
gy,

ue,

ity,

compu-
eneral

ocality
arging a
y

ns in
or

llel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 1 (2003) 151–166

www.elsevier.com/locate/jda

Optimal broadcast on parallel locality models

Ben Juurlinka,∗, Petr Kolmanb, Friedhelm Meyer auf der Heidec,
Ingo Riepingc

a Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technolo
Mekelweg 4, 2628 CD Delft, The Netherlands

b Institute for Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Prag
Czech Republic

c Heinz Nixdorf Institute and Department of Mathematics and Computer Science, Paderborn Univers
Fürstenallee 11, 33102 Paderborn, Germany

Abstract

In this paper matching upper and lower bounds for broadcast on general purpose parallel
tation models that exploit network locality are proven. These models try to capture both the g
purpose properties of models like the PRAM or BSP on the one hand, and to exploit network l
of special purpose models like meshes, hypercubes, etc., on the other hand. They do so by ch
costl(|i − j |) for a communication between processorsi andj , wherel is a suitably chosen latenc
function.

An upper boundT (p) =∑log logp
i=0 2i · l(p1/2i) on the runtime of a broadcast on ap processor

H-PRAM is given, for an arbitrary latency functionl(k).
The main contribution of the paper is a matching lower bound, holding for all latency functio

the range froml(k)= Ω(logk/ log logk) to l(k)= O(log2 k). This is not a severe restriction since f
latency functionsl(k) = O(logk/ log1+ε log(k)) with arbitraryε > 0, the runtime of the algorithm
matches the trivial lower boundΩ(logp) and forl(k) = Θ(log1+ε k) or l(k)= Θ(kε), the runtime
matches the other trivial lower boundΩ(l(p)). Both upper and lower bounds apply for other para
locality models like Y-PRAM, D-BSP and E-BSP, too.
 2003 Elsevier B.V. All rights reserved.

Keywords:Parallel computing; Lower bounds; Broadcast; H-PRAM; BSP model

* Corresponding author.
E-mail addresses:b.h.h.juurlink@its.tudelft.nl (B. Juurlink), kolman@kam.mff.cuni.cz (P. Kolman),

fmadh@upb.de (F. Meyer auf der Heide), inri@upb.de (I. Rieping).

1570-8667/$ – see front matter 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S1570-8667(03)00023-6

https://core.ac.uk/display/81956423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda

152 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

1. Introduction

work
anders)
logy
y are
arallel
urpose
are the
mu-

cality
igned
ality.
them
cal-

ists a

e
es
-
ith

s.
o all
tem is
is with
itives

that
llows
asic al-
]. For

ed,
dels
road-

blem
trees.

ey as-
An impressive amount of work was dedicated to investigations of explicit net
topologies (e.g., hypercubes, meshes, trees, butterflies, De Bruijn networks, exp
and to designing parallel algorithms that exploit locality of the respective topo
(Leighton [13] gives a good survey). As algorithms designed for a specific topolog
portable to other topologies only up to a certain extent (e.g., [14]) and classical p
computational models (PRAM, e.g.) do not consider communication cost, general p
models that do account for communication cost were defined. Famous examples
BSP [18], the LogP [5], and the QSM model [1]. However, they account for the com
nication in a uniform way—no locality is considered. As experiments showed that lo
is an issue that influences runtime of algorithms significantly [12], models were des
that try to keep the “general purpose” character while exploiting the topological loc
Examples of these models are H-PRAM [7], D-BSP [17] or E-BSP [11]. We refer to
asparallel locality models. Roughly speaking, these models try to capture network lo
ity by charging a communication between processorsi andj with l(|i − j |) wherel is
a suitably chosen function. It turns out that for many important networks there ex
numberingπ of the nodes and a functionl such that for any two nodesu andv of the net-
work dist(u, v) � l(|π(u)−π(v)|), where dist(u, v) denotes the distance betweenu andv
in the network (e.g., the Gray code numbering andl(k) = logk for the hypercube, or th
Peano indexing scheme andl(k) = k1/d for thed-dimensional mesh [4]; other exampl
are given by Juurlink and Wijshoff [11]). Since such anl function reflects well the dis
tance it is called thelatency function. We assume that it is a non-decreasing function w
l(1)� 1.

In this paper we study the complexity of thebroadcastproblem on such locality model
The task is to distribute a single item known initially to only one of the processor t
other processors in the network. Without loss of generality we assume that the i
always known to the first processor, all other cases can be easily transformed to th
one additional step. The broadcast problem is one of the most important basic prim
in parallel computation.

1.1. Known results

Heywood and Ranka [7] introduced the H-PRAM model. It is an EREW PRAM
accounts for communication with respect to locality. Moreover, to some extent it a
the processors to work asynchronously. Heywood and Ranka described several b
gorithms on this model, e.g., algorithms for broadcast, summation and sorting [6,8
latency functionl(k) = logk, the runtime of their broadcast algorithm is O(log3/2p), and
for l(k) = √

k it is O(
√
p). Besides the H-PRAM other locality models were propos

e.g., Y-PRAM [16], D-BSP [17], E-BSP [11], Fat-Tree [2]. More details on these mo
can be found in Section 2.2. For the Y-PRAM, De la Torre and Kruskal [16] gave b
cast and prefix sum algorithms with runtime O(log2p), for latency functionl(k) = logk
which reflects the hypercube abilities. Bilardi et al. [2] dealt with the broadcast pro
on fat-trees and gave a few upper and lower bounds for various capacities of fat
However, their lower bound technique cannot be applied in our settings since th

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 153

sume that all processors work synchronously. Another kind of parallel locality model, the
no and

-
They

tions.
RAM

sum-
kovic

used
,

cy

s
ith

one

for
odels
d is
models

cities
ing?

ocality
non-
Reconfigurable Ring of Processors (RRP), was considered by Rosenberg, Scara
Sitaraman [15]. An RRP is a ring network withN processors andL parallel communica
tion lines. The communication cost is logarithmic in the distance of two processors.
proved an asymptotically optimal boundΘ(logN · log logN) for the caseL = N . This
resembles the results in this paper for the latency functionl(k) = logk. We extend this
result by proving analogous optimal lower bounds for a whole range of latency func
Furthermore, the lower bound techniques used in [15] cannot be used for the H-P
since, though restricted, the H-PRAM is a shared memory model.

A lot of work has been done on communication primitives like broadcast, gossip or
mation on explicit topologies (hypercube, mesh, etc.). A survey was written by Hrom
et al. [9].

1.2. New results

An upper boundT (p) =∑log logp
i=0 2i · l(p1/2i) on the runtime of our algorithmROOT

for broadcast on the EREW H-PRAM is given. Basically the same technique was
for the fat-trees [2] and for the RRP [15]. The upper boundT (p) turns out to be, e.g.
O(logp) for l(k) = O(logk/ log1+ε log(k)) with arbitraryε > 0, O(logp · log log logp)
for l(k) = logk/ log logk, O(logp · log logp) for l(k) = logk, and O(l(p)) for l(k) =
Θ(log1+ε(k)) andl(k) =Θ(kε) with arbitraryε > 0. The algorithmROOT works on other
locality models, like D-BSP, E-BSP or Y-PRAM, too.

The main result of this paper is a matching lower boundΩ(
∑log logp

i=0 2i · l(p1/2i)) given
for the H-PRAM. This lower bound holds for all latency functions in the rangel(k) =
Ω(logk/ log logk) andl(k) = O(log2 k). This is not a severe restriction since for laten
functions l(k) = O(logk/ log1+ε log(k)) with arbitrary ε > 0, the runtime of algorithm
ROOT matches the trivial lower boundΩ(logp) and for l(k) = Θ(log1+ε k) or l(k) =
Θ(kε), the runtime matches the other trivial lower boundΩ(l(p)). The lower bound hold
even if synchronization on the H-PRAM is for free or if the H-PRAM is extended w
a “pipelining” facility—a shared memory write takes, for the writing processor, only
time unit instead ofl(k) units (the accessed shared memory cell is updated inl(k) time
steps).

For the proof abroadcast treeis defined, a general parallel locality model suitable
proving lower bounds. It enables to transfer the results to other parallel locality m
like D-BSP, E-BSP and Y-PRAM, too. A worth mentioning corollary of the lower boun
that the shared memory of the H-PRAM does not represent any advantage over the
with distributed memory, for the broadcast problem.

Among other things, the lower boundΩ(logp · log logp) for the latency functionl(k)=
logk answers a question posted by Bilardi et al. [2]: Are ideal fat-trees with large capa
that are extended with pipelining facilities more powerful than those without pipelin
The answer is “No” since our lower bound matches their upper bound.

The lower boundΩ(logp · log logp) for the latency functionl(k)= logk, which reflects
the communication properties of the hypercube, has one more corollary: though the l
models reflect the topological properties of the underlying networks better than the
local models (e.g., on BSP with hypercube-derived parameters,Ω(log2p / log logp) time

154 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

is needed for broadcast) they still do not fully capture them. The lower bound still differs by
tly

. Sec-
er
eared
om-

try to
on the
eshes,
troduc-
ction
ors. In
odels

ith
ost for

a
de-
When
ts of
d pro-
sors

ble
e the

ry
o-
n

a factorΩ(log logp) from the optimal O(logp) broadcast algorithm implemented direc
on the hypercube, even on the weak one-port model.

1.3. Organization

In Section 2, the H-PRAM and some other parallel locality models are described
tion 3 deals with the algorithmROOT for broadcast. Finally, in Section 4 the main low
bound for broadcast algorithms is proven. A preliminary version of this paper has app
in the proceedings of the 7th International Colloquium on Structural Information & C
munication Complexity (SIROCCO 2000) [10].

2. Locality models

Parallel locality models considered in this paper were introduced as models that
capture both the general purpose properties of models like the PRAM or the BSP
one hand, and to exploit locality of special purpose models like specific networks (m
hypercubes) on the other hand. They aim at enhancing general purpose models by in
ing some weak form of locality. To do so, they define communication costs as a fun
in the “distance” between the source and destination of the communication process
this section, a variant of locality models is defined, the H-PRAM, and a few other m
are briefly sketched.

2.1. The H-PRAM model

A simplified version of the model is given that is sufficient for our purposes. TheHier-
archical PRAMor H-PRAM[7] is a PRAM that accounts for communication. We deal w
the EREW PRAM variant where only exclusive memory accesses are allowed. The c
accessing the shared memory within an H-PRAM withp processors isl(p) wherel(k) is a
given non-decreasing latency function withl(1)� 1. The instruction set is extended with
partition instruction. This instruction partitions the H-PRAM into two or more in
pendent H-PRAMs of smaller sizes and with smaller but “cheaper” shared memory.
all sub-HPRAMs finish their work they are merged back. Each sub-HPRAM consis
consecutive processors in the original H-PRAM and the shared memory is partitione
portionally to the sizes of sub-HPRAMs (that is, if the original H-PRAM with proces
1,2, . . . , p hasm memory cells 1,2, . . . ,m then, after thepartition instruction, theith
sub-HPRAM consisting ofki processorspi + 1, . . . , pi + ki will have a contiguous block
of ki mp memory cellspi

m
p

+ 1, . . . , (pi + ki)
m
p

of the original shared memory, accessi
now to theith sub-HPRAM processors only). Each of the new sub-HPRAMs can us
partition instruction again which gives rise to a hierarchy of sub-HPRAMs.

Let T denote the number of computational steps andC the number of shared memo
accesses in an algorithm withoutpartition instructions. Then the runtime of the alg
rithm is T + C · l(p). The cost of apartition instruction is the maximum time take
by the created sub-HPRAMs.

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 155

able
ure as
to
that a
k
r by

s
sh, the
e nodes
h and a

nt for
ehow
or two

em-
ering
over,
n is
qually
tations,
s. The
fore the
on the

of the
rsteps.
UB)
Fig. 1. H-PRAM numbering for a mesh and a hypercube.

In order to fully support the H-PRAM, an “architecture” (network) must be cap
of recursively partitioning itself into independent subsystems with the same struct
the whole network. The H-PRAM allows a lot of partitioning flexibility, in contrast
other models that restrict the size and number of submachines. In order to show
networkG can fully support the H-PRAM, a constantc and an ordering of the networ
processors must be provided such that for any two processors whose indices diffed

in the ordering, their distance is at mostc · diam(d) in the networkG, where diam(d) is a
diameter of a network of sized and the same structure asG. Two examples of network
with this property are the mesh and the hypercube. It was shown [4] that for the me
Peano indexing scheme has the required property. The Gray code numbering of th
does the job for the hypercube. Fig. 1 shows the numbering for a 16-processor mes
hypercube.

2.2. Other models

Besides the H-PRAM, a few other general models were introduced that accou
communication and try to exploit locality. In all these models the machine is som
decomposable into submachines, and the communication cost is defined by one
functions in the submachine size.

The D-BSP model [17], a refinement of the BSP model [18], is a distributed m
ory model that consists of a set of processors with local memory, a router for deliv
messages in a point-to-point fashion, and facilities for global synchronization. More
it has the ability to partition itself into submachines within which the communicatio
less expensive. The recursive D-BSP model can be partitioned at each level into 2 e
sized submachines. The machine operates in supersteps consisting of local compu
send and receive operations within the current submachine, and partition instruction
communication operations are completed only at the end of the superstep and there
transmitted data can be used only in the next superstep. The cost of computation
D-BSP model depends on a bandwidth-inefficiency functiong(k) and a latency function
l(k). The cost of a superstep without partitioning and with at mostT local computation
steps and at mosth communication steps per processor, isT + max{h · g(k), l(k)} where
k is the size of the current submachine. The cost of the partition is the maximal cost
created submachines. The total cost is the sum of the costs of the individual supe
A realization of this BSP model can be found in the Paderborn University BSP (P
library [3], which allows partitioning as an additional feature.

156 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

The Y-PRAM [16] is, like the H-PRAM, a shared memory model. Thep-processor
-

ual
ossible
cessed
a-
er

odel
tion in

sors
n

tree

nd

ting
routing

m is

e
exe-
ce
ersion
mal
e

machine is recursively partitionable into two sub-PRAMs of sizep/2. There are two pa
rameters of the machine: a latencyl(k) and a bandwidth inefficiencyβ(k) (not exactly
matching the bandwidth inefficiencyg(k) of the D-BSP). Each processor owns an eq
amount of the “shared” memory and within a submachine, memory accesses are p
to memory cells owned by the involved processors only. Each memory cell can be ac
exclusively only (EREW) and the time for a total cost ofM memory accesses in a subm
chine of sizek is l(k)+m+Mβ(k)/k, wherem is the maximum of memory accesses p
processor.

The E-BSP is another extension of the BSP model [18]. It is a distributed memory m
that takes unbalanced communication as well as locality into account. Communica
a superstep is considered as an(M,h1, h2)-relation with localityL, whereM is the total
amount of communicated data,h1 is the maximum of data sent andh2 is the maximum of
data received per processor. LocalityL means that the maximum distance of two proces
Pi andPj communicating with each other is|j − i| � L. For each topology the cost of a
(M,h1, h2)-relation has to be determined.

In the Fat-Tree model [2] thep processors are connected by a complete binary
which serves as a router. Each routing modulev in the tree has a capacityw(k) that depends
on the number of processorsk in the subtree with rootv. In each step a processor may se
and receive a message and execute one local operation. A message arrives 2·h steps after it
has been sent, whereh is the height of the lowest common ancestor of the communica
processors. Only those algorithms are allowed that do not exceed the capacity of the
modules.

3. The upper bound

In this section a simple H-PRAM algorithm for broadcast is given. This algorith
very similar to the algorithm of Heywood and Ranka [8]. First, our algorithmROOT is
executed recursively on ak-processor sub-PRAM. After that, thek processors write th
broadcast item tok equally interspaced memory locations. Finally, the algorithm is
cuted recursively in parallel byk sub-PRAMs withp/k processors, each. The differen
between the algorithm of Heywood and Ranka and ours is that in the presented v
the parameterk is varied. This leads to a better performance. For simplicity of the for
description (Algorithm 3.1), we assume that there are onlyp shared memory cells and th
broadcast item is in memory cell 1, initially.

Algorithm 3.1.

ROOT(p)

Begin
if p = 2 then

– Processor 2 reads the broadcast item from memory location 1,
else /* i.e., p > 2 */

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 157

– Partition the processors into two groups of sizes
√p � andp −
√p �, and exe-

ry

t
nd

RAMs
en by

t the

paper.
ing

e

cuteROOT(
√p �) on the first group,
– The processorsPi , i = 1, . . . ,
√p � − 1, write the broadcast item to memo

locationsi ·
√p � + 1,
– Partition the processors into
√p � groups of sizes
√p � each, except for the las

group of sizep − (
√p � − 1) ·
√p � (it contains all remaining processors) a
execute the algorithmROOT recursively on each but the first group.

End

Theorem 3.2. A broadcast can be performed on the H-PRAM in runtime

T (p) =
log logp∑
i=0

2i · l(p1/2i), for p = 22k for some integerk,

and in runtime

T (p) � l(p)+ 2 ·

log logp�∑

i=0

2i · l(⌈p1/2i⌉) otherwise.

Proof. The broadcast algorithm consists of two recursive broadcast calls on sub-P
of size
√p � and one memory access. Therefore, the runtime of the algorithm is giv
the recurrence:T (p) = 2 · T (
√p �)+ l(p) for p > 2 andT (1)= l(1).

In case ofp = 22k all ceilings used in the algorithm are superfluous, and we ge
recurrenceT (p) = 2 · T (√p)+ l(p), which is easily solved to

(3.1)T (p) =
log logp∑
i=0

2i · l(p1/2i).
For otherp let q > p be the minimal number such thatq = 22k for some integerk. Then,
sinceq � p2,
√p � � √

q, andl is non-decreasing, we may conclude from Eq. (3.1):

T
(
√p �)� T

(√
q
)
�

log log
√
q∑

i=0

2i · l(q1/2i+1)�

log logp�∑

i=0

2i · l(⌈p1/2i⌉).
Plugging in this bound onT (
√p �) in the above recursion forT (p) yields the second
time bound stated in Theorem 3.2.✷

For ease of description, we will suppress the effects of ceilings in the rest of the
Variants of the algorithmROOT can be designed for the other locality models, too, yield
analogous time bounds. For the D-BSP model, we get the following result:

Theorem 3.3. A broadcast can be performed on the recursive D-BSP model in runtim

T (p) = O

(log logp∑
i=0

2i · max
{
l
(
p1/2i), g(p1/2i)}).

158 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

Proof. A minor problem of the recursive D-BSP model is that not any consecutive sub-
is into
a par-

e

puta-

(1) and
or
to
odel

essor
)

hm for
m by
neral”
n later

in
st item.
fferent

n not

nguish
the end

m the
set of processors can be used as a submachine but the only allowed partitioning
two submachines of equal size. However, this can be easily overcome by replacing
titioning instruction into groups of size

√
p by a sequence of12 logp partitioning instruc-

tions into halves. The non-recursive communication costs on a submachine of sizep are
max{l(p), g(p)}. This leads to a runtime recurrenceT (p) � 2 ·T (√p)+max{l(p), g(p)}
for p > 2, andT (1)= max{l(1), g(1)}. Solving this recurrence gives the desired runtim

T (p) = O

(log logp∑
i=0

2i · max
{
l
(
p1/2i), g(p1/2i)}). ✷

4. The H-PRAM lower bound

For the purpose of the lower bound proof we introduce the following simple com
tion model. It consists ofp processors, each of them with a memory of sizeM. In each
step each processori can initiate one of the following operations

(1) write the valuex from its memory cell 0 to another of its local memory cells,
(2) read the valuex from any of its local cells and store it in its memory cell 0,
(3) write the valuex from its cell 0 to any cell of any other processorj ,
(4) read the valuex from any cell of any other processorj and store it in its cell 0.

Each memory cell can be accessed by at most one processor at a time. Operations
(2) need one time step, operations (3) and (4) needl(|i − j |) time steps, that is the read
the written valuex reaches its destination inl(|i − j |) steps. The processors are allowed
start a new operation in each step, that is pipelining is allowed. Algorithms for this m
are calledgenericalgorithms.

It is easily seen that a “general” read or write operation (that is, for example, proc
i reads the valuex from any cell of processorj and stores it in any of its local cells
can be simulated by two of the above instructions. Thus, also any broadcast algorit
the H-PRAM and other locality models can be transformed into a generic algorith
increasing the runtime by a constant factor only. The reason for not allowing the “ge
read and write operations on this simple model is a technical one and will be explai
on, after the introduction of the broadcast tree.

Further, the generic algorithms can be even madeoblivious, i.e., they can be changed
such a way that the communication pattern is the same for all values of the broadca
To see this consider any generic broadcast algorithm and its computation on two di
broadcast values, say on 0 and 1. We say that a memory cellm of processori is affected
by the broadcast value either ifi = 1 andm = 0, or if processori stores into its memory
cell m value from an already affected memory cell. At the end of a single computatio
all the processors need to have an affected memory cell, e.g., processori may conclude
from getting no message that the broadcast item is 1. However, to be able to disti
between 0 and 1, each processor has to have at least one memory cell affected at
of computation for at least one of these two items. We get an oblivious protocol fro

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 159

arbitrary algorithm by merging the communication schemes for broadcast items 0 and 1.
n from

m

Such

. An

hat
adcast

of
e
nds
n the
given

) of

imple

ound.

broad-
AM: it
here are
That is, we run first the algorithm on broadcast item 0 and we use each send operatio
an affected memory cell to spread the real broadcast itemx, and then we use the algorith
on broadcast item 1 in the same way. The runtime is at most twice as large.

Thus, we may deal with oblivious generic algorithms only, for the lower bounds.
algorithms can be described by a static structure calledbroadcast tree. This is a binary tree
with nodes labeled with a (processor, memory-cell) pair(i, k). The root is labeled(1,0)
denoting the fact that the broadcast item is initially stored in cell 0 of processor 1
edge between nodes labeled(i, k) and(j, k′) is weighted withl(|j − i|), if j
= i, and is
weighted with 1 otherwise. The left child of a nodev always has the same label asv, the
right child of a node labeled(i, k) has a label(j, k′), with k′ = 0 ork = 0. In the casek = 0
the edge represents ‘processori copies its local cell 0 to cellk′ of processorj ’, in the other
case the edge represents ‘processorj copies the cellk of processori into its cell 0’. For
eachi, all nodes with the label(i,0) must form a path. This condition reflects the fact t
each processor can initiate only one operation per time step. An example of a bro
tree is given in Fig. 2.

The cost of a path is the sum of its edge-weights, thecostof the tree is its maximum
root-leaf path cost. Thesize‖T ‖ of the treeT is the number of different first components
the labels. It is easy to see that each generic algorithm for broadcast onp processors can b
represented as a broadcast tree of sizep in such a way that the cost of the tree correspo
to the runtime of the algorithm. Thus, in order to prove lower bounds for broadcast o
locality models, it suffices to prove lower bounds for the cost of broadcast trees of a
size. In the following theheightof the tree will denote the length (in number of edges
the longest root-leaf path.

Note that without the restriction about communication between processors of the s
model through memory cells 0 only, and without corresponding conditions about(i,0)
nodes of the broadcast tree, this approach would not yield any nontrivial lower b
Consider the following tree which would be a legal one in that case: root(1,0), the right
son of a node with label(1, i) on level l, 0 � l < logp has label(1, i + 2logp−1−l), the
right son of a node(1, i) on level logp has label(i,0). The size of this tree isp and its
cost is logp + l(p) only.

Another note is appropriate at this point. The reason for having more nodes in the
cast tree corresponding to a single processor is the shared memory of the H-PR
makes possible that the broadcast item can spread from a single processor (given t

Fig. 2. A broadcast tree of size 6, cost max{1+ l(5),1+ l(1)+ l(3)}, and height 3.

160 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

many copies of it in the local memory) to many other processors in parallel. The above
mod-
lower
essor

ng the

algo-
his can

nodes
of the
e for
an the

to

first

d the
g these
und.

upper
ve
definition of the broadcast tree captures this ability. In the case of parallel locality
els without shared memory the definition of the broadcast tree and thus the whole
bound proof can be slightly simplified (just one component in the labels—the proc
number—and corresponding further simplifications).

We conclude the introduction of the broadcast tree by an observation concerni
relation of size, height and number of leaves in such a tree.

Lemma 4.1. The number of leavesb of a broadcast tree with sizes and heighth is at most
b � 2 · s · h.

Proof. In parallel models, the number of memory cells that have been used by an
rithm, can be bounded by a product of the runtime and the number of processors. T
be reformulated for the broadcast tree, too. For each branching in the tree, one of the
with (i,0) labels is responsible. Moreover, all but the first and the last nodes on any
path with the same(i,0) label are responsible for at most one branching, the first nod
at most two and the last one for none. Since the number of leaves is by one larger th
number of branchings, the number of leaves is at mostb � s · h+ 1 � 2 · s · h. ✷
4.1. The lower bound proof

Main Lemma. LetC(p) denote the minimal cost of a broadcast tree of sizep, with a cost
functionl(k), l(k)� log2 k. Then

(4.1)C(p) =Ω

(log logp
log logp∑
i=0

2i · l(p1/2i)).
Proof. Let S be a broadcast tree of sizep and minimal cost. The idea of the proof is
find in S a path with large cost. We do it in a recursive manner. First, it is shown thatS has
an edge with weight at least

√
p (Lemma 4.2). Edges with weightl(p1/2) or more, in a

tree of sizep, will be calledexpensiveedges in the rest of the section. Removing the
expensive edge from each root-leaf path that contains one, divides the treeS into ahead
H above these removed expensive edges and aforestF below these edges. The forestF

is proven to contain ‘sufficiently many sufficiently large subtrees’ (Lemma 4.4), an
subtree above these ‘large subtrees’ is shown to be expensive enough. Combinin
facts and using the recursion yield, after some technical steps, the desired lower bo

We start with a simple upper bound. The cost of a complete binary tree withp nodes,
when used as a broadcast tree, is at mostl(p) · logp. This impliesC(p) � l(p) · logp.
Since the cost of a tree is also an upper bound on its height, we have immediately an
bound on the longest root-leaf path inS (height bound). The existence of an expensi
edge easily follows.

Lemma 4.2. A treeS of sizem and cost at mostl(m) · logm, contains at least one edgee
with costl(e)� l(m1/2).

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 161

dge,
at

ower

the
a

3).
1

st
,
of

the

g

Fig. 3. SubtreeS and its partitioning into headH and forestF .

Proof. Let (i, k) denote the root ofS. Since the size ofS ism, there exists a node(v,n), for
somen, such that|v − i| � m/2. If S consists of edges cheaper thanl(m1/2) only, then for
each node(j, l) ∈ S we have, with the help of the height bound,|j − i| � height(S) ·m1/2

� l(m) · logm ·m1/2 <m/2, a contradiction. ✷
Consider all root-leaf paths inS and from each of them remove the first expensive e

if there is any on it. At least one edge fromS is removed, according to Lemma 4.2. Wh
remains is the upper treeheadH , that does not contain any expensive edge, and the l
treesforestF , that may contain such edges (Fig. 3).

Lemma 4.3. The size of the subtree headH is bounded by‖H‖ � m/2.

Proof. If the size ofH would be larger thanm/2 then, by the same argument as in
proof of Lemma 4.2, there must be an expensive edgee in H . ButH was chosen in such
way that there is no such edge.✷

Let L ⊆ H be the set of nodes ofH that are incident to expensive edges (Fig.
Using the fact that the size ofL is at most‖L‖ � ‖H‖ � m/2 and combining Lemma 4.
with the height bound, we get a bound on the total number of nodes inL, namely|L| �
m/2 · l(m) · logm (recall that the size‖L‖ is the number of nodes with different fir
component in the label only). Since the edge to the left child of every node inL has cost 1
each node inL has exactly one expensive edge and|L| is also a bound on the number
trees inF . Forv ∈ L, let F(v) be the subtree ofS that is connected tov by its expensive
edge. Let‖F(v)‖ denote the size ofF(v). Recall that the size of a broadcast subtree is
number of its nodes with different first coordinate in the label.

Let F1,F2, . . . ,F|L| be the subtreesF(v) for all v ∈ L, sorted by their size, startin
from the largest. That is‖Fi‖ � ‖Fj‖ for i < j .

162 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

Lemma 4.4. There exists a numberb ∈ {1, . . . ,m} such that for alli � b:

ber

ier. Ac-
ed

the
‖Fi‖ � m

2 · b · logm
.

Proof. The size of allFi ’s is at least:

(4.2)
|L|∑
i=1

‖Fi‖ = ‖S‖ − ‖H‖ �m/2.

Assume that Lemma 4.4 does not hold. Since‖F1‖ � ‖F2‖ � · · · � ‖F|L|‖, we have

‖F1‖< m

2 · logm
and

‖F2‖< m

2 · 2 · logm
and

. . .

‖Fi‖ <
m

2 · i · logm
for all i � |L|.

This gives an upper bound on the sum of the sizes

|L|∑
i=1

‖Fi‖ <

|L|∑
i=1

m

2 · i · logm
= m

2 · logm

|L|∑
i=1

1

i
<

m

2

which is a contradiction to (4.2).✷
Lemma 4.5. The minimum costC(m) of a tree of sizem is

C(m) � l
(
m1/2)+ 2 ·C

(√
m

2 · l(m) · logm

)
.

Proof. We start with a proof of a slightly different recurrence: There exists a num
b ∈ {1, . . . ,m} such that

C(m) � l
(
m1/2)+C

(
b

2 · logb · l(b)
)

+C

(
m

2 · b · logm

)
.

Consider the partitioning of the tree along the expensive edges, as described earl
cording to Lemma 4.4, there areb leaves in the headH such that each of them is connect
by an expensive edge to a subtree with cost at leastC(m/(2 · b · logm)). LetH ′ denote the
subtree ofH that consists of theseb leaves and all their predecessors. According to
height bound,H ′ has a height less thanl(b) · logb. Lemma 4.1 implies that the size ofH ′
is at leastb/(2 · logb · l(b)) which gives a lower boundC(b/(2 · logb · l(b))) on the cost
of H ′.

From the trivial lower bound we know thatC(n) =Ω(logn). Since, moreover,C(x) is
nondecreasing and subadditive, the sum

C

(
b

2 · logb · l(b)
)

+C

(
m

2 · b · logm

)

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 163

is minimized when both terms are equal (cf. [15]). Therefore

nsider
e

1) of
n.
um
e sum

e
the
r

wing

n

finition
C

(
b

2 · logb · l(b)
)

+C

(
m

2 · b · logm

)
� 2 ·C

(√
m

2 · l(m) · logm

)
,

which completes the proof.✷
It remains to transform the recurrence of Lemma 4.5 into the desired sum. Co

a sequencea0 = p, ai+1 = √
ai/(2 · log3ai). By a simple induction argument, it can b

bounded from below by

ai � p1/2i

4 · log6p
� p

1
2i+1 , for i � log

logp

7 · log logp
.

This yields a lower bound

C(p) �
log logp

7·log logp∑
i=0

2i · l(p1/2i+1)

and completes the proof of the Main Lemma.✷
The sum in Eq. (4.1) of the lower bound is almost exactly the sum in Eq. (3.

the upper bound, except for the missing lastΘ(log log logp) elements in the summatio
However, for latency functionsl(k) � logk, the sizes of the elements in the desired s
are non-increasing. That is, the missing elements do not contribute significantly to th
and the upper and lower bounds match asymptotically.

For latency functionsl(k) with logk � l(k) � logk/ log logk, the lower bound abov
sums up toΩ(logp · log log logp). For these latency functions, the contribution of
missingΘ(log log logp) elements is at most O(logp · log log logp). Therefore, the uppe
and the lower bound match for all latency functionsl(k)� logk/ log logk.

For latency functionsl(k) � logk/ log1+ε log(k) with arbitraryε > 0, the upper bound
is O(logp) which matches the trivial lower bound.

The Main Lemma and the remarks at the beginning of this section yield the follo
theorem.

Theorem 4.6. The broadcast problem on thep-processor H-PRAM with a latency functio
l(k), logk

log logk � l(k)� log2 k for all k ∈ {1, . . . , p}, requires runtime

T (p) =Ω

(log logp∑
i=0

2i · l(p1/2i)).
By setting the costs of edges in the broadcast tree in a way that reflects the cost de

in the other parallel locality models, the lower bound can be applied to them as well.

164 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

Theorem 4.7. The broadcast problem on thep-processor recursive D-BSP with a latency

odels
ality
this

an be
ward

than
e

that,
ific net-
n
ther
ging

odes.

ntrast

n
e
f, e.g.,
If so,

view,

local-
aper),

o not
xploit
p be-
functionl(k) and bandwidth inefficiency functiong(k),

logk

log logk
� l(k) � log2 k and

logk

log logk
� g(k) � log2 k

for all k ∈ {1, . . . , p}, requires runtime

T (p) =Ω

(log logp∑
i=0

2i · max
{
l
(
p1/2i), g(p1/2i)}).

5. Conclusion

In this paper the broadcast problem on general purpose parallel computation m
that exploit locality is considered. The focus of the paper is on the proof of the optim
of our algorithmROOT, that is on proving a lower bound that matches the runtime of
algorithm. Most of the results are presented for the H-PRAM model only but they c
easily modified for the other general locality models too. Moreover, it is straightfor
that both the upper and lower bounds apply to prefix operations as well.

It was already know earlier that the models that do exploit locality are stronger
those that do not (e.g., consider the lower boundΩ(logp · √p) for the broadcast on th
BSP model with two-dimensional mesh parameters and the upper bound O(

√
p) for it on

the corresponding H-PRAM). One of the implications of the presented lower bound is
nevertheless, even the general models exploiting locality are weaker than the spec
work models (consider theΩ(logp · log logp) broadcast lower bound for latency functio
l and the runtime logn of the simple broadcast algorithm on the hypercube). On the o
hand, algorithms for our locality models are portable, i.e., our models are still “brid
models” as BSP or LogP.

Let us now have a different look on the latency function and the numbering of the n
The numbering can be understood as an embedding of the given graphG onto a line. When
dealing with embeddings, usually the objective is to minimize the edge dilation. In co
to this, our objective is to minimize the dilation ofpathsfrom G with respect to a metric
on the line defined by the latency functionl. This is exactly the meaning of the conditio
∀u,v ∈ Gdist(u, v) � l(|π(u) − π(v)|). We have seen that when aline is chosen as th
target topology, the model is not able to capture all the communication properties o
the hypercube. Would choosing a different topology yield a more accurate model?
would not be the cost for the accuracy be too high from the programmers’ point of
that is, would not be the resulting model be too difficult to use?

For the following problems upper bounds have been already given on parallel
ity models: broadcast and prefix operations (the optimal algorithms in the present p
FFT graph, matrix multiplication, sorting and list ranking. For graph problems that d
have linear sequential runtime, it seems difficult to develop efficient algorithms that e
locality. Is it possible to prove a lower bound for some of these that would imply a ga
tween the power of thed-dimensional mesh and the H-PRAM withd-dimensional mesh
derived parameters? The broadcast problem was not able to do this.

B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166 165

Acknowledgements

titute

titute
titute
f the

-SFB
mber

stric-

ns on
1997.
sign,
Press,

s and
of Ed-

, LogP:
arallel

eport,

arallel

FFT

orks
emic,

mod-
tion

neral
124,

roc.

, CA,

Lett. 66

n tree-
Ben Juurlink conducted part of this research during his stay at Heinz Nixdorf Ins
in Paderborn, with support provided by DFG-SFB 376 “Massive Parallelität”.

Petr Kolman conducted part of this research during his stay at Heinz Nixdorf Ins
in Paderborn, with support provided by DFG-SFB 376 “Massive Parallelität”. The Ins
for Theoretical Computer Science (ITI) is supported by the Ministry of Education o
Czech Republic as project LN00A056.

Friedhelm Meyer auf der Heide and Ingo Reiping were partially supported by DFG
376 “Massive Parallelität” and by the IST Programme of the EU under contract nu
IST-1999-14186 (ALCOM-FT).

References

[1] M. Adler, P.B. Gibbons, Y. Matias, V. Ramachandran, Modeling parallel bandwidth: local vs. global re
tions, in: Proc. Annual ACM Symp. on Parallel Algorithms and Architectures, 1997.

[2] G. Bilardi, B. Codenotti, G. Del Corso, C. Pinotti, G. Resta, Broadcast and other primitive operatio
fat-trees, in: Proc. Int. Euro-Par Conf., in: Lecture Notes in Comput. Sci., Vol. 1300, Springer, Berlin,

[3] O. Bonorden, B. Juurlink, I. von Otte, I. Rieping, The Paderborn University BSP (PUB) Library—de
implementation and performance, in: Proc. Int. Parallel Processing Symp., IEEE Computer Society
1999, full version as Technical report tr-rsfb-98-063, 1998, University Paderborn.

[4] G. Chochia, M. Cole, T. Heywood, Implementing the hierarchical PRAM on the 2D mesh: analyse
experiments, Technical Report ECS-CSG-10-95, Department of Computer Science, The University
ingburgh, Scotland, 1995. Also in SPDP 1995.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, T. von Eicken
towards a realistic model of parallel computation, in: Proc. 4th Symp. on Principles and Practice of P
Programming, ACM SIGPLAN, 1993, pp. 1–12.

[6] T. Heywood and S. Ranka, Sorting and list ranking on the hierarchical PRAM model, Technical R
School of Computer and Information Science, Syracuse University, 1991.

[7] T. Heywood, S. Ranka, A practical hierarchical model of parallel computation. I. The model, J. P
Distrib. Comput. 16 (1992) 212–232.

[8] T. Heywood, S. Ranka, A practical hierarchical model of parallel computation, II. Binary tree and
algorithms, J. Parallel Distrib. Comput. 16 (1992) 233–249.

[9] J. Hromkovic, R. Klasing, B. Monien, R. Peine, Dissemination of information in interconnection netw
(broadcast and gossiping), in: F. Hsu, D.-Z. Du (Eds.), Combinatorial Network Theory, Kluwer Acad
Dordrecht, 1995, pp. 125–212.

[10] B.H.H. Juurlink, P. Kolman, F. Meyer auf der Heide, I. Rieping, Optimal broadcast on parallel locality
els, in: M. Flammini, E. Nardelli, G. Proietti, P. Spirakis (Eds.), Proc. 7th Int. Coll. Structural Informa
and Communication Complexity, SIROCCO, Carleton Scientific, 2000, pp. 211–225.

[11] B.H.H. Juurlink, H.A.G. Wijshoff, The E-BSP Model: incorporating unbalanced communication and ge
locality into the BSP model, in: Proc. Int. Euro-Par Conf., in: Lecture Notes in Comput. Sci., Vol. 1
Springer, Berlin, 1996, pp. 339–347.

[12] B.H.H. Juurlink, H.A.G. Wijshoff, A quantitative comparison of parallel computation models, in: P
Annual ACM Symp. on Parallel Algorithms and Architectures, 1996, pp. 13–24.

[13] F.T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kaufman, San Mateo
1992.

[14] B.M. Maggs, E.J. Schwabe, Real-time emulations of bounded-degree networks, Inform. Process.
(1998) 269–276.

[15] A.L. Rosenberg, V. Scarano, R.K. Sitaraman, The reconfigurable ring of processors: fine-grai
structured computations, IEEE Trans. Comput. 46 (10) (1997).

166 B. Juurlink et al. / Journal of Discrete Algorithms 1 (2003) 151–166

[16] P. de la Torre, C.P. Kruskal, Towards a single model of efficient computation in real parallel machines, in:
ringer,

ro-Par
t. Sci.,
Proc. Parallel Architectures and Languages Europe, in: Lecture Notes in Comput. Sci., Vol. 505, Sp
Berlin, 1991, pp. 6–24.

[17] P. de la Torre, C.P. Kruskal, Submachine locality in the bulk synchronous setting, in: Proc. Int. Eu
Conf.: Parallel Processing, 2nd International EURO-PAR Conference, in: Lecture Notes in Compu
Vol. 1124, Springer, Berlin, 1996.

[18] L. Valiant, A bridging model for parallel computation, Comm. ACM 33 (8) (1990).

	Optimal broadcast on parallel locality models
	Introduction
	Known results
	New results
	Organization

	Locality models
	The H-PRAM model
	Other models

	The upper bound
	The H-PRAM lower bound
	The lower bound proof

	Conclusion
	Acknowledgements
	References

