JOURNAL OF

 Number Theory
Congruences for modular forms of weights two and four

Scott Ahlgren ${ }^{\text {a,*,1 }}$, Mugurel Barcau ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Institute of Mathematics of the Romanian Academy, PO Box 1-764, RO-70700, Bucharest, Romania

Received 20 June 2006; revised 21 November 2006
Available online 6 February 2007
Communicated by David Goss

Abstract

We prove a conjecture of Calegari and Stein regarding mod p congruences between modular forms of weight four and the derivatives of modular forms of weight two. © 2007 Elsevier Inc. All rights reserved.

MSC: 11F33; 11F11

1. Introduction

Suppose that $p \geqslant 5$ is prime, and let $M_{k}\left(\Gamma_{0}(p)\right)$ (respectively $S_{k}\left(\Gamma_{0}(p)\right)$) denote the usual complex vector space of modular forms (respectively cusp forms) of weight k on $\Gamma_{0}(p)$. Let $S_{k}\left(\Gamma_{0}(p), \mathbb{Z}\right) \subseteq S_{k}\left(\Gamma_{0}(p)\right)$ consist of those forms whose Fourier expansion at ∞ has integral coefficients; this is a free \mathbb{Z}-module which contains a basis for $S_{k}\left(\Gamma_{0}(p)\right)$ over \mathbb{C} (see, for example, Theorem 3.5.2 of [6]).

If R is a ring, then define

$$
\begin{equation*}
S_{k}\left(\Gamma_{0}(p), R\right):=S_{k}\left(\Gamma_{0}(p), \mathbb{Z}\right) \otimes R \tag{1.1}
\end{equation*}
$$

[^0]The q-expansion principle guarantees that the natural map

$$
S_{k}\left(\Gamma_{0}(p), R\right) \rightarrow R \llbracket q \rrbracket
$$

is injective. If f and g are two elements of $S_{k}\left(\Gamma_{0}(p), R\right)$ and I is an ideal of R, then by $f \equiv g(\bmod I)$ we will mean a term-by-term congruence between the q-expansions of f and g. Sections 12 and 13 of the survey article of Diamond and Im [3] contain further details on these issues.

We define operators Θ, U_{p}, and V_{p} via their actions on q-expansions:

$$
\begin{aligned}
& \Theta\left(\sum a(n) q^{n}\right):=\sum n a(n) q^{n} \\
& \sum a(n) q^{n} \mid U_{p}:=\sum a(p n) q^{n} \\
& \sum a(n) q^{n} \mid V_{p}:=\sum a(n) q^{p n}
\end{aligned}
$$

If $\gamma:=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q}), k \in \mathbb{N}$, and f is a function on the upper half-plane, then define the slash operator via

$$
\left.f(z)\right|_{k} \gamma:=\operatorname{det}(\gamma)^{k / 2}(c z+d)^{-k} f(\gamma z) .
$$

Then the Fricke involution on $S_{k}\left(\Gamma_{0}(p)\right)$ is given by

$$
\left.f \mapsto f\right|_{k} w_{p}
$$

where $w_{p}:=\left(\begin{array}{cc}0 & -1 \\ p & 0\end{array}\right)$. The fields of rationality of f and $f \mid w_{p}$ are the same (see, for example, Section 3.1 of [5]). The action of w_{p} on those forms which lie in the new subspace of $S_{k}\left(\Gamma_{0}(p)\right)$ is described by

$$
\begin{equation*}
w_{p}=-p^{1-k / 2} U_{p} \tag{1.2}
\end{equation*}
$$

It follows that any newform is also an eigenform of w_{p}, with eigenvalue ± 1.
In a recent paper [2], Calegari and Stein formulate a number of conjectures related to their study of discriminants of Hecke algebras of prime level. Here we address one of these conjectures; in particular we recall

Conjecture 1. (See [2, Conjecture 4].) Let \mathcal{P} be the maximal ideal of $\overline{\mathbb{Z}}_{p}$. Suppose that $f \in$ $S_{2}\left(\Gamma_{0}(p), \overline{\mathbb{Z}}_{p}\right)$ and $g \in S_{4}\left(\Gamma_{0}(p), \overline{\mathbb{Z}}_{p}\right)$ are eigenforms (for all of the Hecke operators) which satisfy $\Theta f \equiv g(\bmod \mathcal{P})$. Then the eigenvalues of w_{p} for f and g have opposite signs.

Our goal is to prove the following.

Theorem 1.1. Conjecture 1 is true.

Frank Calegari has pointed out that the truth of this conjecture can also be deduced from a deep theorem of Breuil and Mezard (Theorem 1.2 of [1]). Our proof uses only standard tools from the theory of modular forms modulo p.

2. Proof of Theorem 1.1

Suppose that f and g are as given in Conjecture 1 . We may assume that each is normalized to have leading Fourier coefficient equal to 1 . Let $K \subseteq \overline{\mathbb{Q}}_{p}$ be the field generated over \mathbb{Q} by all of the coefficients of f and g; then K is a finite extension of \mathbb{Q}. Letting \mathfrak{p} be the prime ideal of K corresponding to the inclusion $K \subseteq \overline{\mathbb{Q}}_{p}$, and letting $\mathcal{O}_{\mathfrak{p}} \subseteq K$ be the corresponding valuation ring, we see that

$$
\Theta f \equiv g \quad\left(\bmod \mathfrak{p} \mathcal{O}_{\mathfrak{p}}\right)
$$

Viewing K as embedded in \mathbb{C}, it will suffice to prove the following.
Theorem 2.1. Suppose that K is a number field, that $p \geqslant 5$ is prime, that \mathfrak{p} is a prime ideal of K over p, and that $\mathcal{O}_{\mathfrak{p}} \subseteq K$ is the corresponding valuation ring. Suppose that $f \in S_{2}\left(\Gamma_{0}(p)\right) \cap$ $\mathcal{O}_{\mathfrak{p}} \llbracket q \rrbracket$ and $g \in S_{4}\left(\Gamma_{0}(p)\right) \cap \mathcal{O}_{\mathfrak{p}} \llbracket q \rrbracket$ are eigenforms of w_{p}, are not identically zero modulo \mathfrak{p}, and satisfy

$$
\Theta f \equiv g \quad\left(\bmod \mathfrak{p} \mathcal{O}_{\mathfrak{p}}\right)
$$

Then the eigenvalues of f and g under w_{p} have opposite signs.
To begin the proof, we define, for even integers $k \geqslant 2$, the Eisenstein series

$$
E_{k}(z):=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} .
$$

For $k \geqslant 4$ we have $E_{k} \in M_{k}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)$, while for $k=2$ the quasimodular form E_{2} satisfies

$$
\begin{equation*}
E_{2}(-1 / z)=z^{2} E_{2}(z)+\frac{6 z}{\pi i} . \tag{2.1}
\end{equation*}
$$

Define

$$
E_{2}^{*}:=E_{2}-p E_{2} \mid V_{p}
$$

it is well known that $E_{2}^{*} \in M_{2}\left(\Gamma_{0}(p)\right)$. We begin with an easy lemma.
Lemma 2.2. $\left.E_{2}^{*}\right|_{2} w_{p}=-E_{2}^{*}$.
Proof. We have

$$
\left.E_{2}^{*}\right|_{2} w_{p}=\frac{1}{p z^{2}}\left(E_{2}(-1 / p z)-p E_{2}(-1 / z)\right)
$$

The lemma now follows from a computation using (2.1).

We require the operator $\partial: S_{2}\left(\Gamma_{0}(p)\right) \rightarrow S_{4}\left(\Gamma_{0}(p)\right)$ defined by

$$
\begin{equation*}
\partial f:=\Theta f-\frac{E_{2} f}{6} \tag{2.2}
\end{equation*}
$$

We have the following result.
Lemma 2.3. Suppose that $f \in S_{2}\left(\Gamma_{0}(p)\right)$ has $\left.f\right|_{2} w_{p}=\epsilon f$, with $\epsilon \in\{ \pm 1\}$. Then

$$
\left.\partial f\right|_{4} w_{p}=\epsilon\left(\partial f+\frac{E_{2}^{*} f}{6}\right)
$$

Proof. On the space $S_{k}\left(\Gamma_{0}(p)\right)$ we have

$$
\Theta=\frac{1}{2 \pi i} \frac{d}{d z}
$$

Using this fact together with a computation, we find that

$$
\left.(\Theta f(z))\right|_{4} w_{p}=\epsilon \Theta f(z)+\frac{\epsilon f(z)}{\pi i z}
$$

From (2.1) we find that

$$
\left.E_{2}(z)\right|_{2} w_{p}=p E_{2}(p z)+\frac{6}{\pi i z} .
$$

The lemma follows from a computation involving these facts together with (2.2).
Suppose now that f and g satisfy the hypotheses of Theorem 2.1. In particular, we have

$$
\begin{equation*}
\Theta f \equiv g \quad(\bmod \mathfrak{p}) \tag{2.3}
\end{equation*}
$$

Define ϵ by

$$
\begin{equation*}
\left.f\right|_{2} w_{p}=\epsilon f \tag{2.4}
\end{equation*}
$$

Our goal is to prove that $\left.g\right|_{4} w_{p}=-\epsilon g$. To this end, we assume by way of contradiction that

$$
\begin{equation*}
\left.g\right|_{4} w_{p}=\epsilon g \tag{2.5}
\end{equation*}
$$

Note that

$$
E_{2} \equiv E_{2}^{*} \quad(\bmod p)
$$

it follows from this fact together with (2.3) and (2.2) that

$$
\partial f+\frac{E_{2}^{*} f}{6} \equiv g \quad(\bmod \mathfrak{p})
$$

Let π be a uniformizer for the local ring $\mathcal{O}_{\mathfrak{p}}$. We conclude that there exists a modular form $h \in S_{4}\left(\Gamma_{0}(p)\right) \cap \mathcal{O}_{\mathfrak{p}} \llbracket q \rrbracket$ such that

$$
\begin{equation*}
g-\partial f-\frac{E_{2}^{*} f}{6}=\pi h \tag{2.6}
\end{equation*}
$$

We now apply w_{p} to the equality (2.6). By (2.5), (2.4), Lemma 2.2 and Lemma 2.3, we obtain

$$
\begin{equation*}
\left.\left(g-\partial f-\frac{E_{2}^{*} f}{6}\right)\right|_{4} w_{p}=\epsilon g-\epsilon\left(\partial f+\frac{E_{2}^{*} f}{6}\right)+\epsilon \frac{E_{2}^{*} f}{6}=\epsilon(g-\partial f) \tag{2.7}
\end{equation*}
$$

Combining (2.6) and (2.7) gives

$$
\begin{equation*}
g-\partial f=\left.\epsilon \pi h\right|_{4} w_{p} \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.8), we conclude that

$$
\begin{equation*}
\frac{E_{2}^{*} f}{6}=\left.\epsilon \pi h\right|_{4} w_{p}-\pi h . \tag{2.9}
\end{equation*}
$$

In other words, we have $\left.\pi h\right|_{4} w_{p} \in \mathcal{O}_{\mathfrak{p}} \llbracket q \rrbracket$ and

$$
\begin{equation*}
\left.\frac{E_{2}^{*} f}{6} \equiv \epsilon \pi h\right|_{4} w_{p} \quad(\bmod \mathfrak{p}) \tag{2.10}
\end{equation*}
$$

We will derive a contradiction from (2.10) by showing that the two forms are of different filtration (we show below that the right side of (2.10) can be found at level one and weight $p+3$ modulo \mathfrak{p}, while the left side cannot).

For convenience, we will denote by M_{k} and S_{k} the spaces of modular forms and cusp forms of weight k on $\mathrm{SL}_{2}(\mathbb{Z})$ with coefficients in $\mathcal{O}_{\mathfrak{p}}$. Using an argument of Serre [5, Section 3.3], we see that there exists a cusp form $F \in S_{p+1}$ such that

$$
\begin{equation*}
F \equiv \frac{f}{6} \quad(\bmod \mathfrak{p}) \tag{2.11}
\end{equation*}
$$

We next derive a similar result for the right side of (2.10).
Lemma 2.4. If h, π, and ϵ are as in (2.10), then there exists $H \in S_{p+3}$ such that

$$
\begin{equation*}
\left.H \equiv \epsilon \pi h\right|_{4} w_{p} \quad(\bmod \mathfrak{p}) . \tag{2.12}
\end{equation*}
$$

Proof. We follow the argument of Serre mentioned above. We define

$$
\begin{equation*}
E(z):=E_{p-1}(z)-p^{p-1} E_{p-1}(z) \mid V_{p} . \tag{2.13}
\end{equation*}
$$

Then we have $E(z) \equiv 1(\bmod p)$ and

$$
\begin{equation*}
\left.E(z)\right|_{p-1} w_{p} \equiv 0 \quad\left(\bmod p^{\frac{p+1}{2}}\right) \tag{2.14}
\end{equation*}
$$

We define the usual trace map from $S_{k}\left(\Gamma_{0}(p)\right)$ to $S_{k}\left(\Gamma_{0}(1)\right)$ by

$$
\operatorname{Tr}(f):=f+p^{1-k / 2}\left(\left.f\right|_{k} w_{p}\right) \mid U_{p}
$$

Then by (2.14) we obtain

$$
\begin{aligned}
\operatorname{Tr}\left(\epsilon \pi\left(\left.h\right|_{4} w_{p}\right) E\right)-\epsilon \pi\left(\left.h\right|_{4} w_{p}\right) E & =p^{1-(p+3) / 2}\left(\left.\left(\epsilon \pi\left(\left.h\right|_{4} w_{p}\right) E\right)\right|_{p+3} w_{p}\right) \mid U_{p} \\
& =\epsilon \pi p^{-(p+1) / 2} h\left(\left.E\right|_{p-1} w_{p}\right) \mid U_{p} \\
& \equiv 0 \quad(\bmod \mathfrak{p})
\end{aligned}
$$

The form $H:=\operatorname{Tr}\left(\epsilon \pi\left(\left.h\right|_{4} w_{p}\right) E\right) \in S_{p+3}$ satisfies the conclusions of the lemma.
Letting $F \in S_{p+1}$ and $H \in S_{p+3}$ be defined by (2.11) and Lemma 2.4, and recalling that

$$
E_{2}^{*} \equiv E_{2} \equiv E_{p+1} \quad(\bmod p)
$$

we obtain the following congruence involving modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$ with coefficients in $\mathcal{O}_{\mathfrak{p}}$:

$$
\begin{equation*}
H \equiv E_{p+1} F \quad(\bmod \mathfrak{p}) \tag{2.15}
\end{equation*}
$$

We now require some elements of the theory of modular forms modulo \mathfrak{p} as developed by Serre and Swinnerton-Dyer [7]; the book of Lang ([4], Chapter X) is also a good reference. As usual, define $Q:=E_{4}$ and $R:=E_{6}$. Then M_{k} can be identified with the set of isobaric polynomials of weight k in Q and R, and with coefficients in $\mathcal{O}_{\mathfrak{p}}$. Let A and B be the isobaric polynomials such that

$$
E_{p-1}=A(Q, R), \quad E_{p+1}=B(Q, R)
$$

Let $\mathbb{F}_{\mathfrak{p}}:=\mathcal{O}_{\mathfrak{p}} / \mathfrak{p}$, and denote the reduction map to $\mathbb{F}_{\mathfrak{p}}$ by ${ }^{-}$. By a standard abuse of notation, let $\bar{A}(Q, R)$ and $\bar{B}(Q, R)$ denote the polynomials in $\mathbb{F}_{\mathfrak{p}}[Q, R]$ (where Q and R are now regarded as indeterminates) obtained via reducing the coefficients of A and B.

If $f \in M_{k}$, then define the filtration $w(\bar{f})$ by

$$
\begin{equation*}
w(\bar{f}):=\inf \left\{k^{\prime}: \text { there exists } g \in M_{k^{\prime}} \text { with } \bar{f}=\bar{g}\right\} \tag{2.16}
\end{equation*}
$$

Here we record some basic properties (see, for example, [4, Chapter X, Theorem 7.5]).
Theorem 2.5. Suppose that $f \in M_{k}$, and that $f=C(Q, R)$, where C is an isobaric polynomial of weight k.
(1) If $\bar{f} \neq 0$, then $w(\bar{f}) \equiv k(\bmod p-1)$.
(2) We have $w(\bar{f})<k$ if and only if $\bar{A}(Q, R)$ divides $\bar{C}(Q, R)$.

We now return to (2.15). Since $M_{2}=\{0\}$, it follows from the first assertion of the theorem that $w(\bar{F})=p+1$. By Theorem 7.3 of [4], Chapter X, we know that $\bar{B}(Q, R)$ is coprime to $\bar{A}(Q, R)$. Therefore we conclude from the second assertion of the theorem that

$$
\begin{equation*}
w\left(\overline{E_{p+1} F}\right)=2 p+2 . \tag{2.17}
\end{equation*}
$$

However, this contradicts the fact that $H \in S_{p+3}$, and the theorem follows.

Acknowledgments

The authors thank Frank Calegari, Alex Ghitza and Steve Ullom for their helpful comments on a previous version of this paper.

References

[1] C. Breuil, A. Mézard, Multiplicités modulaires et représentations de $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$ et de $\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right)$ en $l=p$, Duke Math. J. 115 (2) (2002) 205-310, MR1944572 (2004i:11052).
[2] F. Calegari, W.A. Stein, Conjectures about discriminants of Hecke algebras of prime level, in: Algorithmic Number Theory, in: Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 140-152, MR2137350.
[3] F. Diamond, J. Im, Modular forms and modular curves, in: Seminar on Fermat's Last Theorem, Toronto, ON, 19931994, Amer. Math. Soc., Providence, RI, 1995, pp. 39-133, MR1357209 (97g:11044).
[4] S. Lang, Introduction to Modular Forms, Springer, Berlin, 1995, Corrected reprint of the 1976 original, MR1363488 (96g:11037).
[5] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, in: Modular Functions of One Variable, III, Proc. Internat. Summer School, Univ. Antwerp, 1972, in: Lecture Notes in Math., vol. 350, Springer, Berlin, 1973, pp. 191-268, MR0404145 (53 \#7949a).
[6] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, Princeton, NJ, 1994, Reprint of the 1971 original, MR1291394 (95e:11048).
[7] H.P.F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, in: Modular Functions of One Variable, III, Proc. Internat. Summer School, Univ. Antwerp, 1972, in: Lecture Notes in Math., vol. 350, Springer, Berlin, 1973, pp. 1-55, MR0406931 (53 \#10717a).

[^0]: * Corresponding author.

 E-mail addresses: ahlgren@math.uiuc.edu (S. Ahlgren), mugurel.barcau@imar.ro (M. Barcau).
 1 The first author thanks the National Science Foundation for its support through grant DMS 01-34577.

