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Abstract This paper focuses on a method to solve structural optimization problems using particle

swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic

search algorithm designed to find the global optimum. However, PSO needs many evaluations com-

pared to gradient-based optimization. This means PSO increases the analysis costs of structural opti-

mization. One of the methods to reduce computing costs in stochastic optimization is to use

approximation techniques. In this work, surrogate models are used, including the response surface

method (RSM) and Kriging. When surrogate models are used, there are some errors between exact

values and approximated values. These errors decrease the reliability of the optimum values and dis-

card the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used

to obtain more reliable results. To verify and confirm the efficiency of the proposed method using

surrogate models and Bayesian statistics for stochastic structural optimization, two numerical exam-

ples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.
ª 2012 CSAA & BUAA. Production and hosting by Elsevier Ltd.

Open access under CC BY-NC-ND license.
1. Introduction

Various optimization algorithms have been presented over the
past few decades and have continuously improved in efficiency.

Nowadays, stochastic optimization algorithms such as the ge-
netic algorithm (GA), simulated annealing (SA) and particle
swarm optimization (PSO) have been applied to many design
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fields as computing power has improved.1–3 Stochastic optimi-
zation algorithms have their own mechanism to find the global
optimum. However they need lots of evaluations to reach the
global optimum. Therefore, to reduce the evaluation costs

inherent in stochastic algorithms, approximation methods
such as response surface method (RSM) and Kriging have
been applied to structural optimization.

In this paper, a methodology for structural optimization is
proposed that combines PSO, RSM, Kriging, and Bayesian
statistics. PSO is based on a simplified social model that is clo-

sely tied to swarming theory. A physical analogy might be a
swarm of bees or ants searching for a good food source. In this
mechanism, each bee or ant is called a particle in PSO, which

uses its own information as well as collective knowledge gained
by the swarm to find the best available food source. PSO has
lots of advantages over other optimization algorithms. First,
PSO is generally easy to program. Second, PSO can efficiently
td. Open access under CC BY-NC-ND license.
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make use of large numbers of processors and does not require
the initial values of design variables. In addition, PSO is gen-
erally better suited for finding the global solution and is ideally

suited for solving discrete, continuous and/or combinatorial
types of optimization problems.3,4 Zhao et al.5 presented a vi-
sual modeling method describing a particle’s dimensional vec-

tor behavior. Based on an analysis of visual modeling, they
explained the reason for premature convergence and diversity
loss in PSO, and also proposed a new modified algorithm to

ensure the rational flight of every particle’s dimensional com-
ponent. Also, they suggested the addition of two parameters
of particle-distribution-degree and particle-dimension-distance
to the proposed algorithm in order to avoid premature conver-

gence. Simulation results of the new PSO algorithm showed
that it has a better ability to find the global optimum and still
keeps a rapid convergence, as with the standard PSO.

The response surface method (RSM) has been put to prac-
tical use in the field of quality engineering for purposes such as
product process optimization and variation reduction.6 The

RSM is a type of surrogate model that applies an approxima-
tion technique to functions such as objective and constraints in
an optimization problem. For approximation, it uses a func-

tion called a response surface, which is a function that approx-
imates a problem with design variables and state quantities,
using several analysis or experimental results. In general, the
design of experiments is used for analysis or parameter setting

of experiment point, and the least square method is used for
function approximation.6

Kriging was originally developed and used in mining engi-

neering and geostatistics. Kriging is an approach for curve fit-
ting. With a statistical technique based on geostatistics,
Kriging is useful to estimate spatial interaction of various

data.7,8 Diverse approximation models by Kriging are known
to be suitable for non-linear models. The Kriging model is
influenced by sampling data. In the Kriging model, the inter-

polation error is affected by the distance between the sample
points. Consequently, efficient sampling processes are needed
to obtain maximum information with a minimum number of
design experiments.9

RSM and Kriging have different mechanisms to generate
approximation models, and they do not produce the same
approximated values of design problems, especially in nonlin-

ear cases. To consider the different approximation abilities of
the two models, a hybrid using both RSM and Kriging is
developed for the evaluations of PSO. And we will discuss

the effects of using hybrid approach. In this paper, Bayesian
statistics is also adopted in order to suggest more reliable opti-
mum values. Bayesian statistics uses the data of design vari-
ables generated by PSO during the optimization process. To

verify the proposed method using surrogate models and Bayes-
ian statistics for stochastic structural design problems, two-
and four-bar truss problems are selected from Refs. 10,11 as

numerical examples and the optimization of a hub sleeve is
demonstrated as a practical problem.
2. PSO

PSO is a parallel population-based computation technique first
proposed by Eberhart and Kennedy.3 It is motivated by the

behavior of certain organisms, such as the schooling of fish
and the flocking of birds. PSO can solve a variety of difficult
optimization problems. It uses the physical movements of the
particles in the swarm and has a flexible and well-balanced
mechanism to enhance and adapt to global and local search

abilities. Another advantage of PSO is its simplicity in coding
and consistency in performance. The global optimization mod-
el proposed by Shi and Eberhart is as follows12:

Viþ1 ¼WVi þ C1r1ðPbest � XiÞ þ C2r2ðGbest � XiÞ ð1Þ

Xiþ1 ¼ Xi þ Viþ1 ð2Þ

where Vi is the ith particle velocity, Xi the particle position, W
the inertial weight; C1 and C2, which affect the convergence of
optimization, are positive constant parameters; r1 and r2 are

random values in the range [0,1] obtained by a random number
generator; Pbest is the best position of ith particle, and Gbest is
the best position among all particles in the swarm.

2.1. PSO parameters

The parameters W, C1, and C2 in Eq. (1) are important to find
the optimum value and achieving good convergence. The basic

PSO algorithm has three problem-dependent parameters, W,
C1 and C2. Ref. 3 proposes using C1 = C2 = 2. Additionally,
Shi and Eberhart suggest using 0.8 < W< 1.4, starting with

larger W values (a more global search behavior) that are
dynamically reduced (a more local search behavior) during
the optimization.12 The scheme, which dynamically adjusts

the W value, is as follows12:

W ¼ wmax �
wmax � wmin

itermax

iter ð3Þ

where wmax is 0.9 and wmin 0.4. iter denotes the current itera-

tion number, and itermax is the maximum number of iterations,
which is a user-defined value.
2.2. Neighborhood topology

In the swarm, all the particles are neighbors of each other. The
position of the best particle (Gbest) in the swarm is used in the

velocity vector Eq. (1). It is assumed that the best particle con-
verges quickly, as all the particles are attracted simultaneously
to the best part of the search space. However, if we use single
Gbest for all particles, and Gbest does not lead to the global opti-

mum but a local optimum, it may be impossible for the swarm
to explore other areas; this means that the swarm can be
trapped in local optimum. To address this limitation, neigh-

borhood topology is used. In this case, only a specific number
of particles can affect the velocity of a given particle. The
swarm will converge more slowly but has a greater chance of

locating the global optimum.13 In this study two kinds of
neighborhood topologies are used: circular topology and ran-
dom topology (Fig. 1).
3. Surrogate models

3.1. RSM

The response surface is an approximation of the relational
expression of the response y predicted from variables xi (where

i= 1,2,� � �,n). The response surface can be expressed by



Fig. 1 Neighborhood topology.
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y ¼ fðx1; x2; . . . ; xnÞ þ e ð4Þ

where e is an error assumed to have a zero mean.
In general, for this function f, a polynomial is often used

because it is easier to handle. For response surfaces, linear

functions are advantageous because their coefficients can
be determined easily using the least square method, and
statistical evaluation can be conducted on them once their

coefficients have been determined. For this reason, function
approximations using the least square method are used most
often with the RSM. If a quadratic polynomial is

expressed as a response function, the response surface can
be given by

y ¼ b0 þ
Xn
i¼1

bixi þ
Xn
i¼1

biix
2
i þ

Xn
i<j

bijxixj ð5Þ

Simple representation of Eq. (5) with two variables can be
written as
y ¼ b0 þ b1x1 þ b2x2 þ b3x
2
1 þ b4x

2
2 þ b5x1x2 ð6Þ

If we replace the second degree terms with single variables

x2
1 ¼ x3; x

2
2 ¼ x4; x1x2 ¼ x5

� �
in Eq. (6), respectively, this

expression is converted into a multi-variable, linear expression.
Such conversion is applicable to a third or higher-degree poly-
nomial. If linearization is performed in this way, a linear

regression model can be represented by Eq. (7), assuming that
the number of experiment points is n and the number of design
variables is k.
y ¼ Xbþ e ð7Þ
where

y ¼ y1 y2 � � � yn½ �T

X ¼

1 x11 x12 � � � x1k

1 x21 x22 � � � x2k

..

. ..
. ..

. ..
.

1 xn1 xn2 � � � xnk

266664
377775

b ¼ b1 b2 � � � bn½ �T

e ¼ e1 e2 � � � en½ �T

By minimizing the sum of squares of error e, the unbiased
estimator b of the coefficient b can be calculated using Eq. (8).

b ¼ ðXTXÞ�1XTy ð8Þ

In this work, the quadratic polynomial is used for numeri-

cal examples and practical problem because it is efficient com-
pared to linear or higher-degree polynomials. It can predict the
nonlinear behavior of response function rather than linear
polynomials, and it can reduce computing time compared to

higher-degree polynomials.
3.2. Kriging

Kriging, an approximation model, was originally developed
and used in mining engineering and geostatistics. In the
1980s, statisticians developed design and analysis of computer

experiments (DACE) for deterministic computer-generated
data based on Kriging. The Kriging model used in this work,
which is described as follows, is based on the DACE

approach.14

Kriging is represented as a combination of a global model
and departures as shown in the following equation:

YðxÞ ¼ FðxÞ þ ZðxÞ ð9Þ

where Y(x) is an unknown function of interest, F(x) a known

regression model, and Z(x) a realization model of a stationary
random process with mean zero and variance, r2. While F(x)
globally approximates the design space, Z(x) creates localized

deviations so that the Kriging model interpolates the sampled
data points, ns. The covariance matrix of Z(x) is given by

Cov½ZðxiÞ;Zðxiþ1Þ� ¼ r2R½Rðxi; xiþ1Þ� ð10Þ

where R[Æ,Æ] is the correlation matrix and R(xi,xi+1) the corre-
lation function between two points of the sampled data points,
xi and xi+1. R[Æ,Æ] is an ns · ns symmetric matrix with diagonal

elements equal to 1.0. The correlation function R(xi,xi+1) is
provided by the user.

The predicted values, bY of the response Y at the untried
values of x, are given by

bY ¼ b̂þ rTðxÞR�1ðY� b̂FÞ ð11Þ

where Y is the column vector of length ns which contains the
response at each sample point, and F is a column vector of
length ns that has elements equal to 1.0, when F(x) is taken

as a constant. In Eq. (11), rT(x) is the correlation vector of
length ns between an untried x and the sampled data points
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½x1x2 � � � xns �. b̂ is estimated using least squares regression in

Eq. (12).

b̂ ¼ ðFTR�1FÞ�1ðFTR�1YÞ ð12Þ

In this work, the exponential correlation function (ECF) is
used. When the distance between two points is short, the ECF
is more efficient than a Gaussian correlation function that is

popular to be used in Kriging. An ECF can be represented by

Rðxi; xiþ1Þ ¼
YNdv

k¼1
expð�hkjdkjÞ ð13Þ

where dk is the distance between already known sampled

points, Ndv the number of design variables, and hk the un-
known correlation parameters. The values of hk for each re-
sponse are obtained by solving an unconstrained
optimization problem and can be expressed as

Max fðhkÞ ¼ �
ns ln r̂2 þ ln jRj

2
ð14Þ

where r̂2 is the estimated variance between the global model
F(x) and actual response bY:

The estimate of the variance is given by

r̂2 ¼ ðY� b̂FÞTR�1ðY� b̂FÞ
ns

ð15Þ
4. Sequential approximation method

When surrogate models are used in optimization, the concept
of sequential approximation is considered because it is difficult
to express the real phenomenon of response such as the objec-

tive function and constraint functions using one approxima-
tion model for the whole design space. In a sequential
approach, surrogate models are regenerated for each iteration

using a reduced design space called a trust region. The trust re-
gion is the small part of the design space including the best va-
lue of the objective function in the current iteration of the

optimization process. We call the process to determine the
trust region the move limit strategy.

The choice of the move limit strategy has a great influence

on the behavior of the sequential optimization process. Espe-
cially if the surrogate models are less accurate, the move limit
strategy is usually of vital importance. A move limit strategy
has to determine the size of the search trust region at the start

of each new design cycle. A correct choice of the search trust
region is important for a good convergence of the optimization
process. Large move limits can cause the solution process to

oscillate, while small move limits may slow down the conver-
gence. The effect of the move limit strategy is directly related
to the quality of the approximations. Poor approximations

have a greater need for the support of the move limit strategy
during the optimization, compared to high quality approxima-
tions. The proposed move limit strategy to determine the upper

and lower bounds of the trust region in this paper is expressed
in the following equations.

The lower bound of trust region is

xl
kþ1 ¼ lk � za=2rk ð16Þ

The upper bound of trust region is

xu
kþ1 ¼ lk þ za=2rk ð17Þ
where lk indicates the optimum values of design variables, and

rk is the standard deviations of design variables that are ob-
tained from optimization results by PSO. za/2 is the value ob-
tained from standard normal distribution table. In this

paper, the confidence interval 95 % is used, which means
za/2 = 1.96 from the standard normal distribution table.
Fig. 2 shows the move limit strategy used in this paper.

5. Bayesian statistics

When surrogate models and the penalty function method,
which will be discussed in the next section, are used, there

are some errors between exact values and approximated val-
ues. Sometimes, these errors affect the reliability of optimum
values. Therefore, to reduce the effects of the errors and to sug-

gest the reliable value of optimum that is safer, in this work,
Bayesian statistics is adopted.

Bayesian methods start with the prior knowledge of

known data obtained from experiments or simulations. As
new data are obtained from other experiments or simulations,
the prior knowledge is updated, and the new data is used to

obtain the posterior knowledge. Bayesian methods15 can be
used for the statistical analysis of data. There are two types
of Bayesian methods that are used in statistical analysis.
The first type deals with a random variable X that is nor-

mally distributed with a known standard deviation. The mean
value of the random variables is of interest and is estimated
using Bayesian methods. In the second type, the random var-

iable X is also normally distributed, but its standard devia-
tion is unknown. In this type, both the mean value and the
variance of the random variable are of interest and are esti-

mated using Bayesian methods. In optimization problems,
we can estimate mean value from the best or optimum value,
but we do not know the variance of the estimated mean va-
lue. Therefore, in this study the second type of Bayesian

method is used.
In this type of Bayesian statistics, the random variable X is

considered to be normally distributed with an unknown mean

value l and unknown variance r2. Both the mean value and
variance of the random variable are of interest but are un-
known. The prior joint distribution of the unknown mean

and unknown variance is assumed to be normal-gamma, which
is defined as the product of a normal distribution for the mean
and a gamma distribution for the variance. The prior informa-
Fig. 2 Move limit strategy.
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tion about the mean and variance is based on a sample of size
N with sample mean and variance of �l0 and r2

0, respectively.
New information is obtained by a sample of size q. The mean

value and variance based on the sample n are �lnew and r2
new,

respectively. We are interested in determining the posterior dis-
tribution of the mean and variance. It can be shown that the

posterior distribution is also normal-gamma. The posterior
mean lpos and posterior variance r2

pos can be shown as16

lpos ¼
N�l0 þ q�lnew

m
ð18aÞ

and

r2
pos ¼

ðN� 1Þr2
0 þN�l2

0 þ ðq� 1Þr2
new þ q�l2

new �ml2
pos

m� 1
ð18bÞ

where

m ¼ Nþ q ð18cÞ

The resulting values of Eqs. (18a) and (18b) are the poster-

ior mean and variance of the unknown mean and variance,
respectively. The posterior mean is the reliable value of opti-
mum results obtained from PSO. We use this Bayesian method

during optimization process in order to obtain reliable opti-
mum results.

6. Numerical examples

Two test problems, two- and four-bar truss, were selected from
the literature to verify the ability and effect of the proposed

stochastic structural optimization. Each example is described
along with its constraints, bounds, and objective function. In
this paper the same parameters are used in PSO. The maxi-
mum number of iterations is 1000, and the swarm size is 30

for each problem. The procedure of optimization proposed
in this paper is shown in Fig. 3.

To generate surrogate models, sample data are needed,

and they are important to obtain a reliable approximation
function. Therefore, in this paper, central composite design
(CCD) is used as a design of experiments (DOE) to generate

simulation points of design variables.17 There are more
efficient DOEs than CCD such as adaptive sampling for
reducing the number of samples. That will be considered

in future work. After generating sample data using DOE
that is the first step, we make the surrogate models for an
objective function and constraint functions of optimization
Fig. 3 Flowchart of the proposed optimization process.
that is the second step. The third step of the proposed opti-
mization process is to achieve an optimization to find the
minimum value of the generated objective function. The

fourth step is to perform Bayesian statistics, which is an op-
tional step to obtain reliable results. We obtain only PSO re-
sults when the fourth step is not used in the process. This

procedure is repeated until the objective function value con-
verges. Move limit strategy as mentioned in the previous sec-
tion is used in the step of generating sample data using

DOE.

6.1. Penalty function method

PSO is for unconstrained optimization problems, therefore
some methods are required to change constrained problem
to unconstrained. The most widely used approach to handle
constraints in optimization algorithms that cannot deal with

constrained problems is to use penalties. The idea of the pen-
alty function method is to change the formulation of con-
strained optimization problems to that of unconstrained

problems by adding or subtracting a certain value from the
objective function based on the amount of constraint violation
present in a certain solution.11 The general formulation of the

exterior penalty function is as follows18:

/ðxÞ ¼ fðxÞ �
Xn
i¼1

riGi þ
Xp
j¼1

cjLj

 !
ð19Þ

where /(x) is the new objective function to be optimized, called
a pseudo-objective function, Gi and Lj are functions of the con-

straints gi(x) and hj(x), respectively, and ri and cj are positive
constants normally called ‘‘penalty parameters’’.

The most common forms of Gi and Lj are

Gi ¼ maxð0; giðxÞÞ
b ð20Þ

Lj ¼ jhjðxÞjc ð21Þ

where b and c are normally 1 or 2. In this study a value of 2
is selected. In PSO, the unconstrained function /(x) is
optimized.

6.2. Hybrid using of RSM and Kriging

In this paper, two surrogate models are presented, RSM and
Kriging, and numerical examples are optimized using the

two models, respectively. And a hybrid using both RSM and
Kriging is developed for the evaluations of PSO. This ap-
proach is expressed in Fig. 4 (in which K is the number of

neighbors). For example, there are 20 particles (this means that
the swarm size is 20). When the particle has an odd number,
RSM is used to evaluate the objective function, and Kriging

is used to evaluate the objective function when the particle
has an even number.

6.3. Two-bar truss

The two-bar truss problem is introduced by Morris and tested
by Rao.10 The example shown in Fig. 5 is subject to a vertical
load 2P and is to be designed for the minimum weight. The

members have a tubular section with mean diameter d and wall
thickness t. The maximum permissible stress in each member
(r0) is equal to 413.68 MPa. In this problem, design variables



Fig. 4 Function evaluations using two surrogate models.

Fig. 5 Two-bar truss.
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are h and d. This problem has data that are P = 147 kN,
t= 0.54 mm , b= 762 mm, r0 = 413.68 MPa, and density

q = 8303.97 kg/m3. Optimization formulation is described as

Min fðd; hÞ ¼ 2qpdt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ h2

p
¼ 2ð0:3Þpdð0:1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900þ h2

p
¼ 0:188d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900þ h2

p
ð22Þ

s:t: G1 ¼ 1:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
900þ h2

p
dh

� 1 6 0 ð23Þ

As seen in Table 1, the best optimum value of the objective
function is 8.758 kg, which is obtained using RSM with circu-

lar topology in PSO. All the results using RSM have errors
compared to the exact value that is calculated with Eqs. (22)
and (23). In Table 1, ‘‘Rand’ represents the ‘random topology
and ‘Cir’ the ‘circular topology’ as shown in Fig. 1.
Table 1 Optimization results of two-bar truss.

Method PSO

RSM Kriging

Rand Cir Rand Cir

Objective function (kg) 8.767 8.758 8.814 8

Design variables h (mm) 760.349 762.762 781.101 791

d (mm) 60.249 60.147 60.350 59

Exact objective function (kg) 8.571 8.573 8.706 8

Error (%) 2.238 2.115 1.227 1
The reason RSM has errors is believed to result from the
fact that the equation of the objective function has a non-linear
term, h2. Kriging also seems to have errors compared to the ex-

act values, but the error is substantially less than that using
RSM. This result confirms once again that Kriging is more
useful to express non-linear functions than RSM. The hybrid

approach is also applied in this work. As shown in Table 1,
the error between the exact objective function value and the
estimated value calculated from surrogate models shows us

that the hybrid approach has smaller errors than the approach
using RSM or Kriging. From this result, the hybrid using
RSM and Kriging is more useful than using only one of the
surrogate models such as RSM and Kriging in this problem.

The constraint values when the optimization is achieved are
shown in Table 2. As shown in Table 2 the constraint (G1) of
using RSM, Kriging, and the hybrid exceeds the limit bound,

which is G1 6 0. Consequently, these optimum values are not
acceptable for designers, and it is believed that this error comes
from the approximation model’s error and penalty parameter’s

error. Therefore, to obtain reliable and acceptable optimum,
the penalty parameters are changed and the optimization
should be achieved again. This means we need extra costs for

stochastic structural optimization. In this paper, Bayesian sta-
tistics are also performed to obtain more reliable optimum. The
optimum value of the objective function by Bayesian statistics
is 9.405 kg as seen in Table 1. The value of the objective func-

tion is bigger by 0.606 kg than the optimum of the hybrid that is
6.44% over. However, the constraint (G1) seems more reliable
than the hybrid’s value, as seen in Table 2, because it does

not violate the limit condition (G1 6 0). Therefore, according
to the safety of constraint, the results of Bayesian statistics give
the designer more reliability without extra optimization costs.

Figs. 6 and 7 show the variation of mean and variance of
design variables obtained by Bayesian statistics during the
optimization process. From the figures, the probability density

function (PDF) of mean of design variables decreases, and the
variance of design variable increases as the optimum con-
verges. It means that Bayesian gives us more robust results
compared with the optimum results by PSO to the extent that

the previous values of design are considered.

6.4. Four-bar truss

The four-bar truss problem is designed to minimize the weight
of the four bars, and the configuration is shown in Fig. 8.11

The constraints are stresses in the members and a displacement

constraint at the tip joint of the truss. For simplicity, it is as-
sumed that Members 1–3 have the same cross-section area
Bayesian

RSM & Kriging Rand Cir

Rand Cir

.812 8.799 8.814 8.816 8.816 9.405

.286 780.923 765.023 762.000 762.254 845.668

.766 61.163 60.858 60.960 60.960 62.509

.677 8.821 8.687

.536 0.242 1.445 – – –



Table 2 Constraint value at the optimum.

Method PSO Bayesian

RSM Kriging RSM & Kriging Rand Cir

Rand Cir Rand Cir Rand Cir

Constraint (G1) 0.0462 0.0451 0.0289 0.0322 0.0154 0.0307 0.0312 0.0310 �0.0428
Exact constraint 0.0447 0.0445 0.0288 0.0327 0.0154 0.0308 – – –

Fig. 7 History of design variable (d) of Bayesian statistics.

Fig. 6 History of design variable (h) of Bayesian statistics.
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A1, and Member 4 has the cross-section area A2. The minimum
weight design optimization subject to the constraints of stres-

ses and displacements can be formulated in terms of nondi-
mensional design variables. Therefore, design variables are
x1 = 0.001A1E/p and x2 = 0.001A2E/p, in which E is elastic
Table 3 Optimization results of four-bar truss.

Method PSO

RSM Kriging

Rand Cir Rand Ci

Objective 44.776 44.760 44.608 44

Design variables x1 9.394 9.377 9.383 9

x2 9.478 9.503 9.527 9

Exact objective function 44.597 44.589 44.648 44

Error (%) 0.399 0.383 0.091 0
modulus and p the load. Allowable stresses in tension and
compression are assumed to be 7.73 · 10�4E and

4.833 · 10�4E, respectively, and the vertical tip displacement
is constrained to be no greater than be 3 · 10�3L. The problem
of the minimum weight design subject to stress and displace-

ment constraints can be formulated in terms of the non-dimen-
sional variables as follows:

Min fðx1; x2Þ ¼ 3x1 þ
ffiffiffi
3
p

x2 ð24Þ

s:t: G1 ¼
18

x1

þ 6
ffiffiffi
3
p

x2

� 3 6 0 ð25Þ

G2 ¼ 5:73� x1 6 0 ð26Þ
G3 ¼ 7:17� x2 6 0 ð27Þ

As seen in Table 3, the optimum value of the objective func-
tion is 44.760 which is obtained using RSM with circular

topology in PSO, and the optimum value of the objective func-
tion is 44.601, which is obtained using Kriging with circular
topology. The optimum value of Kriging is better than RSM’s
optimum. As shown in Table 3, the error between the exact

objective function value and the estimated value calculated
from surrogate models with the circular topology in PSO
shows us that the hybrid approach has smaller errors than

the approach using RSM or Kriging. However in case of using
the random topology in PSO with Kiging, the error between
the exact objective function value and the estimated value is

smaller than the error of using the hybrid approach. However
the optimum value of objective function using the hybrid ap-
proach with random topology is smaller than the value using

Kriging with random topology. From this result, it can be seen
that the hybrid approach is more useful than using RSM, and
is competent compared with using Kriging.

The constraint values when the optimization is achieved are

shown in Table 4. As shown in Table 4 the constraint (G1) ex-
ceeds the limit bound, G1 6 0, and other constraints (G2, G3)
satisfy the limit condition. The violation of the constraint

(G1) comes from the approximation model’s error and penalty
parameter’s error. Therefore, when surrogate models and the
Bayesian

RSM & Kriging Rand Cir

r Rand Cir

.601 44.577 44.719 44.602 44.602 47.567

.409 9.377 9.660 9.384 9.388 10.074

.352 9.405 9.011 9.395 9.387 10.015

.426 44.420 44.588

.394 0.354 0.291 – – –



Table 4 Constraint values at the optimum.

Method PSO Bayesian

RSM Kriging RSM & Kriging Rand Cir

Rand Cir Rand Cir Rand Cir

Constraints G1 0.0244 0.0239 0.0222 0.0243 0.0245 0.0208 0.0244 0.0245 �0.1755
G2 �3.6637 �3.6464 �3.6586 �3.6686 �3.5749 �0.9302 �3.6537 �3.6577 �4.3436
G3 �2.3079 �2.3331 �2.2371 �2.1997 �2.3459 �0.8413 �2.2245 �2.2169 �2.8447

Exact constraints G1 0.0127 0.0133 0.0093 0.0243 0.0247 0.0166 – – –

G2 �3.6637 �3.6464 �3.6525 �3.6789 �3.6468 �0.9302 – – –

G3 �2.3079 �2.3331 �2.3566 �2.1824 �2.2346 �0.8413 – – –

Fig. 10 History of design variable (x2) of Bayesian statistics.
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penalty method are used, one of the significant issues is how to
reduce errors between approximated values and exact values.

The optimization of the four-bar truss problem is also

achieved using Bayesian statistics. The optimum value of the
objective function using Bayesian statistics is 47.567 as seen
in Table 3. Compared with PSO’s optimum using surrogate
models, the value of the objective function is bigger by

2.990, which is 6.285% over. As seen in Table 4, the constraint
(G1) seems more reliable than PSO’s values using surrogate
models because it does not violate the limit condition

(G1 6 0). Therefore, according to the safety of constraint, the
Bayesian’s results give the designer more robust data.

Figs. 9 and 10 show the variation of mean and variance of

design variables obtained by Bayesian statistics during optimi-
zation process.
Fig. 8 Four-bar truss.

Fig. 9 History of design variable (x1) of Bayesian statistics.

Fig. 11 Hub sleeve model.
7. Optimization of a hub sleeve of helicopter

In this work, the hub sleeve of a helicopter is optimized consid-
ering static failure. The optimization method is the proposed
approach using PSO, with the hybrid consisting of RSM and

Kriging, and Bayesian statistics. The sleeve attaches the rotor
blade to the rotor hub. It also provides attachments for the
pitch lever and flapping stops. The flapping stops limit the

blade angles. The rotor torque is transmitted to the rotor drive
system via the rotor mast (by bushings). The mast is hollow to
allow for internal routing of the instrumentation cables. A hub

sleeve model is shown in Fig. 11.

7.1. Design variables and constraint

The objective is to find the minimum weight of the sleeve sub-
ject to a stress constraint. There are six design variables as
shown in Fig.12. The optimization formulation is expressed
in Eqs. (28)–(33).

Min weight; ð28Þ

s:t: g1 ¼
rV

1:5ðrVÞu
� 1 6 0 ð29Þ

40:0 mm 6 R1;R2;R3 6 59:0 mm ð30Þ
85:0 mm 6 L1 6 100:0 mm ð31Þ
70:0 mm 6 L2 6 85:0 mm ð32Þ
50:0 mm 6 L1 6 73:0 mm ð33Þ



Fig. 12 Cross section of sleeve.

Table 5 Applied load values.

Load Value

FCF (N) 450000

MFLAP (N Æ mm) 0.5 · 107

MLAG (N Æ mm) 1.0 · 107

FPITCH (N) 30000

FDAMP (N) 50000

Fig. 13 Load conditions.

Table 6 Optimum results of hub sleeve.

Paramater Initial Optimum

Objective function (kg) 15.00 12.66

Design variables (mm) R1 57.10 58.63

R2 55.10 58.86

R3 55.30 58.50

L1 116.50 93.19

L2 73.00 84.16

L3 70.30 67.03
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where rV is a constraint for von Mises stress in Eq. (29), and
the side constraints are shown in the Eqs. (30)–(33). ru is
1430 MPa, which is the ultimate strength of sleeve material

that is Ti-10V-2Fe-3Al. In this optimization, finite element
(FEA) by ANSYS is used to get the weight and the maximum
stress. In FEA, 10-node tetrahedral structural solid element is

used and the number of nodes is 35212 (DOF = 105636). We
use autorotation load condition for sleeve FEA and the load
positions are expressed in Fig. 13. Table 5 shows the values

of loads applied to this static analysis. Fig. 14 shows the stres-
ses contour calculated by FEM.

7.2. Optimum results and discussion

As shown in Table 6, the objective function (weight) of
15.00 kg in the initial design is reduced to 12.66 kg in the opti-
Fig. 14 FEM result.
mum design. And the constraint g1 = 0. In the results, the de-
sign variable, L1 is changed the most. From the standard
deviations in Table 6, R1 and R2 have greater search regions

than others, and L1 has the smallest search region.
8. Conclusions

In stochastic structural optimization using surrogate models,
an original function is approximated in order to reduce the
numerical calculation cost. In this paper, an optimization pro-

cedure using surrogate models with PSO is proposed. In addi-
tion, to obtain more reliable optimal results, Bayesian statistics
is used. Two test problems are selected from the literature to

verify the ability of the proposed method. From the results
of the optimization of two test problems, we find that the dif-
ference of efficiency between random topology and circular
topology is not distinct. It depends on optimization problems.

Therefore we should consider using both of the topology types
that are random and circular in PSO. Also we find the hybrid
using RSM and Kriging is more competent than using only

one of the surrogate models such as RSM and Kriging in this
problem.

When surrogate models and a penalty method are used in

stochastic optimization, there are some errors, which come
from the difference between the exact values and the expected
values of the surrogate model. The errors make the constraints

exceed their limit condition. In case of the violation of the con-
straint limits, the optimum results obtained from Bayesian sta-
tistics suggest reliable optimum values with robust constraint
values without a re-optimization process. According to the

Bayesian statistic’s results, the optimum values are bigger than
the original optimum results obtained by PSO. However, the
reliability of the optimum values increases. This is caused by

the fact that Bayesian statistics uses the entire data generated
by PSO during the optimization process. Consequently, Bayes-
ian statistics allows the optimum results to have greater stabil-

ity and reliability based on the values of the constraints. In
other words, Bayesian’s results give designers a choice to use
more reliable data for their designs without extra
optimizations.
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