent, that is, for any positive solution F(t) = (X(t), Y (t))T =
(x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T of (1.2), there exist positive constants λ1i , λ

2
j , θ

1
i and θ

2
j such that

λ1i ≤ lim inft→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤ θ1i , i = 1, 2, . . . , n;

λ2j ≤ lim inft→+∞
yj(t) ≤ lim sup

t→+∞
yj(t) ≤ θ2j , j = 1, 2, . . . ,m.
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Proof. It is not difficult to show that (A1) and (A2) imply (H1). Hence, it follows from Theorem 3.1 that there exist constants
θ1i > 0, θ

2
j > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) such that

lim sup
t→+∞

xi(t) ≤ θ1i , i = 1, 2, . . . , n;

lim sup
t→+∞

yj(t) ≤ θ2j , j = 1, 2, . . . ,m.

By the boundedness of aik(t) and cil(t) (i, k = 1, . . . , n; l = 1, . . . ,m) and the conditions (A1) and (A2), for ε > 0 small
enough, there exists a t1 > max{Tj2|j = 1, 2, . . . ,m}, such that for t > t1

xi(t) < X∗i (t)+ ε, yj(t) < Y ∗j (t)+ ε; (3.5)

q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m∑
l=1

cil(t)(Y ∗l (t)+ ε)−
n∑

l=1,l6=i

ail(t)(X∗l (t)+ ε)

]
> 0; (3.6)

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)X∗l(t)−
m∑

l=1,l6=j

ejl(t)(Y ∗l (t)+ ε)

]
> 0, (3.7)

where i = 1, 2, . . . , n; j = 1, 2, . . . ,m and Tj2 (j = 1, 2, . . . ,m) are defined in Theorem 3.1.
From system (1.2) and inequality (3.5), for t > t1 and t 6= τk, we obtain

x′i(t) ≥ xi(t)

(
bi(t)−

m∑
l=1

cil(t)(Y ∗l (t)+ ε)−
n∑

l=1,l6=i

ail(t)(X∗l (t)+ ε)− aii(t)xi(t)

)
.

Consider the following system
w′i(t) = wi(t)

(
bi(t)−

m∑
l=1

cil(t)(Y ∗l (t)+ ε)−
n∑

l=1,l6=i

ail(t)(X∗l (t)+ ε)

−aii(t)wi(t)) , t 6= τk, i = 1, 2, . . . , n,
wi(τ

+

k ) = (1+ hik)wi(τk), t = τk, k = 1, 2, . . . .

(3.8)

By Lemma 2.1, for all t > t1, we have xi(t) ≥ wi(t), where wi(t) is the solution of (3.8) with wi(t+1 ) = xi(t
+

1 ), i =
1, 2 . . . , n. From Lemma 2.3 and inequality (3.6), system (3.8) admits a unique T -periodic solution X∗iε(t), which is globally
asymptotically stable. Setting ε→ 0, from Lemma 2.4, we have

X∗iε(t)→ X∗i(t).

Let λ1i = inf {X∗i(t)| t ∈ [0, T ]} , i = 1, 2, . . . , n and for a positive constant ε1 < 1
2 min{λ

1
i |i = 1, 2, . . . , n} small

enough, by the boundedness of djk(t) and ejl(t) (k = 1, . . . , n; j, l = 1, . . . ,m) and inequality (3.7), there exists a
ti2 > t1 (i = 1, 2, . . . , n) such that

xi(t) ≥ wi(t) > X∗i(t)− ε1 ≥ λ1i − ε1, for t > ti2, i = 1, 2, . . . , n,

and
q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n∑
l=1

djl(t)(X∗l(t)− ε1)−
m∑

l=1,l6=j

ejl(t)(Y ∗l (t)+ ε)

]
> 0, (3.9)

where j = 1, 2, . . . ,m.
Setting ε1 → 0, we obtain

lim inf
t→+∞

xi(t) ≥ λ1i , i = 1, 2, . . . , n.

Let t2 = max{ti2|i = 1, 2, . . . , n}. From system (1.2), for t > t2 and t 6= τk, we obtain

y′j(t) ≥ yj(t)

(
−rj(t)+

n∑
l=1

djl(t)(X∗l(t)− ε1)−
m∑

l=1,l6=j

ejl(t)(Y ∗l (t)+ ε)− ejj(t)yj(t)

)
.

Consider the following system
w′j(t) = wj(t)

(
−rj(t)+

n∑
l=1

djl(t)(X∗l(t)− ε1)−
m∑

l=1,l6=j

ejl(t)(Y ∗l (t)+ ε)− ejj(t)wj(t)

)
,

t 6= τk, j = 1, 2, . . . ,m,
wj(τ

+

k ) = (1+ gjk)wj(τk), t = τk, k = 1, 2, . . . .

(3.10)
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By Lemma 2.1, for all t > t2, we have yj(t) ≥ wj(t), where wj(t) is the solution of (3.10) with wj(t+2 ) = yj(t
+

2 ), j =
1, 2 . . . ,m. Again from Lemma 2.3 and inequality (3.9), then system (3.10) admits a unique T -periodic solution Y∗j(ε,ε1)(t),
which is globally asymptotically stable. Setting ε, ε1 → 0, from Lemma 2.4, we have

Y∗j(ε,ε1)(t)→ Y∗j(t).

Let λ2j = inf
{
Y∗j(t)|t ∈ [0, T ]

}
, j = 1, 2, . . . ,m and for any positive constant ε2 < 1

2 min{λ
2
j |j = 1, 2, . . . ,m}, there exists

a tj3 > t2 (j = 1, 2, . . . ,m) such that

yj(t) ≥ wj(t) > Y∗j(t)− ε2 ≥ λ2j − ε2, for t > tj3, j = 1, 2, . . . ,m.

Setting ε2 → 0, we obtain

lim inf
t→+∞

yj(t) ≥ λ2j , j = 1, 2, . . . ,m.

The proof is completed. �

Now let us consider the global attractivity of xi(t), yj(t) (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) of system (1.2), and we obtain
the following result.

Theorem 3.3. Assume that (A1) and (A2) hold. Assume further that there exist positive constants ρi (i = 1, 2, . . . , n) and
µj (j = 1, 2, . . . ,m) such that

ρiaii(t) >
n∑

l=1,l6=i

ρlali(t)+
m∑
l=1

µldli(t); (A3)

µjejj(t) >
m∑

l=1,l6=j

µlelj(t)+
n∑
l=1

ρlclj(t), (A4)

then the species xi, yj (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) are globally attractive, that is, for any positive solutions F(t) =
(X(t), Y (t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T and W (t) = (U(t), V (t))T = (u1(t), u2(t), . . . , un(t),
v1(t), v2(t), . . . , vm(t))T of (1.2), one has

lim
t→+∞

|xi(t)− ui(t)| = 0, i = 1, 2, . . . , n;

lim
t→+∞

|yj(t)− vj(t)| = 0, j = 1, 2, . . . ,m.

Proof. Let F(t) = (X(t), Y (t))T = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T and W (t) = (U(t), V (t))T =
(u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . , vm(t))T be any positive solutions of system (1.2). For any positive ε <
1
2 min{λ

1
i , λ

2
j | i = 1, . . . , n; j = 1, . . . ,m}, from Theorem 3.2, it immediately follows that there exists a large enough

T0 > 0 such that for all t > T0, one has

λ1i − ε ≤ xi(t), ui(t) ≤ θ1i + ε, i = 1, 2, . . . , n;

λ2j − ε ≤ yj(t), vj(t) ≤ θ2j + ε, j = 1, 2, . . . ,m.
(3.11)

Set

V (t) = V1(t)+ V2(t),

where

V1(t) =
n∑
i=1

ρi|ln ui(t)− ln xi(t)|;

V2(t) =
m∑
j=1

µj|ln vj(t)− ln yj(t)|.
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For t ≥ 0, and t 6= τk, k = 1, 2, . . ., calculating the upper right derivatives of V1(t) and V2(t), respectively, we have

D+V1(t) =
n∑
i=1

ρi

(
u′i(t)
ui(t)

−
x′i(t)
xi(t)

)
sgn(ui(t)− xi(t))

=

n∑
i=1

ρi

[
n∑
l=1

ail(t)(xl(t)− ul(t))+
m∑
l=1

cil(t)(yl(t)− vl(t))

]
sgn(ui(t)− xi(t))

≤

n∑
i=1

{[
−ρiaii(t)+

n∑
l=1,l6=i

ρlali(t)

]
|xi(t)− ui(t)| +

m∑
j=1

ρicij(t)|yj(t)− vj(t)|

}
;

D+V2(t) =
m∑
j=1

µj

(
v′j(t)

vj(t)
−
y′j(t)

yj(t)

)
sgn(vj(t)− yj(t))

=

m∑
j=1

µj

[
n∑
l=1

djl(t)(ul(t)− xl(t))−
m∑
l=1

ejl(t)(vl(t)− yl(t))

]
sgn(vj(t)− yj(t))

≤

m∑
j=1

{[
−µjejj(t)+

m∑
l=1,l6=j

µlelj(t)

] ∣∣vj(t)− yj(t)∣∣+ n∑
i=1

µjdji(t) |ui(t)− xi(t)|

}
.

By the Mean Value Theorem and (3.11), for any closed interval contained in t ∈ (τk, τk+1], k = p, p+ 1, . . . and τp > T0, it
follows that

1
θ1i + ε

|xi(t)− ui(t)| ≤ |ln xi(t)− ln ui(t)| ≤
1

λ1i − ε
|xi(t)− ui(t)|, i = 1, 2, . . . , n;

1
θ2j + ε

|yj(t)− vj(t)| ≤ |ln yj(t)− ln vj(t)| ≤
1

λ2j − ε
|yj(t)− vj(t)|, j = 1, 2, . . . ,m. (3.12)

It follows from conditions (A3) and (A4) that there exists a positive constant δ such that

ρiaii(t) >
n∑

l=1,l6=i

ρlali(t)+
m∑
l=1

µldli(t)+ δ;

µjejj(t) >
m∑

l=1,l6=j

µlelj(t)+
n∑
l=1

ρlclj(t)+ δ.

Therefore, for t ∈ (τk, τk+1], k = p, p+ 1, . . . and τp > T0, from (3.12), one has

D+V (t) ≤
n∑
i=1

[
−ρiaii(t)+

n∑
l=1,l6=i

ρlali(t)+
m∑
l=1

µldli(t)

]
+

m∑
j=1

[
−µjejj(t)+

m∑
l=1,l6=j

µlelj(t)+
n∑
l=1

ρlclj(t)

]

≤ −δ

[
n∑
i=1

|xi(t)− ui(t)| +
m∑
j=1

|vj(t)− yj(t)|

]

≤ −δ

[
n∑
i=1

λ1i − ε

ρi
ρi|ln xi(t)− ln ui(t)| +

m∑
j=1

λ2j − ε

µj
µj|ln vj(t)− ln yj(t)|

]
≤ −φεV (t), (3.13)

where

φε = δmin

{
λ2j − ε

µj
,
λ1i − ε

ρi

∣∣∣∣∣ i = 1, . . . , n; j = 1, . . . ,m
}
.

For t = τk, k = 1, 2, . . ., we have

V (τ+k ) =
n∑
i=1

ρi|ln ui(τ+k )− ln xi(τ
+

k )| +

m∑
i=1

µj|ln vj(τ+k )− ln yj(τ
+

k )|

=

n∑
i=1

ρi|ln [(1+ hik)ui(τk)] − ln[(1+ hik)xi(τk)]|
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+

m∑
j=1

µj|ln [(1+ gjk)vj(τk)] − ln[(1+ gjk)yj(τk)]| = V (τk).

The above analysis shows that, for all t > τp > T0,

D+V (t) < −φεV (t). (3.14)

Applying the differential inequality theorem and the variation of constants formula of solutions of first-order linear
differential equation, we have

V (t) ≤ V (τp) exp(−φε(t − τp)). (3.15)

It is obvious that V (t)→ 0 as t →+∞, that is
n∑
i=1

ρi|ln ui(t)− ln xi(t)| +
m∑
j=1

µj|ln vj(t)− ln yj(t)| → 0 as t →+∞.

From (3.12), it is not hard to prove that
n∑
i=1

ρi

θ1i + ε
|ui(t)− xi(t)| +

m∑
j=1

µj

θ2j + ε
|vj(t)− yj(t)| → 0 as t →+∞.

It is easy to obtain that

lim
t→+∞

|xi(t)− ui(t)| = 0, i = 1, 2, . . . , n;

lim
t→+∞

|yj(t)− vj(t)| = 0, j = 1, 2, . . . ,m.

The proof is completed. �

Remark 3.1. Assume that hik ≡ 0 (i = 1, 2, . . . , n) and gjk ≡ 0 (j = 1, 2, . . . ,m) in system (1.2), then Theorems (3.1)–(3.3)
generalize the main results in Zhao and Chen [7].

From Theorem 3.1 to Theorem 3.3, we consider the permanence and stability of system (1.2) with all αi > 0, βj(n) >
0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m). But with the impulsive perturbations in system (1.2), the property of system (1.2) will
be changed with some αi < 0 and βi(n1) < 0 (n1 ≤ n), then we have the following results.
(IV) Consider the periodic logistic equation with impulsesy

′

j(t) = yj(t)

(
−rj(t)+

n1∑
l=1

djl(t)X∗l (t)− ejj(t)yj(t)

)
, t 6= τk,

yj(τ+k ) = (1+ gjk)yj(τk), t = τk, k = 1, 2, . . . ,

(3.16)

where j = 1, 2, . . . ,m1.
If

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)X∗l (t)

]
> 0

holds, it follows from Lemma 2.3 that system (3.16) has a unique T -periodic solution Y 1∗j (t), which is globally asymptotically
stable.
(VI) Consider the periodic logistic equation with impulsesx

′

i(t) = xi(t)

(
bi(t)−

m1∑
l=1

cil(t)Y 1∗l (t)−
n1∑

l=1,l6=i

ail(t)X∗l (t)− aii(t)xi(t)

)
, t 6= τk,

xi(τ+k ) = (1+ hik)xi(τk), t = τk, k = 1, 2, . . . ,

(3.17)

where i = 1, 2, . . . , n1.
If

q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m∑
l=1

cil(t)Y 1∗l (t)−
n∑

l=1,l6=i

ail(t)X∗l (t)

]
> 0

holds, it follows from Lemma 2.3 that system (3.17) has a unique T -periodic solution X1
∗i(t), which is globally asymptotically

stable.
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Theorem 3.4. Assume (H2) holds. Assume further that

q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m1∑
l=1

cil(t)Y 1∗l (t)−
n1∑

l=1,l6=i

ail(t)X∗l (t)

]
> 0, i = 1, 2, . . . , n1; (B1)

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)X1∗l(t)−
m1∑

l=1,l6=j

ejl(t)Y 1∗l (t)

]
> 0, j = 1, 2, . . . ,m1, (B2)

hold, where X∗i (t), Y
1∗
j (t) and X

1
∗i(t) are the unique T-positive solutions of systems (2.6), (3.16) and (3.17), respectively. Let

F(t) = (X(t), Y (t)) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T be any solution of system (1.2) with xi(0+) > 0 and
yj(0+) > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,m), then there exist positive constants θ1i , θ

21
j , λ

11
i , λ

21
j (i = 1, 2, . . . , n; j =

1, 2, . . . ,m) such that

λ11i ≤ lim inft→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤ θ1i , i = 1, 2, . . . , n1;

λ21j ≤ lim inft→+∞
yj(t) ≤ lim sup

t→+∞
yj(t) ≤ θ21j , j = 1, 2, . . . ,m1;

lim
t→+∞

xi(t) = 0, i = n1 + 1, . . . , n;

lim
t→+∞

yj(t) = 0, j = m1 + 1, . . . ,m.

Proof. Let F(t) = (X(t), Y (t)) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T be any positive solution of system (1.2).
From the ith equation of system (1.2), we have

x′i(t) ≤ xi(t) [bi(t)− aii(t)xi(t)] , t 6= τk, k = 1, 2, . . . .

Consider the following system{
z ′i (t) = zi(t) [bi(t)− aii(t)zi(t)] , t 6= τk, i = 1, 2, . . . , n
zi(τ+k ) = (1+ hik)zi(τk), t = τk, k = 1, 2, . . . .

(3.18)

By Lemma 2.1, we obtain that xi(t) ≤ zi(t) (i = 1, 2, . . . , n), where zi(t) is the solution of (3.18) with initial value
xi(0+) = zi(0+). Since (H2) holds, it follows from Lemma 2.3 and the proof of Theorem 3.1 that

lim sup
t→+∞

xi(t) ≤ θ1i , i = 1, 2, . . . , n1;

lim
t→+∞

xi(t) = 0, i = n1 + 1, . . . , n,

where θ1i (i = 1, 2, . . . , n1) are defined in Theorem 3.1.
Since (H2) and (B1) hold, it is easy to get that for any small enough positive constant ε1 > 0,

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)(X∗l (t)+ ε1)+
n∑

l=n1+1

djl(t)ε1

]
> 0, (3.19)

where j = 1, 2, . . . ,m1;

q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)(X∗l (t)+ ε1)+
n∑

l=n1+1

djl(t)ε1

]
< 0, (3.20)

where j = m1 + 1,m1 + 2, . . . ,m, and

q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m1∑
l=1

cil(t)Y 1∗l (t)−
n1∑

l=1,l6=i

ail(t)(X∗l (t)+ ε1)−
n∑
l=n1

ail(t)ε1

]
> 0, (3.21)

where i = 1, 2, . . . , n1.
Also there exists a T ′i1 > 0 (i = 1, 2, . . . , n) such that for t > T

′

i1

xi(t) < X∗i (t)+ ε1, i = 1, 2, . . . , n1;
xi(t) < ε1, i = n1 + 1, . . . , n.

(3.22)
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Let T ′1 = max{T
′

i1|i = 1, 2, . . . , n}. From the (n+ j)th equation of systems (1.2) and (3.22), for t > T
′

1 we have

y′j(t) ≤ yj(t)

[
−rj(t)+

n1∑
l=1

djl(t)(X∗l (t)+ ε1)+
n∑

l=n1+1

djl(t)ε1 − ejj(t)yj(t)

]
, t 6= τk,

where j = 1, 2, . . . ,m.
Consider the following systemz

′

j (t) = zj(t)

[
−rj(t)+

n1∑
l=1

djl(t)(X∗l (t)+ ε1)+
n∑

l=n1+1

djl(t)ε1 − ejj(t)zj(t)

]
, t 6= τk,

zj(τ+k ) = (1+ gjk)zj(τk), t = τk, k = 1, 2, . . . . j = 1, 2, . . . ,m.

(3.23)

By Lemma 2.1, for all t > T ′1, we have yj(t) ≤ zj(t) (j = 1, 2, . . . ,m), where zj(t) is the solution of (3.23) with initial value
yj(T ′1

+
) = zj(T ′1

+
). Since (3.19) holds, it follows from Lemma 2.3 that system (3.23) admits a unique T -periodic solution

Y 1∗jε1(t) (j = 1, 2, . . . ,m1), which is globally asymptotically stable. Setting ε1 → 0, from Lemma 2.4 we have

Y 1∗jε1(t)→ Y 1∗j (t).

Since (3.21) and (B2) hold, it follows that for a positive constant ε2 small enough,
q∑
k=1

ln(1+ hik)+ Tm

[
bi(t)−

m1∑
l=1

cil(t)(Y 1∗l (t)+ ε2)−
m∑

l=m1+1

cil(t)ε2

−

n1∑
l=1,l6=i

ail(t)(X∗l (t)+ ε1)−
n∑
l=n1

ail(t)ε1

]
> 0, i = 1, 2, . . . , n1 (3.24)

and
q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)X1∗l(t)−
m1∑

l=1,l6=j

ejl(t)(Y 1∗l (t)+ ε2)−
m∑

l=m1+1

ejl(t)ε2

]
> 0,

j = 1, 2, . . . ,m1. (3.25)

Let θ21j = sup
{
Y 1∗j (t)

∣∣ t ∈ [0, T ]} , j = 1, 2, . . . ,m1. From Lemma 2.3, (3.19) and (3.20), there exists a T ′j2 > T ′1 (j =
1, 2, . . . ,m) such that for t > T ′j2

yj(t) < Y 1∗j (t)+ ε2 < θ21j + ε2, j = 1, 2, . . . ,m1;

yj(t) < ε2, j = m1 + 1, . . . ,m.
(3.26)

Setting ε2 → 0, we obtain

lim sup
t→+∞

yj(t) ≤ θ21j , j = 1, 2, . . . ,m1;

lim
t→+∞

yj(t) = 0, j = m1 + 1, . . . ,m.

Let T ′2 = max{T
′

j2|j = 1, 2, . . . ,m}. From the ith equation of systems (1.2), (3.22) and (3.26), for t > T
′

2, and t 6= τk we have

x′i(t) ≥ xi(t)

(
bi(t)−

m1∑
l=1

cil(t)(Y 1∗l (t)+ ε2)−
m∑

l=m1+1

cil(t)ε2

−

n1∑
l=1,l6=i

ail(t)(X∗l (t)+ ε1)−
n∑
l=n1

ail(t)ε1 − aii(t)xi(t)

)
.

Consider the following system
z ′i (t) = zi(t)

(
bi(t)−

m1∑
l=1

cil(t)(Y 1∗l (t)+ ε2)−
m∑

l=m1+1

cil(t)ε2

−

n1∑
l=1,l6=i

ail(t)(X∗l (t)+ ε1)−
n∑
l=n1

ail(t)ε1 − aii(t)zi(t)

)
, t 6= τk

zi(τ+k ) = (1+ hik)zi(τk), t = τk, k = 1, 2, . . . , i = 1, 2, . . . , n1.

(3.27)
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By Lemma 2.1, for all t > T ′2, we obtain that xi(t) ≥ zi(t) (i = 1, 2, . . . , n1), where zi(t) is the solution of (3.27) with
xi(T ′2

+
) = zi(T ′2

+
). Since (3.24) holds, it follows from Lemma 2.3 that system (3.27) admits a unique T -periodic solution

X1
∗i(ε1,ε2)

(t) (i = 1, 2, . . . , n1), which is globally asymptotically stable. Setting ε1, ε2 → 0, from Lemma 2.4 we have

X1
∗i(ε1,ε2)(t)→ X1

∗i(t).

Let λ11i = inf
{
X1
∗i(t)|t ∈ [0, T ]

}
, i = 1, 2, . . . , n1. By (3.25), for a positive constant ε3 < 1

2 min
{
λ11i |i = 1, 2, . . . , n1

}
small

enough, we have
q∑
k=1

ln(1+ gjk)+ Tm

[
−rj(t)+

n1∑
l=1

djl(t)(X1∗l(t)− ε3)−
m1∑

l=1,l6=j

ejl(t)(Y 1∗l (t)+ ε2)−
m∑

l=m1+1

ejl(t)ε2

]
> 0,

j = 1, 2, . . . ,m1. (3.28)

There exists a T ′i3 > T
′

2 (i = 1, 2, . . . , n1) such that for t > T
′

i3

xi(t) > X1∗i(t)− ε3 ≥ λ
11
i − ε3 > 0, i = 1, 2, . . . , n1. (3.29)

Setting ε3 → 0, we obtain

lim inf
t→+∞

xi(t) ≥ λ11i , i = 1, 2, . . . , n1.

Let T ′3 = max{T
′

i3|i = 1, 2, . . . , n1}. From the (n + j)th equation of systems (1.2), (3.26) and (3.29), for t > T
′

3 and t 6= τk,
we have

y′j(t) ≥ yj(t)

(
−rj(t)+

n1∑
l=1

djl(t)(X1∗l(t)− ε3)−
m1∑

l=1,l6=j

(ejl(t)(Y 1∗l (t)+ ε2))−
m∑

l=m1+1

ejl(t)ε2 − ejj(t)yj(t)

)
.

Consider the following system
z ′j (t) = zj(t)

(
−rj(t)+

n1∑
l=1

djl(t)(X1∗l(t)− ε3)−
m1∑

l=1,l6=j

(ejl(t)(Y 1∗l (t)+ ε2))

−

m∑
l=m1+1

ejl(t)ε2 − ejj(t)zj(t)

)
, t 6= τk,

zj(τ+k ) = (1+ gjk)zj(τk), t = τk, k = 1, 2, . . . , j = 1, 2, . . . ,m1.

(3.30)

By Lemma 2.1, for all t > T ′3, we obtain that yj(t) ≥ zj(t) (j = 1, 2, . . . ,m1), where zj(t) is the solution of (3.30) with
yj(T ′3

+
) = zj(T ′3

+
). Since (3.28) holds, it follows from Lemma 2.3 that system (3.30) admits a unique T -periodic solution

Y 1
∗j(ε2,ε3)

(t) (j = 1, 2, . . . ,m1), which is globally asymptotically stable. Setting ε2, ε3 → 0, from Lemma 2.4 we have

Y 1
∗j(ε2,ε3)(t)→ Y 1

∗j(t).

Let λ21j = inf
{
Y 1
∗j(t)|t ∈ [0, T ]

}
, j = 1, 2, . . . ,m1. For any positive constant ε4 < 1

2 min
{
λ21j |j = 1, 2, . . . ,m1

}
, there

exists a T ′j4 > T
′

3 (j = 1, 2, . . . ,m1) such that for t > T
′

j4

yj(t) > Y 1∗j(t)− ε4 > λ21j − ε4 > 0, j = 1, 2, . . . ,m1.

Setting ε4 → 0, we obtain

lim inf
t→+∞

yj(t) ≥ λ21j , j = 1, 2, . . . ,m1.

The proof is completed. �

For each n1 ≤ n and m1 ≤ m, let Hn1+m1 denote the n1 + m1-dimensional coordinate subspace on which xn1+1, . . . , xn,
ym1+1, . . . , ym vanish. We use the variable u, v to denote the restriction of system (1.2) to H

n1+m1 ,

u′i(t) = ui(t)

[
bi(t)−

n1∑
l=1

ail(t)ul(t)−
m1∑
l=1

cil(t)vl(t)

]
,

v′j(t) = vj(t)

[
−rj(t)+

n1∑
l=1

djl(t)ul(t)−
m1∑
l=1

ejl(t)vl(t)

]
, t 6= τk,

ui(τ+k ) = (1+ hik)ui(τk),
vj(τ

+

k ) = (1+ gjk)vj(τk), t = τk, k = 1, 2, . . . ,

(3.31)

where i = 1, 2, . . . , n1; j = 1, 2, . . . ,m1.
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Now let us consider the global attractivity of partial species xi (i = 1, 2, . . . , n1), yj (j = 1, 2, . . . ,m1) of system (1.2),
and we obtain the following result.

Theorem 3.5. Assume that (H2), (B1) and (B2) hold. Assume further that there exist positive constants ρ∗i (i = 1, 2, . . . , n1)
and µ∗i (j = 1, 2, . . . ,m1) such that

ρ∗i aii(t) >
n1∑

l=1,l6=i

ρ∗l ali(t)+
m1∑
l=1

µ∗l dli(t); (B3)

µ∗j ejj(t) >
m1∑

l=1,l6=j

µ∗l elj(t)+
n1∑
l=1

ρ∗l clj(t), (B4)

then the species xi, yj (i = 1, 2, . . . , n1, j = 1, 2, . . . ,m1) are globally attractive, that is, for any positive solution
F(t) = (X(t), Y (t)) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T of system (1.2) and any positive solution W (t) =
(U(t), V (t)) = (u1(t), u2(t), . . . , un1(t), v1(t), v2(t), . . . , vm1(t))

T of subsystem (3.31), one has

lim
t→+∞

|xi(t)− ui(t)| = 0, i = 1, 2, . . . , n1;

lim
t→+∞

|yj(t)− vj(t)| = 0, j = 1, 2, . . . ,m1.

Proof. Let F(t) = (X(t), Y (t)) = (x1(t), x2(t), . . . , xn(t), y1(t), y2(t), . . . , ym(t))T be any positive solution of system (1.2)
and W (t) = (U(t), V (t)) = (u1(t), u2(t), . . . , un1(t), v1(t), v2(t), . . . , vm1(t))

T be any positive solution of subsystem
(3.31). For any positive constant ε < min{λ11i , λ

21
j | i = 1, . . . , n1; j = 1, . . . ,m1}, from Theorem 3.2, it immediately

follows that there exists a T ′0 > 0 large enough such that for all t > T
′

0,

xi(t) < ε, i = n1 + 1, . . . , n;
yj(t) < ε, j = m1 + 1, . . . ,m;

λ11i − ε ≤ xi(t), ui(t) ≤ θ
1
i + ε, i = 1, 2, . . . , n1;

λ21j − ε ≤ yj(t), vj(t) ≤ θ
21
j + ε, j = 1, 2, . . . ,m1.

(3.32)

Set

V (t) = V1(t)+ V2(t),

where

V1(t) =
n1∑
i=1

ρ∗i |ln ui(t)− ln xi(t)|;

V2(t) =
m1∑
i=1

µ∗j |ln vj(t)− ln yj(t)|.

For t ≥ 0, and t 6= τk, k = 1, 2, . . . , calculating the upper right derivatives of V1(t) and V2(t), respectively, we have

D+V1(t) =
n1∑
i=1

ρ∗i

(
u′i(t)
ui(t)

−
x′i(t)
xi(t)

)
sgn(ui(t)− xi(t))

≤

n1∑
i=1

[
−ρ∗i aii(t)+

n1∑
l=1,l6=i

ρ∗l ali(t)

]
|xi(t)− ui(t)| +

n1∑
i=1

m1∑
j=1

ρ∗i cij(t)|yj(t)− vj(t)| + g1(t);

D+V2(t) =
m1∑
j=1

µ∗j

(
v′j(t)

vj(t)
−
y′j(t)

yj(t)

)
sgn(vj(t)− yj(t))

≤

m1∑
j=1

[
−µ∗j ejj(t)+

m1∑
l=1,l6=j

µ∗l elj(t)

]
|vj(t)− yj(t)| +

n1∑
i=1

m1∑
l=1

µ∗l dli(t)|ui(t)− xi(t)| + g2(t),

where

g1(t) =
n1∑
i=1

n∑
l=n1+1

ρ∗i ail(t)xl(t)+
n1∑
i=1

m∑
l=m1+1

ρ∗i cil(t)yl(t);

g2(t) =
m1∑
j=1

n∑
l=n1+1

µ∗j djl(t)xl(t)+
m1∑
j=1

m∑
l=m1+1

µ∗j ejl(t)yl(t).
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It follows from conditions (B3) and (B4) that there exists a constant δ0 > 0 such that

ρ∗i aii(t) >
n1∑

l=1,l6=i

ρ∗l ali(t)+
m1∑
l=1

µ∗l dli(t)+ δ0;

µ∗j ejj(t) >
m1∑

l=1,l6=j

µ∗l elj(t)+
n1∑
l=1

ρ∗l clj(t)+ δ0.

Similarly to the analysis of the proof of Theorem 3.3, for t > T ′0 and t 6= τk, k = 1, 2, . . . , it follows that

D+V (t) ≤
n1∑
i=1

[
−ρ∗i aii(t)+

n1∑
l=1,l6=i

ρlali(t)+
m1∑
l=1

µ∗l dli(t)

]

+

m1∑
j=1

[
−µ∗j ejj(t)+

m1∑
l=1,l6=j

µ∗l elj(t)+
n−1∑
l=1

ρ∗l clj(t)

]
+ g1(t)+ g2(t)

≤ −δ0

[
n1∑
i=1

|xi(t)− ui(t)| +
m1∑
j=1

|vj(t)− yj(t)|

]
+ g1(t)+ g2(t)

≤ −δ0

[
n1∑
i=1

λ11i − ε

ρ∗i
ρ∗i |ln xi(t)− ln ui(t)| +

m1∑
j=1

λ21j − ε

µ∗j
µ∗j |ln vj(t)− ln yj(t)|

]
+ g1(t)+ g2(t)

≤ −φεV (t)+ g1(t)+ g2(t),

where

φε = δ0min

{
λ21j − ε

µ∗j
,
λ11i − ε

ρ∗i

∣∣∣∣∣ i = 1, . . . , n1; j = 1, . . . ,m1
}
.

It is obvious that for t = τk, k = 1, 2, . . ., V (τ+k ) = V (τk).
The above analysis shows that, for all t > T ′0,

D+V (t) < −φεV (t)+ g1(t)+ g2(t). (3.33)

Applying the differential inequality theorem and the variation of constants formula of solutions of first-order linear
differential equation, we have

V (t) ≤ exp(−φε(t − T ′0))

(∫ t

T ′0

(g1(s)+ g2(s)) exp(φε(s− T ′0))ds+ V (T
′

0)

)
. (3.34)

Since g1(t)+ g2(t)→ 0 as t →+∞, it is not hard to prove V (t)→ 0 as t →+∞. This implies that

lim
t→+∞

|xi(t)− ui(t)| = 0, i = 1, 2, . . . , n1;

lim
t→+∞

|yj(t)− vj(t)| = 0, j = 1, 2, . . . ,m1,

that is, species xi (i ≤ n1), yj (j ≤ m1) are globally attractive. The proof is completed. �

4. Examples

The following examples show the feasibility of our results.

Example 1. Consider the following continuous systemx
′

1(t) = x1(t) (3− (2.35+ 0.15 cos(2π t))x1(t)− 0.01x2(t)− (0.3+ 0.2 sin(2π t))y1(t)) ,
x′2(t) = x2(t) (5− (0.8+ 0.2 sin(2π t))x1(t)− (1.1+ 0.1 sin(2π t))x2(t)− 0.5y1(t)) ,
y′1(t) = y1(t) (−1.5+ (1.35+ 0.05 sin(2π t))x1(t)+ 0.6x2(t)− (1.2+ 0.2 sin(2π t))y1(t)) .

(4.1)

From the main result in [7], it follows that

lim
t→+∞

|xi(t)− ui(t)| = 0, lim
t→+∞

|y1(t)− v1(t)| = 0, i = 1, 2,

where (x1(t), x2(t), y1(t)) and (u1(t), u2(t), v1(t)) are any positive solutions of system (4.1). Fig. 1 shows the dynamic
behaviors of system (4.1).
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(a) species x1 . (b) species x2 . (c) species y1 .

Fig. 1. Numeric simulations of the solution (x1(t), x2(t), y1(t)) to system (4.1) with the initial conditions (1.2, 3.5, 1.7) and (0.9, 2.5, 1.3), respectively.

Example 2. Consider the following impulsive system

x′1(t) = x1(t) (3− (2.35+ 0.15 cos(2π t))x1(t)− 0.01x2(t)− (0.3+ 0.2 sin(2π t))y1(t)) ,
x′2(t) = x2(t) (5− (0.8+ 0.2 sin(2π t))x1(t)− (1.1+ 0.1 sin(2π t))x2(t)− 0.5y1(t)) ,
y′1(t) = y1(t) (−1.5+ (1.35+ 0.05 sin(2π t))x1(t)+ 0.6x2(t)− (1.2+ 0.2 sin(2π t))y1(t)) , t 6= τk
x1(τ+k ) = exp(2)x1(τk),
x2(τ+k ) = exp(1.5)x2(τk),
y1(τ+k ) = exp(2)y1(τk), t = τk = kT , k = 1, 2, . . . ,

(4.2)

where T = 1, h1k ≡ h1 = exp(2)− 1, h2k ≡ h2 = exp(1.5)− 1, g1k ≡ g1 = exp(2)− 1.
Conditions (A1) and (A2) are respectively equivalent to inequalities{

ln(1+ h1)+ Tm[b1(t)− c11(t)Y ∗1 (t)− a12(t)X
∗

2 (t)] ≥ 2.7394 > 0;
ln(1+ h2)+ Tm[b2(t)− c21(t)Y ∗1 (t)− a21(t)X

∗

1 (t)] ≥ 2.8734 > 0,

and

ln(1+ g1)+ Tm[−r1(t)+ d11(t)X∗1(t)+ d12(t)X∗2(t)] ≥ 1.3734 > 0.

Taking ρ1 = 8, ρ2 = 5, µ1 = 8, one could easily verify{
ρ1a11(t)− ρ2a21(t)− µ1d11(t) ≥ 1.4 > 0;
ρ2a22(t)− ρ1a12(t)− µ1d12(t) ≥ 0.12 > 0;
µ1e11(t)− ρ1c11(t)− ρ2c21(t) ≥ 1.5 > 0.

The above three inequalities show that conditions (A3) and (A4) in Theorem 3.3 hold.
From Theorems 3.1–3.3, we have

lim
t→+∞

|xi(t)− ui(t)| = 0, lim
t→+∞

|y1(t)− v1(t)| = 0, i = 1, 2,

where (x1(t), x2(t), y1(t)) and (u1(t), u2(t), v1(t)) are any positive solutions of system (4.2). Fig. 2 shows the dynamic
behaviors of system (4.2).

The above two examples show that if all the species are beneficial, we can control those densities to the levels acceptable
to the public, that is impulsivity has no influence on the long time dynamic behaviors such as survival and stability of the
species of the system.

Example 3. Consider the following impulsive system

x′1(t) = x1(t) (3− (2.35+ 0.15 cos(2π t))x1(t)− 0.01x2(t)− (0.3+ 0.2 sin(2π t))y1(t)) ,
x′2(t) = x2(t) (5− (0.8+ 0.2 sin(2π t))x1(t)− (1.1+ 0.1 sin(2π t))x2(t)− 0.5y1(t)) ,
y′1(t) = y1(t) (−1.5+ (1.35+ 0.05 sin(2π t))x1(t)+ 0.6x2(t)− (1.2+ 0.2 sin(2π t))y1(t)) , t 6= τk
x1(τ+k ) = (exp(2))x1(τk),
x2(τ+k ) = (exp(−5.5))x2(τk),
y1(τ+k ) = (exp(2))y1(τk), t = τk = kT , k = 1, 2, . . . ,

(4.3)

where T = 1, h1k ≡ h1 = exp(2)− 1, h2k ≡ h2 = exp(−5.5)− 1, g1k ≡ g1 = exp(2)− 1.
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(a) species x1 . (b) species x2 . (c) species y1 .

Fig. 2. Numeric simulations of the solution (x1(t), x2(t), y1(t)) to system (4.2) with the initial conditions (0.7, 1.2, 1.7) and (2, 4, 3.5), respectively.

(a) species x1 . (b) species x2 . (c) species y1 .

Fig. 3. Numeric simulations of the solution (x1(t), x2(t), y1(t)) to system (4.3) with the initial conditions (0.7, 3, 1.2) and (2.2, 2.6, 3), respectively.

Conditions (B1) and (B2) are respectively equivalent to inequalities

ln(1+ h1)+ Tm[b1(t)− c11(t)Y ∗1 (t)] ≥ 4.6343 > 0

and

ln(1+ g1)+ Tm[−r1(t)+ d11(t)X∗1(t)] ≥ 1.9234 > 0.

Also

ln(1+ h2)+ Tm[b2] ≤ −0.5 < 0.

The above three inequalities show that condition (H2) holds.
Taking ρ∗1 = 8, µ

∗

1 = 8, one could easily verify{
ρ∗1a11(t)− µ

∗

1d11(t) ≥ 6.4;
µ∗1e11(t)− ρ

∗

1 c11(t) ≥ 4.

The above two inequalities show that conditions (B3) and (B4) in Theorem 3.5 hold.
From Theorems 3.4 and 3.5, we have

lim
t→+∞

|x1(t)− u1(t)| = 0, lim
t→+∞

x2(t) = lim
t→+∞

u2(t) = 0, lim
t→+∞

|y1(t)− v1(t)| = 0,

where (x1(t), x2(t), y1(t)) and (u1(t), u2(t), v1(t)) are any positive solutions of system (4.3). Fig. 3 shows the dynamic
behaviors of system (4.3).
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Examples 1 and 3 show that if only one prey species x2 is the target pest, we can choose the value of h2k (k = 1, 2, . . .)
to eradicate the pest population and make the remaining two species permanent. To sum up, just changing the value of hik
and gjk leads to a great change in the dynamic behaviors of the predator–prey system.
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