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Abstract

We prove a conjecture of Calegari and Stein regarding mod p congruences between modular forms of
weight four and the derivatives of modular forms of weight two.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that p � 5 is prime, and let Mk(Γ0(p)) (respectively Sk(Γ0(p))) denote the usual
complex vector space of modular forms (respectively cusp forms) of weight k on Γ0(p). Let
Sk(Γ0(p),Z) ⊆ Sk(Γ0(p)) consist of those forms whose Fourier expansion at ∞ has integral co-
efficients; this is a free Z-module which contains a basis for Sk(Γ0(p)) over C (see, for example,
Theorem 3.5.2 of [6]).

If R is a ring, then define

Sk

(
Γ0(p),R

) := Sk

(
Γ0(p),Z

) ⊗ R. (1.1)
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The q-expansion principle guarantees that the natural map

Sk

(
Γ0(p),R

) → R�q�

is injective. If f and g are two elements of Sk(Γ0(p),R) and I is an ideal of R, then by
f ≡ g (mod I ) we will mean a term-by-term congruence between the q-expansions of f and g.
Sections 12 and 13 of the survey article of Diamond and Im [3] contain further details on these
issues.

We define operators Θ , Up , and Vp via their actions on q-expansions:

Θ
(∑

a(n)qn
)

:=
∑

na(n)qn,

∑
a(n)qn

∣∣ Up :=
∑

a(pn)qn,

∑
a(n)qn

∣∣ Vp :=
∑

a(n)qpn.

If γ := (
a b
c d

) ∈ GL+
2 (Q), k ∈ N, and f is a function on the upper half-plane, then define the

slash operator via

f (z)
∣∣
k
γ := det(γ )k/2(cz + d)−kf (γ z).

Then the Fricke involution on Sk(Γ0(p)) is given by

f 	→ f |kwp,

where wp := ( 0 −1
p 0

)
. The fields of rationality of f and f | wp are the same (see, for example,

Section 3.1 of [5]). The action of wp on those forms which lie in the new subspace of Sk(Γ0(p))

is described by

wp = −p1−k/2Up. (1.2)

It follows that any newform is also an eigenform of wp , with eigenvalue ±1.
In a recent paper [2], Calegari and Stein formulate a number of conjectures related to their

study of discriminants of Hecke algebras of prime level. Here we address one of these conjec-
tures; in particular we recall

Conjecture 1. (See [2, Conjecture 4].) Let P be the maximal ideal of Zp . Suppose that f ∈
S2(Γ0(p),Zp) and g ∈ S4(Γ0(p),Zp) are eigenforms ( for all of the Hecke operators) which
satisfy Θf ≡ g (mod P). Then the eigenvalues of wp for f and g have opposite signs.

Our goal is to prove the following.

Theorem 1.1. Conjecture 1 is true.

Frank Calegari has pointed out that the truth of this conjecture can also be deduced from a
deep theorem of Breuil and Mezard (Theorem 1.2 of [1]). Our proof uses only standard tools
from the theory of modular forms modulo p.
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2. Proof of Theorem 1.1

Suppose that f and g are as given in Conjecture 1. We may assume that each is normalized to
have leading Fourier coefficient equal to 1. Let K ⊆ Qp be the field generated over Q by all of
the coefficients of f and g; then K is a finite extension of Q. Letting p be the prime ideal of K

corresponding to the inclusion K ⊆ Qp , and letting Op ⊆ K be the corresponding valuation ring,
we see that

Θf ≡ g (mod pOp).

Viewing K as embedded in C, it will suffice to prove the following.

Theorem 2.1. Suppose that K is a number field, that p � 5 is prime, that p is a prime ideal of K

over p, and that Op ⊆ K is the corresponding valuation ring. Suppose that f ∈ S2(Γ0(p)) ∩
Op�q� and g ∈ S4(Γ0(p))∩Op�q� are eigenforms of wp , are not identically zero modulo p, and
satisfy

Θf ≡ g (mod pOp).

Then the eigenvalues of f and g under wp have opposite signs.

To begin the proof, we define, for even integers k � 2, the Eisenstein series

Ek(z) := 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn.

For k � 4 we have Ek ∈ Mk(SL2(Z)), while for k = 2 the quasimodular form E2 satisfies

E2(−1/z) = z2E2(z) + 6z

πi
. (2.1)

Define

E∗
2 := E2 − pE2 | Vp;

it is well known that E∗
2 ∈ M2(Γ0(p)). We begin with an easy lemma.

Lemma 2.2. E∗
2 |2wp = −E∗

2 .

Proof. We have

E∗
2 |2wp = 1

pz2

(
E2(−1/pz) − pE2(−1/z)

)
.

The lemma now follows from a computation using (2.1). �
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We require the operator ∂ :S2(Γ0(p)) → S4(Γ0(p)) defined by

∂f := Θf − E2f

6
. (2.2)

We have the following result.

Lemma 2.3. Suppose that f ∈ S2(Γ0(p)) has f |2wp = εf , with ε ∈ {±1}. Then

∂f |4wp = ε

(
∂f + E∗

2f

6

)
.

Proof. On the space Sk(Γ0(p)) we have

Θ = 1

2πi

d

dz
.

Using this fact together with a computation, we find that

(
Θf (z)

)∣∣
4wp = εΘf (z) + εf (z)

πiz
.

From (2.1) we find that

E2(z)
∣∣
2wp = pE2(pz) + 6

πiz
.

The lemma follows from a computation involving these facts together with (2.2). �
Suppose now that f and g satisfy the hypotheses of Theorem 2.1. In particular, we have

Θf ≡ g (mod p). (2.3)

Define ε by

f |2wp = εf. (2.4)

Our goal is to prove that g|4wp = −εg. To this end, we assume by way of contradiction that

g|4wp = εg. (2.5)

Note that

E2 ≡ E∗
2 (mod p)

it follows from this fact together with (2.3) and (2.2) that

∂f + E∗
2f ≡ g (mod p).

6
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Let π be a uniformizer for the local ring Op. We conclude that there exists a modular form
h ∈ S4(Γ0(p)) ∩Op�q� such that

g − ∂f − E∗
2f

6
= πh. (2.6)

We now apply wp to the equality (2.6). By (2.5), (2.4), Lemma 2.2 and Lemma 2.3, we obtain

(
g − ∂f − E∗

2f

6

)∣∣∣∣
4
wp = εg − ε

(
∂f + E∗

2f

6

)
+ ε

E∗
2f

6
= ε(g − ∂f ). (2.7)

Combining (2.6) and (2.7) gives

g − ∂f = επh|4wp. (2.8)

Combining (2.6) and (2.8), we conclude that

E∗
2f

6
= επh|4wp − πh. (2.9)

In other words, we have πh|4wp ∈Op�q� and

E∗
2f

6
≡ επh|4wp (mod p). (2.10)

We will derive a contradiction from (2.10) by showing that the two forms are of different
filtration (we show below that the right side of (2.10) can be found at level one and weight p + 3
modulo p, while the left side cannot).

For convenience, we will denote by Mk and Sk the spaces of modular forms and cusp forms
of weight k on SL2(Z) with coefficients in Op. Using an argument of Serre [5, Section 3.3], we
see that there exists a cusp form F ∈ Sp+1 such that

F ≡ f

6
(mod p). (2.11)

We next derive a similar result for the right side of (2.10).

Lemma 2.4. If h, π , and ε are as in (2.10), then there exists H ∈ Sp+3 such that

H ≡ επh|4wp (mod p). (2.12)

Proof. We follow the argument of Serre mentioned above. We define

E(z) := Ep−1(z) − pp−1Ep−1(z)
∣∣Vp. (2.13)

Then we have E(z) ≡ 1 (mod p) and

E(z)
∣∣ wp ≡ 0

(
mod p

p+1
2

)
. (2.14)
p−1
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We define the usual trace map from Sk(Γ0(p)) to Sk(Γ0(1)) by

Tr(f ) := f + p1−k/2(f |kwp)
∣∣Up.

Then by (2.14) we obtain

Tr
(
επ(h|4wp)E

) − επ(h|4wp)E = p1−(p+3)/2((επ(h|4wp)E
)∣∣

p+3wp

)∣∣Up

= επp−(p+1)/2h(E|p−1wp)
∣∣Up

≡ 0 (mod p).

The form H := Tr(επ(h|4wp)E) ∈ Sp+3 satisfies the conclusions of the lemma. �
Letting F ∈ Sp+1 and H ∈ Sp+3 be defined by (2.11) and Lemma 2.4, and recalling that

E∗
2 ≡ E2 ≡ Ep+1 (mod p),

we obtain the following congruence involving modular forms on SL2(Z) with coefficients in Op:

H ≡ Ep+1F (mod p). (2.15)

We now require some elements of the theory of modular forms modulo p as developed by
Serre and Swinnerton-Dyer [7]; the book of Lang ([4], Chapter X) is also a good reference.
As usual, define Q := E4 and R := E6. Then Mk can be identified with the set of isobaric
polynomials of weight k in Q and R, and with coefficients in Op. Let A and B be the isobaric
polynomials such that

Ep−1 = A(Q,R), Ep+1 = B(Q,R).

Let Fp := Op/p, and denote the reduction map to Fp by . By a standard abuse of notation, let
A(Q,R) and B(Q,R) denote the polynomials in Fp[Q,R] (where Q and R are now regarded
as indeterminates) obtained via reducing the coefficients of A and B .

If f ∈ Mk , then define the filtration w(f ) by

w(f ) := inf{k′: there exists g ∈ Mk′ with f = g}. (2.16)

Here we record some basic properties (see, for example, [4, Chapter X, Theorem 7.5]).

Theorem 2.5. Suppose that f ∈ Mk , and that f = C(Q,R), where C is an isobaric polynomial
of weight k.

(1) If f �= 0, then w(f ) ≡ k (mod p − 1).
(2) We have w(f ) < k if and only if A(Q,R) divides C(Q,R).
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We now return to (2.15). Since M2 = {0}, it follows from the first assertion of the theorem that
w(F) = p+1. By Theorem 7.3 of [4], Chapter X, we know that B(Q,R) is coprime to A(Q,R).
Therefore we conclude from the second assertion of the theorem that

w(Ep+1F) = 2p + 2. (2.17)

However, this contradicts the fact that H ∈ Sp+3, and the theorem follows.
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