-

metadata, citation and similar papers at core.ac.uk brought to you by 45 C|

provided by Elsevier - Publisher Conr

Available at

www.ElsevierComputerScience.com JOURNAL OF
POWERED BY SCIENCE @DIRECT@ DISCRETE
EEVI Journal of Discrete Algorithms 1 (2003) 151166 ALGORITHMS

www.elsevier.com/locate/jda

Optimal broadcast on parallel locality models

Ben Juurlink®*, Petr Kolmar?, Friedhelm Meyer auf der Heide
Ingo Rieping

@ Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands
b Institute for Theoretical Computer Science, Charles University, Malostranské nam. 25, 118 00 Prague,
Czech Republic
¢ Heinz Nixdorf Institute and Department of Mathematics and Computer Science, Paderborn University,
Firstenallee 11, 33102 Paderborn, Germany

Abstract

In this paper matching upper and lower bounds for broadcast on general purpose parallel compu-
tation models that exploit network locality are proven. These models try to capture both the general
purpose properties of models like the PRAM or BSP on the one hand, and to exploit network locality
of special purpose models like meshes, hypercubes, etc., on the other hand. They do so by charging a
cost/(]i — j|) for a communication between processoend j, wherel is a suitably chosen latency
function. i

An upper boundr'(p) = Zi‘f&ogp 2. 1(p/?") on the runtime of a broadcast onpaprocessor
H-PRAM is given, for an arbitrary latency functidik).

The main contribution of the paper is a matching lower bound, holding for all latency functions in
the range frond(k) = 2 (logk/loglogk) tol (k) = O(Iog2 k). This is not a severe restriction since for
latency functiond (k) = O(logk/ logl*¢ log(k)) with arbitrarye > 0, the runtime of the algorithm
matches the trivial lower boung (log p) and forl(k) = @ (logl*¢ k) or (k) = @ (k®), the runtime
matches the other trivial lower boursgl(l(p)). Both upper and lower bounds apply for other parallel
locality models like Y-PRAM, D-BSP and E-BSP, too.

0 2003 Elsevier B.V. All rights reserved.

Keywords:Parallel computing; Lower bounds; Broadcast; H-PRAM; BSP model

* Corresponding author.
E-mail addressedh.h.h.juurlink@its.tudelft.nl (B. Juurlink), kolman@kam.mff.cuni.cz (P. Kolman),
fmadh@upb.de (F. Meyer auf der Heide), inri@upb.de (l. Rieping).

1570-8667/$ — see front mattét 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1570-8667(03)00023-6

https://core.ac.uk/display/81956423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

152 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

1. Introduction

An impressive amount of work was dedicated to investigations of explicit network
topologies (e.g., hypercubes, meshes, trees, butterflies, De Bruijn networks, expanders)
and to designing parallel algorithms that exploit locality of the respective topology
(Leighton [13] gives a good survey). As algorithms designed for a specific topology are
portable to other topologies only up to a certain extent (e.g., [14]) and classical parallel
computational models (PRAM, e.g.) do not consider communication cost, general purpose
models that do account for communication cost were defined. Famous examples are the
BSP [18], the LogP [5], and the QSM model [1]. However, they account for the commu-
nication in a uniform way—no locality is considered. As experiments showed that locality
is an issue that influences runtime of algorithms significantly [12], models were designed
that try to keep the “general purpose” character while exploiting the topological locality.
Examples of these models are H-PRAM [7], D-BSP [17] or E-BSP [11]. We refer to them
asparallel locality modelsRoughly speaking, these models try to capture network local-
ity by charging a communication between processgoaad j with [(|i — j|) where! is
a suitably chosen function. It turns out that for many important networks there exists a
numberingr of the nodes and a functidrsuch that for any two nodesandv of the net-
work dist(u, v) <I(|w(u) — 7 (v)|), where distu, v) denotes the distance betwaeeandv
in the network (e.g., the Gray code numbering afid = logk for the hypercube, or the
Peano indexing scheme ah@) = k%/¢ for the d-dimensional mesh [4]; other examples
are given by Juurlink and Wijshoff [11]). Since such lafunction reflects well the dis-
tance it is called théatency functionWe assume that it is a non-decreasing function with
1(1) >1.

In this paper we study the complexity of thevadcasproblem on such locality models.

The task is to distribute a single item known initially to only one of the processor to all
other processors in the network. Without loss of generality we assume that the item is
always known to the first processor, all other cases can be easily transformed to this with
one additional step. The broadcast problem is one of the most important basic primitives
in parallel computation.

1.1. Known results

Heywood and Ranka [7] introduced the H-PRAM model. It is an EREW PRAM that
accounts for communication with respect to locality. Moreover, to some extent it allows
the processors to work asynchronously. Heywood and Ranka described several basic al-
gorithms on this model, e.g., algorithms for broadcast, summation and sorting [6,8]. For
latency functiori (k) = logk, the runtime of their broadcast algorithm igl@g®? p), and
for I(k) = vk it is O(,/p). Besides the H-PRAM other locality models were proposed,
e.g., Y-PRAM [16], D-BSP [17], E-BSP [11], Fat-Tree [2]. More details on these models
can be found in Section 2.2. For the Y-PRAM, De la Torre and Kruskal [16] gave broad-
cast and prefix sum algorithms with runtimel@y? p), for latency functiori (k) = logk
which reflects the hypercube abilities. Bilardi et al. [2] dealt with the broadcast problem
on fat-trees and gave a few upper and lower bounds for various capacities of fat trees.
However, their lower bound technique cannot be applied in our settings since they as-

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 153

sume that all processors work synchronously. Another kind of parallel locality model, the
Reconfigurable Ring of Processors (RRP), was considered by Rosenberg, Scarano and
Sitaraman [15]. An RRP is a ring network witth processors anfl parallel communica-
tion lines. The communication cost is logarithmic in the distance of two processors. They
proved an asymptotically optimal bourgd(log N - loglogN) for the casel. = N. This
resembles the results in this paper for the latency fundtibn= logk. We extend this
result by proving analogous optimal lower bounds for a whole range of latency functions.
Furthermore, the lower bound techniques used in [15] cannot be used for the H-PRAM
since, though restricted, the H-PRAM is a shared memory model.

A lot of work has been done on communication primitives like broadcast, gossip or sum-
mation on explicit topologies (hypercube, mesh, etc.). A survey was written by Hromkovic
et al. [9].

1.2. New results

An upper boundl'(p) = Zi‘folog” 2. 1(p¥/2') on the runtime of our algorithrrRooT

for broadcast on the EREW H-PRAM is given. Basically the same technique was used
for the fat-trees [2] and for the RRP [15]. The upper boungh) turns out to be, e.g.,
O(log p) for (k) = O(logk/log'+¢ log(k)) with arbitrarye > 0, O(log p - logloglogp)

for I(k) = logk/loglogk, O(logp - loglogp) for I(k) = logk, and Qi(p)) for I(k) =

O (log**¢ (k)) andl(k) = @ (k¢) with arbitrarye > 0. The algorithnRooT works on other
locality models, like D-BSP, E-BSP or Y-PRAM, too.

The main result of this paper is a matching lower bom@i‘fdogp 2. 1(pY?y) given
for the H-PRAM. This lower bound holds for all latency functions in the rah@e =
2(logk/loglogk) andi(k) = O(log® k). This is not a severe restriction since for latency
functionsi(k) = O(logk/ Iogl+5 log(k)) with arbitrarye > 0, the runtime of algorithm
ROOT matches the trivial lower boung® (log p) and fori(k) = @ (log*™ k) or I(k) =
O (k*), the runtime matches the other trivial lower bouRd (p)). The lower bound holds
even if synchronization on the H-PRAM is for free or if the H-PRAM is extended with
a “pipelining” facility—a shared memory write takes, for the writing processor, only one
time unit instead of (k) units (the accessed shared memory cell is updatécintime
steps).

For the proof ébroadcast treaés defined, a general parallel locality model suitable for
proving lower bounds. It enables to transfer the results to other parallel locality models
like D-BSP, E-BSP and Y-PRAM, too. A worth mentioning corollary of the lower bound is
that the shared memory of the H-PRAM does not represent any advantage over the models
with distributed memory, for the broadcast problem.

Among other things, the lower bouigi(log p - loglog p) for the latency functioi(k) =
logk answers a question posted by Bilardi et al. [2]: Are ideal fat-trees with large capacities
that are extended with pipelining facilities more powerful than those without pipelining?
The answer is “No0” since our lower bound matches their upper bound.

The lower bound?2 (log p - loglog p) for the latency functiot(k) = logk, which reflects
the communication properties of the hypercube, has one more corollary: though the locality
models reflect the topological properties of the underlying networks better than the non-
local models (e.g., on BSP with hypercube-derived parameiisg? p /loglogp) time

154 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

is needed for broadcast) they still do not fully capture them. The lower bound still differs by
a factors2 (loglogp) from the optimal Qlog p) broadcast algorithm implemented directly
on the hypercube, even on the weak one-port model.

1.3. Organization

In Section 2, the H-PRAM and some other parallel locality models are described. Sec-
tion 3 deals with the algorithrrooT for broadcast. Finally, in Section 4 the main lower
bound for broadcast algorithms is proven. A preliminary version of this paper has appeared
in the proceedings of the 7th International Colloquium on Structural Information & Com-
munication Complexity (SIROCCO 2000) [10].

2. Locality models

Parallel locality models considered in this paper were introduced as models that try to
capture both the general purpose properties of models like the PRAM or the BSP on the
one hand, and to exploit locality of special purpose models like specific networks (meshes,
hypercubes) on the other hand. They aim at enhancing general purpose models by introduc-
ing some weak form of locality. To do so, they define communication costs as a function
in the “distance” between the source and destination of the communication processors. In
this section, a variant of locality models is defined, the H-PRAM, and a few other models
are briefly sketched.

2.1. The H-PRAM model

A simplified version of the model is given that is sufficient for our purposes.Hibe
archical PRAMor H-PRAM[7] is a PRAM that accounts for communication. We deal with
the EREW PRAM variant where only exclusive memory accesses are allowed. The cost for
accessing the shared memory within an H-PRAM withrocessors i&(p) wherel (k) is a
given non-decreasing latency function with) > 1. The instruction set is extended with a
parti ti on instruction. This instruction partitions the H-PRAM into two or more inde-
pendent H-PRAMSs of smaller sizes and with smaller but “cheaper” shared memory. When
all sub-HPRAM s finish their work they are merged back. Each sub-HPRAM consists of
consecutive processors in the original H-PRAM and the shared memory is partitioned pro-
portionally to the sizes of sub-HPRAMSs (that is, if the original H-PRAM with processors
1,2,..., phasm memorycells 12, ..., m then, after thgpar t i t i on instruction, theth
sub-HPRAM consisting of; processor$), +1,..., pi + k; will have a contiguous block
of k; ’['7' memory cellsp; 2 ., (pi + k)2 of the original shared memory, accessible
now to theith sub- HPRPAM processors onllf/) Each of the new sub-HPRAMSs can use the
partiti oninstruction again which gives rise to a hierarchy of sub-HPRAMSs.

Let T denote the number of computational steps @ntthe number of shared memory
accesses in an algorithm withquair t i t i on instructions. Then the runtime of the algo-
rithmisT 4 C - I(p). The cost of gparti ti on instruction is the maximum time taken
by the created sub-HPRAMs.

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 155

Fig. 1. H-PRAM numbering for a mesh and a hypercube.

In order to fully support the H-PRAM, an “architecture” (network) must be capable
of recursively partitioning itself into independent subsystems with the same structure as
the whole network. The H-PRAM allows a lot of partitioning flexibility, in contrast to
other models that restrict the size and number of submachines. In order to show that a
network G can fully support the H-PRAM, a constantand an ordering of the network
processors must be provided such that for any two processors whose indices differ by
in the ordering, their distance is at mestdiam(d) in the networkG, where dianid) is a
diameter of a network of sizé and the same structure & Two examples of networks
with this property are the mesh and the hypercube. It was shown [4] that for the mesh, the
Peano indexing scheme has the required property. The Gray code numbering of the nodes
does the job for the hypercube. Fig. 1 shows the numbering for a 16-processor mesh and a
hypercube.

2.2. Other models

Besides the H-PRAM, a few other general models were introduced that account for
communication and try to exploit locality. In all these models the machine is somehow
decomposable into submachines, and the communication cost is defined by one or two
functions in the submachine size.

The D-BSP model [17], a refinement of the BSP model [18], is a distributed mem-
ory model that consists of a set of processors with local memory, a router for delivering
messages in a point-to-point fashion, and facilities for global synchronization. Moreover,
it has the ability to partition itself into submachines within which the communication is
less expensive. The recursive D-BSP model can be partitioned at each level into 2 equally
sized submachines. The machine operates in supersteps consisting of local computations,
send and receive operations within the current submachine, and partition instructions. The
communication operations are completed only at the end of the superstep and therefore the
transmitted data can be used only in the next superstep. The cost of computation on the
D-BSP model depends on a bandwidth-inefficiency funct¢y) and a latency function
I(k). The cost of a superstep without partitioning and with at nfosbcal computation
steps and at mo&t communication steps per processoflis- maxh - g(k), [(k)} where
k is the size of the current submachine. The cost of the partition is the maximal cost of the
created submachines. The total cost is the sum of the costs of the individual supersteps.
A realization of this BSP model can be found in the Paderborn University BSP (PUB)
library [3], which allows partitioning as an additional feature.

156 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

The Y-PRAM [16] is, like the H-PRAM, a shared memory model. Thg@rocessor
machine is recursively partitionable into two sub-PRAMSs of $i78. There are two pa-
rameters of the machine: a latenig¥) and a bandwidth inefficiencg (k) (not exactly
matching the bandwidth inefficiengyk) of the D-BSP). Each processor owns an equal
amount of the “shared” memory and within a submachine, memory accesses are possible
to memory cells owned by the involved processors only. Each memory cell can be accessed
exclusively only (EREW) and the time for a total costdfmemory accesses in a subma-
chine of sizek is (k) + m + MB(k)/k, wherem is the maximum of memory accesses per
processor.

The E-BSP is another extension of the BSP model [18]. Itis a distributed memory model
that takes unbalanced communication as well as locality into account. Communication in
a superstep is considered as(@#h, h1, hp)-relation with locality L, whereM is the total
amount of communicated dat, is the maximum of data sent and is the maximum of
data received per processor. Localityneans that the maximum distance of two processors
P; and P; communicating with each other g —i| < L. For each topology the cost of an
(M, h1, ho)-relation has to be determined.

In the Fat-Tree model [2] the processors are connected by a complete binary tree
which serves as a router. Each routing moduilethe tree has a capacity(k) that depends
on the number of processdrsn the subtree with roat. In each step a processor may send
and receive a message and execute one local operation. A message afristep2 after it
has been sent, wheheis the height of the lowest common ancestor of the communicating
processors. Only those algorithms are allowed that do not exceed the capacity of the routing
modules.

3. Theupper bound

In this section a simple H-PRAM algorithm for broadcast is given. This algorithm is
very similar to the algorithm of Heywood and Ranka [8]. First, our algorikooT is
executed recursively on faprocessor sub-PRAM. After that, tlteprocessors write the
broadcast item t& equally interspaced memory locations. Finally, the algorithm is exe-
cuted recursively in parallel by sub-PRAMs withp/k processors, each. The difference
between the algorithm of Heywood and Ranka and ours is that in the presented version
the parametet is varied. This leads to a better performance. For simplicity of the formal
description (Algorithm 3.1), we assume that there are gndhared memory cells and the
broadcast item is in memory cell 1, initially.

Algorithm 3.1.

ROOT(p)
Begin
if p=2then
— Processor 2 reads the broadcast item from memory location 1,
else I*ie,p>2*

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 157

— Partition the processors into two groups of sizg& 1 andp — [,/p 1, and exe-
cuterRooT([,/p 1) on the first group,

— The processor®;, i =1,...,[,/p1 — 1, write the broadcast item to memory
locationsi - [/p1+ 1,

— Partition the processors infQ/p 1 groups of size$,/p | each, except for the last
group of sizep — ([/p1—1) - [/p] (it contains all remaining processors) and
execute the algorithrRooT recursively on each but the first group.

End

Theorem 3.2. A broadcast can be performed on the H-PRAM in runtime

loglogp .
T(p) = Z 2.1(pY/?), for p =22 for some integek,

and in runtime

floglogp]
T(p)<l(p)+2- Z 2.1([pY?7) otherwise

Proof. The broadcast algorithm consists of two recursive broadcast calls on sub-PRAMs
of size[,/p 1 and one memory access. Therefore, the runtime of the algorithm is given by
the recurrencel (p) =2-T([/p1) +1(p) for p > 2 andT (1) =I(D).

In case ofp = 22" all ceilings used in the algorithm are superfluous, and we get the
recurrencd (p) =2-T(/p) +I(p), which is easily solved to

loglogp

T(p)= Z 2. 1(pY?). (3.1)

For otherp let g > p be the minimal number such that= 22" for some integek. Then,
sinceg < p?, [v/P1<./4q,andl is non-decreasing, we may conclude from Eq. (3.1):

loglog./q floglogp]

VP ST(a) < 3 2@ < 3 2.
i=0

Plugging in this bound off"([,/p1) in the above recursion fdf (p) yields the second
time bound stated in Theorem 3.20

For ease of description, we will suppress the effects of ceilings in the rest of the paper.
Variants of the algorithrRoOOT can be designed for the other locality models, too, yielding
analogous time bounds. For the D-BSP model, we get the following result:

Theorem 3.3. A broadcast can be performed on the recursive D-BSP model in runtime

loglogp , _
T(p):O(Z 2 -max{l(pl/zl),g(pl/zt)})
i=0

158 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

Proof. A minor problem of the recursive D-BSP model is that not any consecutive sub-
set of processors can be used as a submachine but the only allowed partitioning is into
two submachines of equal size. However, this can be easily overcome by replacing a par-
titioning instruction into groups of sizg/p by a sequence 0} log p partitioning instruc-

tions into halves. The non-recursive communication costs on a submachine of siee
max{!(p), g(p)}. This leads to a runtime recurrentep) < 2-7(,/p)+maxl(p), g(p)}

for p > 2, andT (1) = maxi(1), g(1)}. Solving this recurrence gives the desired runtime

loglogp) ‘
T(p):O(Z 2i-max{l(pl/zl),g(pl/zl)}) O
i=0

4, TheH-PRAM lower bound

For the purpose of the lower bound proof we introduce the following simple computa-
tion model. It consists op processors, each of them with a memory of sizeln each
step each processbcan initiate one of the following operations

(1) write the valuer from its memory cell 0 to another of its local memory cells,
(2) read the value from any of its local cells and store it in its memory cell O,
(3) write the valuex from its cell O to any cell of any other processir

(4) read the value from any cell of any other processprand store it in its cell 0.

Each memory cell can be accessed by at most one processor at a time. Operations (1) and
(2) need one time step, operations (3) and (4) ri¢ed- j|) time steps, that is the read or

the written valuex reaches its destination i — j|) steps. The processors are allowed to

start a new operation in each step, that is pipelining is allowed. Algorithms for this model
are calledgenericalgorithms.

It is easily seen that a “general” read or write operation (that is, for example, processor
i reads the value from any cell of processoj and stores it in any of its local cells)
can be simulated by two of the above instructions. Thus, also any broadcast algorithm for
the H-PRAM and other locality models can be transformed into a generic algorithm by
increasing the runtime by a constant factor only. The reason for not allowing the “general”
read and write operations on this simple model is a technical one and will be explain later
on, after the introduction of the broadcast tree.

Further, the generic algorithms can be even n@awious i.e., they can be changed in
such a way that the communication pattern is the same for all values of the broadcast item.
To see this consider any generic broadcast algorithm and its computation on two different
broadcast values, say on 0 and 1. We say that a memory:a&flprocessoi is affected
by the broadcast value eitheriit= 1 andm = 0, or if processorl stores into its memory
cell m value from an already affected memory cell. At the end of a single computation not
all the processors need to have an affected memory cell, e.g., pro¢essgrconclude
from getting no message that the broadcast item is 1. However, to be able to distinguish
between 0 and 1, each processor has to have at least one memory cell affected at the end
of computation for at least one of these two items. We get an oblivious protocol from the

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 159

arbitrary algorithm by merging the communication schemes for broadcast items 0 and 1.
Thatis, we run first the algorithm on broadcast item 0 and we use each send operation from
an affected memory cell to spread the real broadcastiteand then we use the algorithm

on broadcast item 1 in the same way. The runtime is at most twice as large.

Thus, we may deal with oblivious generic algorithms only, for the lower bounds. Such
algorithms can be described by a static structure célfeddcast treeThis is a binary tree
with nodes labeled with a (processor, memory-cell) gaik). The root is labeledl, 0)
denoting the fact that the broadcast item is initially stored in cell O of processor 1. An
edge between nodes label@édk) and(j, k') is weighted withi(|j — i]), if j #i, and is
weighted with 1 otherwise. The left child of a nodelways has the same label asthe
right child of a node labeled, k) has a labe{j, k"), withk’ =0 ork = 0. In the casé& =0
the edge represents ‘processappies its local cell 0 to cek’ of processoy’, in the other
case the edge represents ‘procegsoopies the celk of processor into its cell 0. For
eachi, all nodes with the label, 0) must form a path. This condition reflects the fact that
each processor can initiate only one operation per time step. An example of a broadcast
tree is given in Fig. 2.

The cost of a path is the sum of its edge-weights,db& of the tree is its maximum
root-leaf path cost. Th&ize|| T || of the tre€eT is the number of different first components of
the labels. It is easy to see that each generic algorithm for broadcagirmtessors can be
represented as a broadcast tree of gize such a way that the cost of the tree corresponds
to the runtime of the algorithm. Thus, in order to prove lower bounds for broadcast on the
locality models, it suffices to prove lower bounds for the cost of broadcast trees of a given
size. In the following thdneightof the tree will denote the length (in number of edges) of
the longest root-leaf path.

Note that without the restriction about communication between processors of the simple
model through memory cells 0 only, and without corresponding conditions ahdt
nodes of the broadcast tree, this approach would not yield any nontrivial lower bound.
Consider the following tree which would be a legal one in that case:(fo®), the right
son of a node with labe(l, i) on levell, 0< [< log p has labell, i + 2'°97-1-1) the
right son of a nod€1, i) on level logp has label(i, 0). The size of this tree ip and its
costis logp + {(p) only.

Another note is appropriate at this point. The reason for having more nodes in the broad-
cast tree corresponding to a single processor is the shared memory of the H-PRAM: it
makes possible that the broadcast item can spread from a single processor (given there are

Fig. 2. A broadcast tree of size 6, cost rfibx [(5), 1+ 1(1) + 1(3)}, and height 3.

160 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

many copies of it in the local memory) to many other processors in parallel. The above
definition of the broadcast tree captures this ability. In the case of parallel locality mod-
els without shared memory the definition of the broadcast tree and thus the whole lower
bound proof can be slightly simplified (just one component in the labels—the processor
number—and corresponding further simplifications).

We conclude the introduction of the broadcast tree by an observation concerning the
relation of size, height and number of leaves in such a tree.

Lemma 4.1. The number of leavésof a broadcast tree with sizeand height: is at most
b<2-s5-h.

Proof. In parallel models, the number of memory cells that have been used by an algo-
rithm, can be bounded by a product of the runtime and the number of processors. This can
be reformulated for the broadcast tree, too. For each branching in the tree, one of the nodes
with (i, 0) labels is responsible. Moreover, all but the first and the last nodes on any of the
path with the samé;, 0) label are responsible for at most one branching, the first node for

at most two and the last one for none. Since the number of leaves is by one larger than the
number of branchings, the number of leavesisatmast -h+1<2-5-h. O

4.1. The lower bound proof

Main Lemma. Let C(p) denote the minimal cost of a broadcast tree of gizavith a cost
functionl(k), [(k) < log?k. Then

logp

Iogw .
cwy:g(> zw@”%). (4.1)

i=0

Proof. Let S be a broadcast tree of sizeand minimal cost. The idea of the proof is to

find in S a path with large cost. We do it in a recursive manner. First, it is showrSthas

an edge with weight at leagfp (Lemma 4.2). Edges with weigli¢p/?) or more, in a

tree of sizep, will be calledexpensivedges in the rest of the section. Removing the first

expensive edge from each root-leaf path that contains one, divides the imtea head

H above these removed expensive edges aiodest F below these edges. The forgst

is proven to contain ‘sufficiently many sufficiently large subtrees’ (Lemma 4.4), and the

subtree above these ‘large subtrees’ is shown to be expensive enough. Combining these

facts and using the recursion yield, after some technical steps, the desired lower bound.
We start with a simple upper bound. The cost of a complete binary treepwithdes,

when used as a broadcast tree, is at migst - log p. This impliesC(p) < I(p) - logp.

Since the cost of a tree is also an upper bound on its height, we have immediately an upper

bound on the longest root-leaf path $h(height boungl The existence of an expensive

edge easily follows.

Lemma 4.2. A tree S of sizem and cost at mogt(m) - logm, contains at least one edge
with costl(e) > [(m*/?).

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 161

Subtree S

Fig. 3. Subtrees and its partitioning into head/ and forestr.

Proof. Let(i, k) denote the root af. Since the size of is m, there exists a hode, n), for
somen, such thatv —i| > m/2. If S consists of edges cheaper than'/2) only, then for
each nodéj, /) € S we have, with the help of the height boungd— i| < height(S) - m*/?
<I(m) -logm - mY? < m/2, a contradiction. O

Consider all root-leaf paths isiand from each of them remove the first expensive edge,
if there is any on it. At least one edge frasnis removed, according to Lemma 4.2. What
remains is the upper tréeeadH, that does not contain any expensive edge, and the lower
treesforest F, that may contain such edges (Fig. 3).

Lemma 4.3. The size of the subtree heatlis bounded by H | < m/2.

Proof. If the size of H would be larger tham:/2 then, by the same argument as in the
proof of Lemma 4.2, there must be an expensive edgeH . But H was chosen in such a
way that there is no such edger

Let L € H be the set of nodes off that are incident to expensive edges (Fig. 3).
Using the fact that the size df is at most|L|| < | H|| < m/2 and combining Lemma 4.1
with the height bound, we get a bound on the total number of nodés mamely|L| <
m/2 - 1(m) - logm (recall that the sizg|L| is the number of nodes with different first
componentin the label only). Since the edge to the left child of every noHénas cost 1,
each node ir. has exactly one expensive edge ahdlis also a bound on the number of
trees inF. Forv € L, let F(v) be the subtree of that is connected to by its expensive
edge. Let| F(v)| denote the size of (v). Recall that the size of a broadcast subtree is the
number of its nodes with different first coordinate in the label.

Let Fq, Fo, ..., Fr| be the subtree#'(v) for all v € L, sorted by their size, starting
from the largest. That i F; || > || F;|| fori < j.

162 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

Lemma 4.4. There exists a numbeére {1, ..., m} such that for alli < b:

1Fill 2 57—
2-b-logm
Proof. The size of allF;’s is at least:

IL]
ZIIEII=||S||—||H||>M/2- (4.2)
i=1

Assume that Lemma 4.4 does not hold. Sifi¢g|| > || F2|| > --- > || F|1||l, we have

m
F and
171l < 5o
IFall < ——— and

2-2-logm

m
Fil<—2 foralli<|L|.
150 < 5o i <IL|

This gives an upper bound on the sum of the sizes

IL] IL| IL|

m m 1 m
F; = - =
;” '”<22-i~logm 2~Iogmzi<2

i=1 i=1

which is a contradiction to (4.2).0

Lemma4.5. The minimum cost (m) of a tree of sizen is
C >1 1/2 2.C L)
(m) (m) + (2-l(m) -logm
Proof. We start with a proof of a slightly different recurrence: There exists a number
be{l,...,m} suchthat

b m
1/2 7 —
C(m) = 1(m)+C<2,|ogb.l(b)>+C<2-b-|ogm>'

Consider the partitioning of the tree along the expensive edges, as described earlier. Ac-
cording to Lemma 4.4, there abdeaves in the hea#f such that each of them is connected
by an expensive edge to a subtree with cost at I€&st/(2- b - logm)). Let H' denote the
subtree ofH that consists of thesk leaves and all their predecessors. According to the
height boundH’ has a height less thd() - logh. Lemma 4.1 implies that the size &F’
is at leasth/(2-logb - (b)) which gives a lower bound'(b/(2-logb - 1(b))) on the cost
of H'.

From the trivial lower bound we know thét(n) = £2 (logn). Since, moreovel; (x) is
nondecreasing and subadditive, the sum

o(—L Vief—"
<2-Iogb~l(b)> (2-b-|ogm>

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 163

is minimized when both terms are equal (cf. [15]). Therefore

b m Jm
C(Z-Iogb~l(b)> +C<2-b-|ogm> 22'C<2-l(m)~logm>’

which completes the proof.O

It remains to transform the recurrence of Lemma 4.5 into the desired sum. Consider
a sequenceog = p, aj+1 = /a;/(2- log®a;). By a simple induction argument, it can be
bounded from below by

12 1 lo
P >p2tt fori <log 9p

Z— = S
4.log®p 7 -loglogp

This yields a lower bound

log p
109 7155 Tog7

C(p) > Z 2i . l(pl/2i+1)
i=0

and completes the proof of the Main Lemmaz

The sum in Eq. (4.1) of the lower bound is almost exactly the sum in Eq. (3.1) of
the upper bound, except for the missing léstogloglogp) elements in the summation.
However, for latency functiongk) > logk, the sizes of the elements in the desired sum
are non-increasing. That is, the missing elements do not contribute significantly to the sum
and the upper and lower bounds match asymptotically.

For latency functiong(k) with logk > I(k) > logk/loglogk, the lower bound above
sums up tos2(logp - logloglogp). For these latency functions, the contribution of the
missing® (logloglogp) elements is at most g p - logloglogp). Therefore, the upper
and the lower bound match for all latency functiéf® > logk/loglogk.

For latency functions(k) < logk/log**¢ log(k) with arbitrarys > 0, the upper bound
is O(log p) which matches the trivial lower bound.

The Main Lemma and the remarks at the beginning of this section yield the following
theorem.

Theorem 4.6. The broadcast problem on theprocessor H-PRAM with a latency function

1(k), % <Ik) < Iogzk forall k e {1, ..., p}, requires runtime

loglogp _
T(p) = sz(> 2 -z(pl/z’)).
i=0

By setting the costs of edges in the broadcast tree in a way that reflects the cost definition
in the other parallel locality models, the lower bound can be applied to them as well.

164 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

Theorem 4.7. The broadcast problem on theprocessor recursive D-BSP with a latency
functionl (k) and bandwidth inefficiency functigsnk),

logk logk
gr_ < I(k) <log’k and d
loglogk loglogk
forall k € {1, ..., p}, requires runtime

loglogp ‘)
T(p):.Q(Z 2i-max{l(pl/zl),g(pl/zl)}).
i=0

< g(k) <log?k

5. Conclusion

In this paper the broadcast problem on general purpose parallel computation models
that exploit locality is considered. The focus of the paper is on the proof of the optimality
of our algorithmroor, that is on proving a lower bound that matches the runtime of this
algorithm. Most of the results are presented for the H-PRAM model only but they can be
easily modified for the other general locality models too. Moreover, it is straightforward
that both the upper and lower bounds apply to prefix operations as well.

It was already know earlier that the models that do exploit locality are stronger than
those that do not (e.g., consider the lower bokihdog p - ./p) for the broadcast on the
BSP model with two-dimensional mesh parameters and the upper bayyig)Jor it on
the corresponding H-PRAM). One of the implications of the presented lower bound is that,
nevertheless, even the general models exploiting locality are weaker than the specific net-
work models (consider th (log p - loglog p) broadcast lower bound for latency function
[and the runtime log of the simple broadcast algorithm on the hypercube). On the other
hand, algorithms for our locality models are portable, i.e., our models are still “bridging
models” as BSP or LogP.

Let us now have a differentlook on the latency function and the numbering of the nodes.
The numbering can be understood as an embedding of the given@rapto a line. When
dealing with embeddings, usually the objective is to minimize the edge dilation. In contrast
to this, our objective is to minimize the dilation pathsfrom G with respect to a metric
on the line defined by the latency functibnThis is exactly the meaning of the condition
Yu,v € Gdist(u,v) <I(|J7(u) — 7 (v)|). We have seen that whenliae is chosen as the
target topology, the model is not able to capture all the communication properties of, e.g.,
the hypercube. Would choosing a different topology yield a more accurate model? If so,
would not be the cost for the accuracy be too high from the programmers’ point of view,
that is, would not be the resulting model be too difficult to use?

For the following problems upper bounds have been already given on parallel local-
ity models: broadcast and prefix operations (the optimal algorithms in the present paper),
FFT graph, matrix multiplication, sorting and list ranking. For graph problems that do not
have linear sequential runtime, it seems difficult to develop efficient algorithms that exploit
locality. Is it possible to prove a lower bound for some of these that would imply a gap be-
tween the power of thé-dimensional mesh and the H-PRAM withdimensional mesh
derived parameters? The broadcast problem was not able to do this.

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166 165

Acknowledgements

Ben Juurlink conducted part of this research during his stay at Heinz Nixdorf Institute
in Paderborn, with support provided by DFG-SFB 376 “Massive Parallelitat”.

Petr Kolman conducted part of this research during his stay at Heinz Nixdorf Institute
in Paderborn, with support provided by DFG-SFB 376 “Massive Parallelitat”. The Institute
for Theoretical Computer Science (ITI) is supported by the Ministry of Education of the
Czech Republic as project LNOOAOS6.

Friedhelm Meyer auf der Heide and Ingo Reiping were partially supported by DFG-SFB
376 “Massive Parallelitat” and by the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

References

[1] M. Adler, P.B. Gibbons, Y. Matias, V. Ramachandran, Modeling parallel bandwidth: local vs. global restric-
tions, in: Proc. Annual ACM Symp. on Parallel Algorithms and Architectures, 1997.

[2] G. Bilardi, B. Codenotti, G. Del Corso, C. Pinotti, G. Resta, Broadcast and other primitive operations on
fat-trees, in: Proc. Int. Euro-Par Conf., in: Lecture Notes in Comput. Sci., Vol. 1300, Springer, Berlin, 1997.

[3] O. Bonorden, B. Juurlink, I. von Otte, I. Rieping, The Paderborn University BSP (PUB) Library—design,
implementation and performance, in: Proc. Int. Parallel Processing Symp., IEEE Computer Society Press,
1999, full version as Technical report tr-rsfb-98-063, 1998, University Paderborn.

[4] G. Chochia, M. Cole, T. Heywood, Implementing the hierarchical PRAM on the 2D mesh: analyses and
experiments, Technical Report ECS-CSG-10-95, Department of Computer Science, The University of Ed-
ingburgh, Scotland, 1995. Also in SPDP 1995.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, T. von Eicken, LogP:
towards a realistic model of parallel computation, in: Proc. 4th Symp. on Principles and Practice of Parallel
Programming, ACM SIGPLAN, 1993, pp. 1-12.

[6] T. Heywood and S. Ranka, Sorting and list ranking on the hierarchical PRAM model, Technical Report,
School of Computer and Information Science, Syracuse University, 1991.

[7]1 T. Heywood, S. Ranka, A practical hierarchical model of parallel computation. I. The model, J. Parallel
Distrib. Comput. 16 (1992) 212-232.

[8] T. Heywood, S. Ranka, A practical hierarchical model of parallel computation, Il. Binary tree and FFT
algorithms, J. Parallel Distrib. Comput. 16 (1992) 233-249.

[9] J. Hromkovic, R. Klasing, B. Monien, R. Peine, Dissemination of information in interconnection networks
(broadcast and gossiping), in: F. Hsu, D.-Z. Du (Eds.), Combinatorial Network Theory, Kluwer Academic,
Dordrecht, 1995, pp. 125-212.

[10] B.H.H. Juurlink, P. Kolman, F. Meyer auf der Heide, |. Rieping, Optimal broadcast on parallel locality mod-
els, in: M. Flammini, E. Nardelli, G. Proietti, P. Spirakis (Eds.), Proc. 7th Int. Coll. Structural Information
and Communication Complexity, SIROCCO, Carleton Scientific, 2000, pp. 211-225.

[11] B.H.H. Juurlink, H.A.G. Wijshoff, The E-BSP Model: incorporating unbalanced communication and general
locality into the BSP model, in: Proc. Int. Euro-Par Conf., in: Lecture Notes in Comput. Sci., Vol. 1124,
Springer, Berlin, 1996, pp. 339-347.

[12] B.H.H. Juurlink, H.A.G. Wijshoff, A quantitative comparison of parallel computation models, in: Proc.
Annual ACM Symp. on Parallel Algorithms and Architectures, 1996, pp. 13-24.

[13] F.T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kaufman, San Mateo, CA,
1992.

[14] B.M. Maggs, E.J. Schwabe, Real-time emulations of bounded-degree networks, Inform. Process. Lett. 66
(1998) 269-276.

[15] A.L. Rosenberg, V. Scarano, R.K. Sitaraman, The reconfigurable ring of processors: fine-grain tree-
structured computations, IEEE Trans. Comput. 46 (10) (1997).

166 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151-166

[16] P. de la Torre, C.P. Kruskal, Towards a single model of efficient computation in real parallel machines, in:
Proc. Parallel Architectures and Languages Europe, in: Lecture Notes in Comput. Sci., Vol. 505, Springer,
Berlin, 1991, pp. 6-24.

[17] P. de la Torre, C.P. Kruskal, Submachine locality in the bulk synchronous setting, in: Proc. Int. Euro-Par
Conf.: Parallel Processing, 2nd International EURO-PAR Conference, in: Lecture Notes in Comput. Sci.,
Vol. 1124, Springer, Berlin, 1996.

[18] L. Valiant, A bridging model for parallel computation, Comm. ACM 33 (8) (1990).

	Optimal broadcast on parallel locality models
	Introduction
	Known results
	New results
	Organization

	Locality models
	The H-PRAM model
	Other models

	The upper bound
	The H-PRAM lower bound
	The lower bound proof

	Conclusion
	Acknowledgements
	References

