Available online at www.sciencedirect.com

Parametric min-cuts analysis in a network ${ }^{\text {in }}$

Y.P. Aneja ${ }^{\text {a }}$, R. Chandrasekaran ${ }^{\text {b }}$, K.P.K. Nair ${ }^{\text {c }}$
${ }^{a}$ Faculty of Business Administration, University of Windsor, Windsor, Ont., Canada N9B $3 P 4$
${ }^{\mathrm{b}}$ School of Computer Science, University of Texas at Dallas, Richardson, TX, USA
${ }^{\text {c }}$ Faculty of Administration, University of New Brunswick, Fredericton, N. B., Canada E3B5A3

Received 10 July 2001; received in revised form 24 April 2002; accepted 10 June 2002

Abstract

The all pairs minimum cuts problem in a capacitated undirected network is well known. Gomory and Hu showed that the all pairs minimum cuts are revealed by a min-cut tree that can be obtained by solving exactly $(n-1)$ maximum flow problems, where n is the number of nodes in the network.

In this paper we consider first the problem of finding parametric min-cuts for a specified pair of nodes when the capacity of an arc i is given by $\min \left\{b_{i}, \lambda\right\}$, where λ is the parameter, ranging from 0 to ∞. Next we seek the parametric min-cuts for all pairs of nodes, and achieve this by constructing min-cut trees for at most $2 m$ different values of λ, where m is the number of edges in the network.

© 2003 Elsevier Science B.V. All rights reserved.
Keywords: Multiterminal maximal flows; Parametric analysis; Combinatorial optimization

1. Introduction

Consider an undirected network $G(N, A, b)$ with node set $N(|N|=n)$, arc set $A(|A|=$ m) and a capacity vector b such that arc $i \in A$ has capacity b_{i}. The "all pairs minimum cuts" problem in such a network has been solved efficiently by Gomory and Hu [8]. They showed that there are at most $(n-1)$ distinct min-cut values, and by solving exactly ($n-1$) maximum flow problems one can construct a so-called min-cut tree T,

[^0]where value on a link between nodes x and y in T, is the value of the minimum cut separating x and y. Furthermore, one such min-cut is given by the partition of node set N obtained by removing this link from T. Min-cut between any two nodes x and y of N is given by the smallest value link on the unique path between x and y in T. An elegant exposition of the above is available in Ford and Fulkerson [6]. It should be noted that a link between nodes x and y on a min-cut tree has a different meaning from that of an arc between nodes x and y in the network. For this reason the terms link and arc will be used appropriately.

Parametric analyses of optimization problems are of interest in many ways [1]. Relating to networks, parametric analyses of spanning tree, shortest path, and maximum flow problems have received considerable attention [5,9]. Relating to maximum flows, the parametrization if restricted to linear capacity and only for arcs at source and sink, the problem has been shown to admit efficient solution [7].

The parametric analysis that we consider can be thought of as a bottle-neck type in the sense that the parametric capacity of arc $i \in A$ is $\min \left\{b_{i}, \lambda\right\}$, with parameter λ ranging from 0 to ∞. In Section 2 we consider the parametric min-cuts problem for a specified pair of nodes and present a strongly polynomial algorithm to compute its solution. The algorithm is a generalization of Newton's method in the context of combinatorial optimization. In several combinatorial problems analogous specializations have been used $[3,4,11]$. An example is provided for illustrating the algorithm.

In Section 3 we consider the problem of finding parametric min-cuts between all pairs of nodes. It is shown that such min-cuts can be obtained by solving min-cut tree problems for at most $2 m$ different values of λ. Using this result a strongly polynomial algorithm is presented and illustrated with an example. Finally in Section 4 we outline some applications of this work.

2. Parametric min-cuts for a specified s - \boldsymbol{t} pair

Given parametric capacity $b_{i}(\lambda)=\min \left\{b_{i}, \lambda\right\}$ for each arc $i=1, \ldots, m$, let the network G be denoted by $G(\lambda)$ and the specified source sink pair by (s, t). A cut H separating s and t is a set of arcs (X, \bar{X}) with $s \in X$ and $t \in \bar{X}$. To simplify notation, we will simply represent this cut by the node set X or \bar{X}. The problem is to identify a spectrum of minimum cuts separating s and t as λ increases from zero. Let $v(\lambda)$ be the value of a minimum cut, separating s and t in $G(\lambda)$, expressed as a function of λ. Obviously $v(\lambda)$ is also the maximum flow value from s to t.

Lemma 1. The function $v(\lambda)$ is piecewise linear concave with integral slope for each linear piece and has at most $(n-1)$ breakpoints.

Proof. Take any $s-t$ cut H. Let $h(\lambda)=\sum_{i \in H} b_{i}(\lambda)$. Since each $b_{i}(\lambda)$ is piecewise linear concave in λ, so is $h(\lambda)$ and represents the capacity of the cut H in $G(\lambda)$, Slope of any linear piece in $h(\lambda)$, for a given λ, is an integer with value equal to the number of arcs with capacity λ. Since $v(\lambda)=\min \{h(\lambda): H \in \Omega\}$, where Ω is the set of all
$s-t$ cuts, $v(\lambda)$ is piecewise linear concave with integral slopes. Since the largest slope (slope of the first linear piece of $v(\lambda)$) gives the cardinality of an $s-t$ cut with minimal cardinality, it is bounded by $(n-1)$. Further, there must be a drop of at least one unit of slope between two consecutive linear pieces of $v(\lambda)$. Hence $(n-1)$ provides an upper bound for the number of breakpoints in $v(\lambda)$.

It is important to note that there are two types of breakpoints in $v(\lambda)$. Each linear piece of $v(\lambda)$ corresponds to the capacity of some $s-t$ min-cut $D(\lambda)$ in $G(\lambda)$. However, two adjacent linear pieces of $v(\lambda)$ may correspond to the same cut and the breakpoint between these two pieces then occurs due to saturation of some arc(s) at that breakpoint. By saturation of an arc i we mean that λ becomes equal to b_{i}, the capacity of that arc.
Our objective is to generate $v(\lambda)$ by identifying all its breakpoints. To describe the algorithm, we need to introduce certain sets and definitions. For a given λ, let $D(\lambda)$ be a min-cut (separating s and t) with value $v(\lambda)$ in $G(\lambda)$, and $q(\lambda)$ denote the number of arcs at capacity λ in $D(\lambda)$. Let $\lambda_{\max }=\max \left\{b_{i}: i \in A\right\}$. Choose λ_{ε} such that $0<\lambda_{\varepsilon}<\min \left\{b_{i}: i \in A\right\}$. Then clearly $v\left(\lambda_{\max }\right)=v^{*}$, the maximum flow value in G, and $D\left(\lambda_{\varepsilon}\right)$ is a cut in G with minimum cardinality.

Let E denote the vector of equations in the λv-plane, sorted in descending order of their slopes. The r th element of E defines the equation $E_{r}: v_{r}(\lambda)=v\left(\lambda_{r}\right)+q\left(\lambda_{r}\right) \cdot\left(\lambda-\lambda_{r}\right)$, and is stored as $\left(\left(\lambda_{r}, v\left(\lambda_{r}\right)\right), q\left(\lambda_{r}\right), D\left(\lambda_{r}\right)\right)$. Let R denote the vector of breakpoints of $v(\lambda)$ stored in ascending order of λ-values and stored as [\{($\left.\left.\lambda_{1}, v\left(\lambda_{1}\right)\right) ; D_{1}\right\},\left\{\left(\lambda_{2}, v\left(\lambda_{2}\right)\right)\right.$; $\left.\left.D_{2}\right\}, \ldots,\left\{\left(\lambda_{p}, v\left(\lambda_{p}\right)\right) ; D_{p}\right\}\right]$. Here D_{r} is a min-cut for $G(\lambda)$ in the λ-interval $\left[\lambda_{r-1} \lambda_{r}\right]$, assuming $\lambda_{0} \equiv 0$. For $\lambda \geqslant \lambda_{p}$, any min-cut in G is a min-cut in $G(\lambda)$. Each breakpoint of $v(\lambda)$ is determined by the intersection of two consecutive line segments of $v(\lambda)$. Equations in set F define the initial segment of $v(\lambda)$, and define all the breakpoints generated so far.

At the start of the algorithm both E, F and R are null vectors. At termination, R contains all the distinct breakpoints of $v(\lambda)$, and uniquely defines the function $v(\lambda)$. Similarly, at termination F provides the set of equations that also define $v(\lambda)$ uniquely.

Algorithm. Parametric Min-Cuts

Step 0: Find $v\left(\lambda_{\varepsilon}\right), q\left(\lambda_{\varepsilon}\right), D\left(\lambda_{\varepsilon}\right), v\left(\lambda_{\max }\right)$ and $D\left(\lambda_{\max }\right)$. Let $E=\left[\left((0,0), q\left(\lambda_{\varepsilon}\right), D\left(\lambda_{\varepsilon}\right)\right)\right.$, $\left.\left(\left(\lambda_{\text {max }}, v^{*}\right), 0, D\left(\lambda_{\text {max }}\right)\right)\right]$, Let $\hat{D} \leftarrow D\left(\lambda_{\varepsilon}\right), R \leftarrow \emptyset$, and $F \leftarrow \emptyset$.

Step 1: Let $\left(\lambda_{0}, v_{0}\right)$ be the intersection point of the first two equations in E. If for $\lambda=\lambda_{0}$, a min-cut has been found earlier then insert $\left(\left(\lambda_{0}, v_{0}\right), \hat{D}\right)$ as the last element of R and go to step 4, else go to step 2 .

Step 2: If the slope of the first equation is exactly one more than that of the second, then insert $\left(\left(\lambda_{0}, v_{0}\right), \hat{D}\right)$ as the last element in R and go to step 4 , else go to step 3 .

Step 3: Find $v\left(\lambda_{0}\right)$ and $D\left(\lambda_{0}\right)$. If $v\left(\lambda_{0}\right)=v_{0}$ then insert $\left(\left(\lambda_{0}, v_{0}\right) ; \hat{D}\right)$ as the last element of R, let $\hat{D} \leftarrow D\left(\lambda_{0}\right)$, and go to step 4, else insert equation represented by $\left(\left(\lambda_{0}, v\left(\lambda_{0}\right)\right), q\left(\lambda_{0}\right), D\left(\lambda_{0}\right)\right)$ between the first two equations in E and go to step 1.

Step 4: Remove the first equation from E and store it as the last element in F. If $E=\left[\left(\left(\lambda_{\max }, v^{*}\right), 0, D\left(\lambda_{\max }\right)\right)\right]$, then store it as the last element in F and stop, else go to step 1.

Let us make some observations about the algorithm. At step 0 , the first line in E corresponds to a minimum cardinality cut, its slope is no more than ($n-1$), the maximum degree of node s. Successive lines generated at step 3 have strictly decreasing integral slopes. Each time a breakpoint is discovered, cardinality of E decreases by one. Step 1 handles a degenerate situation where at a given breakpoint λ_{0}, there are more than two cuts optimal in $G\left(\lambda_{0}\right)$. In step 2 , when the slope of the first two lines in R differs by one, their intersection point must be a breakpoint. Hence the algorithm stops in no more than $q\left(\lambda_{\varepsilon}\right)$ iterations. Step 3 identifies breakpoints whose two adjacent linear pieces have slopes that differ by more than one unit. In fact it is easy to show that the exact number of max-flow problems that need to be solved equals $\left(1+\min \left\{q\left(\lambda_{\varepsilon}\right), 2 p\right\}\right.$), where p is the number of breakpoints of $v(\lambda)$.

The algorithm enters breakpoints in R in ascending order of λ-values, and terminates with all the breakpoints of $v(\lambda)$. Intuitively, in step 1 , if $v_{0}=v\left(\lambda_{0}\right)$ then the first equation identifies a linear piece of $v(\lambda)$.

The validity of the algorithm follows from the discussions in [3,4,11]. A brief proof is given below.

Lemma 2. At termination of the above algorithm, set F correctly defines $v(\lambda)$.
Proof. Recall from Lemma 1 that $v(\lambda)=\min \{h(\lambda): H \in \Omega\}$, where $h(\lambda)$ is the cut-capacity of H in $G(\lambda)$. Hence each $h(\lambda)$ acts as an upper bound for $v(\lambda)$. Also, since $h(\lambda)$ is piecewise linear concave, its every linear piece also provides an upper bound for $v(\lambda)$. Since each equation in E, and hence in F, corresponds to some cut, we have $v(\lambda) \leqslant \min \left\{v_{r}(\lambda): r=1, \ldots,|F|\right\}$. Further, if for some $\lambda_{1}<\lambda_{2}$, both points $\left(\lambda_{1}, v\left(\lambda_{1}\right)\right)$ and $\left(\lambda_{2}, v\left(\lambda_{2}\right)\right)$, correspond to the same linear equation in E, then the entire line segment joining these two points defines a part of $v(\lambda)$. In this case (step 3), the intersection point of the first two equations in E is recorded as a breakpoint of $v(\lambda)$, and the first equation in E is moved to F. Further if two consecutive equations in E differ in slopes by exactly one then the intersection point of these two lines must be a breakpoint of $v(\lambda)$, and the first equation in E is moved to F. At termination, therefore, equations in F define the complete $v(\lambda)$ function and $v(\lambda)=\min \left\{v_{r}(\lambda): r=1, \ldots,|F|\right\}$.

The following example illustrates the algorithm. Consider the network in Fig. 1 with the arc capacities as shown. Let the source sink pair be $(2,5)$.

Here $\lambda_{\text {max }}=7$, and let $\lambda_{\varepsilon}=0.5$. Then $v\left(\lambda_{\max }\right)=v^{*}=11$, the maximum flow value with a min-cut given by $D\left(\lambda_{\max }\right)=\{2\}$. As mentioned earlier, the cut $\{2\}$ represents the set of arcs in the set (X, \bar{X}), where $X=\{2\}$. Also, $v\left(\lambda_{\varepsilon}\right)=4(0.5)=2$ with a min-cut (a minimum cardinality cut) given by $D\left(\lambda_{\varepsilon}\right)=\{1,2,3,4,6\}=\{5\}$, and $q\left(\lambda_{\varepsilon}\right)=4$.

The algorithm Parametric Min-Cuts proceeds as follows:
Iteration 1:
Step 0: $E=[((0,0), 4,\{5\}),((7,11), 0,\{2\})], \hat{D}=\{5\}, R \leftarrow \emptyset, F \leftarrow \emptyset$.
Step 1: $\left(\lambda_{0}, v_{0}\right)=(11 / 4,11)$-the intersection point of the two equations in E.
Step 3: Now $v\left(\lambda_{0}\right)=9.5, D_{0}=\{2\}$ provides a min-cut, and $q\left(\lambda_{0}\right)=2$. Since $v\left(\lambda_{0}\right) \neq v_{0}$, we insert $((11 / 4,9.5), 2,\{2\})$ between the two equations of E. So $E=$ $[((0,0), 4,\{5\}),((11 / 4,9.5), 2,\{2\}),((7,11), 0,\{2\})]$.

Fig. 1. An example network.

Iteration 2:

Step 1: $\left(\lambda_{0}, v_{0}\right)=(2,8)$-the intersection point of the first two equations: $v=4 \lambda$ and $v=4+2 \lambda$.

Step 3: $v\left(\lambda_{0}\right)=8=v_{0}$, with $D_{0}=\{2\}$. Hence $(2,8)$ is a breakpoint of $v(\lambda)$. We update E and R so that $E=[((11 / 4,9.5), 2,\{2\}),((7,11), 0,\{2\})], R=[((2,8) ;\{5\}]$, and $F=[((0,0), 4,\{5\})]$.

Iteration 3:
Step 1: $\left(\lambda_{0}, v_{0}\right)=(3.5,11)$.
Step 3: $v\left(\lambda_{0}\right)=10.5$, with $D_{0}=\{2\}$ with $q\left(\lambda_{0}\right)=1$. Since $v\left(\lambda_{0}\right)<11=v_{0}, E$ is updated to

$$
E=[((11 / 4,9.5), 2,\{2\}),((3.5,10.5), 1,\{2\}),((7,11), 0,\{2\})] .
$$

Iteration 4:

Step 1: $\left(\lambda_{0}, v_{0}\right)=(3,10)$.
Step 2: Since slope difference between the first two equations is exactly $1,(3,10)$ is the next breakpoint of $v(\lambda)$. After updating
$R=[((2,8) ;\{5\}),((3,10) ;\{2\})], E=[((3.5,10.5), 1,\{2\}),((7,11), 0,\{2\})]$, and $F=$ $[((0,0), 4,\{5\}),((11 / 4,9.5), 2,\{2\})]$.

Iteration 5:
Step 1: $\left(\lambda_{0}, v_{0}\right)=(4,11)$.
Step 2: Since slope difference between the first two equations is exactly $1,(4,11)$ is the next breakpoint of $v(\lambda)$. After updating
$R=[((2,8) ;\{5\},((3,10) ;\{2\}),((4,11) ;\{2\})] E=[((7,11), 0,\{2\})]$ and $F=[((0,0), 4$, $\{5\}),((11 / 4,9.5), 2,\{2\}),((3.5,10.5), 1,\{2\})]$.

Step 4: Termination criterion is met and the algorithm stops with $F=[((0,0), 4,\{5\})$, $((11 / 4,9.5), 2,\{2\}),((3.5,10.5), 1,\{2\}),((7,11), 0,\{2\})]$.

The function $v(\lambda)$ has three breakpoints listed in R. For $\lambda \in[0-2], D=\{5\}$ provides a min-cut in $G(\lambda)$, and for $\lambda \in[2-4]$, a min-cut in $G(\lambda)$ is given by $D=\{2\}$. Since $D\left(\lambda_{\max }\right)=\{2\}$ is a min-cut in $G,\{2\}$ is also a min-cut for $\lambda>4$.

Thus, although $v(\lambda)$ has three breakpoints with four linear pieces, there are only two min-cuts needed to define the function. Equivalently, there is only one change in the parametric min-cut and this occurs at $\lambda=2$.

It should be noted that since the algorithm generates breakpoints in increasing order of λ, max flow in $G\left(\lambda_{1}\right)$ is a feasible flow for $G\left(\lambda_{2}\right)$ for $\lambda_{1}<\lambda_{2}$. Thus the successive max flow problems can use previous max flows for reducing computational effort.

3. Parametric min-cut trees

Recall the min cut-tree problem in an undirected network [6,8], mentioned earlier. Here we consider a parametric version of the problem in which the parametric capacity of arc $i \in A$ is $\min \left\{b_{i}, \lambda\right\}$. We wish to find a spectrum of min-cut trees in $G(\lambda)$ as λ varies from 0 to infinity. Each such parametric min-cut tree will be a min-cut tree in $G(\lambda)$ for an interval of λ. Before we describe an algorithm to find a spectrum, we want to establish a bound on the number of different min-cut trees that will be generated as λ varies over \mathfrak{R}^{+}. Since, for a given source-destination pair, $v(\lambda)$ can have at most ($n-1$) breakpoints, entire \mathfrak{R}^{+}line is divided into at most n intervals by this pair of nodes. As there are $\binom{n}{2}$ pairs of nodes, the breakpoints for $\binom{n}{2}$ different $v(\lambda)$ functions super imposed divide \mathfrak{R}^{+}into at most ($n^{2}(n-1) / 2$) intervals. Clearly, the min-cut tree of $G(\lambda)$ does not change as λ ranges over any such interval. Hence $\left(n^{2}(n-1) / 2\right)$ is an upper bound on the number of different min-cut trees that the spectrum would contain. We show below that this bound is very loose, and that the maximum number of different min-cut trees is less than $2 m, m$ being the number of arcs in the network.

Let $T_{1}, T_{2}, \ldots, T_{L}$ denote the different min cut-trees of $G(\lambda)$ as λ increases. Assume the first cut-tree T_{1} is a cut-tree in $G\left(\lambda_{\varepsilon}\right)$, where, as defined earlier, λ_{ε} is chosen such that $0<\lambda_{\varepsilon}<\min \left\{b_{i}: i \in A\right\}$. Denoted by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{L-1}$ the min cut-tree change points. Thus $\left[\lambda_{\ell} \lambda_{\ell+1}\right.$] is the interval of λ for which $T_{\ell+1}$ is a min cut-tree in $G(\lambda)$, noting that $\lambda_{0} \equiv 0$ and $\lambda_{L} \equiv \infty$. Also note that both T_{ℓ} and $T_{\ell+1}$ are min cut-trees in $G\left(\lambda_{\ell}\right)$.

Consider the tree T_{ℓ}. If it has a link g that connects nodes x and y in T_{ℓ}, then, as mentioned earlier, removal of this link provides a partition of the node set N and thereby reveals a min-cut separating x and y in $G(\lambda)$ for $\lambda \in\left[\lambda_{\ell-1} \lambda_{f}\right]$. As established in the previous section, the function $v(\lambda)$ for this cut is a piecewise linear concave function on \mathfrak{R}^{+}, with integral slope for each linear piece. Let s_{g} be the initial slope of $v(\lambda)$ in the open interval $\left(\lambda_{\ell-1} \lambda_{\ell}\right)$ and $S_{\ell}=\sum_{g \in T_{\ell}} s_{g}$.

Lemma 3. $S_{1}>S_{2}>\cdots>S_{L}$.
Proof. Consider the tree T_{ℓ} which is a min-cut tree of $G(\lambda)$ for $\lambda \in\left(\lambda_{\ell-1} \lambda_{\ell}\right)$. Each link of this tree represents a cut-a min-cut between any pair of nodes which are disconnected by removal of this link in T_{ℓ}. Thus, for $\lambda \in\left(\lambda_{\ell-1} \lambda_{\ell}\right), v(\lambda)$, for every pair
of nodes, is defined by a cut represented by one of the links in T_{ℓ}. Since $T_{\ell+1}$ differs from T_{ℓ} in at least one of the links, the $v(\lambda)$ function for some pair of nodes must be defined by two different cuts for the two intervals $\left(\lambda_{\ell-1} \lambda_{\ell}\right)$ and $\left(\lambda_{\ell} \lambda_{\ell+1}\right)$, resulting in a decrease in initial slopes in $v(\lambda)$ for that pair of nodes, for the two intervals.

Lemma 4. $S_{1} \leqslant 2 m-\max _{j}\left\{d_{j}\right\}$, where d_{j} is the degree of node j.
Proof. Recall that T_{1} is a min-cut tree in $G\left(\lambda_{\varepsilon}\right)$, and hence provides cuts with minimum cardinality between every pair of nodes. Thus S_{1} is the sum of cardinalities of minimum cardinality cuts separating nodes corresponding to the links of T_{1}. Since $\sum_{j \in N} d_{j}=2 m$, the proof follows from the fact that the cardinality of a minimum cardinality cut separating a node j from any other node cannot be more than d_{j}.

Before we describe the algorithm for generating $T_{1}, T_{2}, \ldots, T_{L}$, consider the $v(\lambda)$ function for a given pair of nodes. As we mentioned in Section $2, v(\lambda)$ has two kinds of breakpoints-some breakpoints that result in a min-cut change, and others that do not. Consider a breakpoint $\tilde{\lambda}$ that results in a min-cut change. That is, for any $\delta>0$ and arbitrarily small, any min-cut $D\left(\tilde{\lambda}_{0}-\delta\right)$ in $G\left(\tilde{\lambda}_{0}-\delta\right)$ is not a min-cut in $G\left(\tilde{\lambda}_{0}+\delta\right)$. Note that $D\left(\tilde{\lambda}_{0}-\delta\right)$ and $D\left(\tilde{\lambda}_{0}+\delta\right)$ are both min-cuts in $G\left(\tilde{\lambda}_{0}\right)$. In the algorithm below, we will refer to $D(\lambda+\delta)$ as $D\left(\lambda^{+}\right)$, a min-cut in $G(\lambda)$.

Algorithm. Spectrum

Step 0: Set $\lambda_{0} \leftarrow \lambda_{\varepsilon}$. Determine T_{1}, a min-cut tree in $G\left(\lambda_{\varepsilon}\right)$. Set $\ell \leftarrow 1$.
Step 1: For each pair of nodes connected by a link in T_{ℓ}, record the corresponding $v(\lambda)$ function if it has not been found earlier. Among all the breakpoints of $v(\lambda)$ functions, for the pairs of nodes directly connected by links in T_{ℓ}, determine $\left(\lambda_{\ell}, v\left(\lambda_{\ell}\right)\right)$-the breakpoint with the smallest $\lambda>\lambda_{\ell-1}$ that results in a min-cut change. Terminate if no such λ exits.

Step 2: Starting with the cut $D\left(\lambda_{\ell}^{+}\right)$, determine a min-cut tree in $G\left(\lambda_{\ell}\right)$. Label this min-cut tree as $T_{\ell+1}$. Set $\ell \leftarrow \ell+1$, and go to step 1 .

Lemma 5. Algorithm "Spectrum" determines all min-cut trees in at most ($2 m-$ $\left.\max _{j}\left\{d_{j}\right\}\right)$ iterations.

Proof. Consider a min-cut tree T_{ℓ} at some iteration of the algorithm. obtained by solving the min-cut tree problem in $G\left(\lambda_{\ell-1}\right)$. Step 1 determines the smallest λ-value $>\lambda_{\ell-1}$ (say λ_{ℓ}) such that for some link in T connecting nodes x and y, the min-cut separating x and y in $G\left(\lambda_{\ell}\right)$ is different than the one represented by the current min-cut tree T_{ℓ}. Thus the S-value of the min-cut tree in $G\left(\lambda_{\ell}\right)$ is less than that of T_{ℓ}. It must, therefore, be a different min-cut tree than T_{t}. Since (from Lemma 3) the S-value of the initial cut tree is no more than $2 m-\max _{j}\left\{d_{j}\right\}$, the algorithm would stop in no more that $2 m-\max _{j}\left\{d_{j}\right\}$ iterations.

As evident from the algorithm, the effort needed will be proportional to the number of parametric min-cut trees. Although the bound established for this number in Lemma

Fig. 2. Network for parametric min-cut trees

Fig. 3. Min-cut tree T_{1}

5 is $\left(2 m-\max _{j}\left\{d_{j}\right\}\right)$, we believe that the actual number will be considerably less. In algorithm "Spectrum" also, we may require solving max flow problem in $G(\lambda)$ for several values of λ, for the same source-sink pair. As these λ-values are always increasing, we can take advantage of the previous solutions in such situations.
An Example. Consider the network in Fig. 2.
Iteration number 1:
Step 0: $\lambda_{\varepsilon}=1$. Following is a min-cut tree in $G(1)$, labeled as T_{1} in Fig. 3.
Step 1: We now use the $v(\lambda)$ function for each link to identify the breakpoints that correspond to a min-cut change:

Link (1,2): Cut $X_{1}=\{1\}$ remains optimal for all $\lambda>0$.
Link $(2,6)$: Cut $X_{1}=\{1,2\}$ remains optimal for all $\lambda>0$.
Link $(4,6):$ Cut $X_{1}=\{4\}$ remains optimal for all $\lambda>0$.
Link $(5,6):$ Cut $X_{1}=\{5\}$ optimal for $\lambda \in(0,4]$ and $X_{1}=\{3,5,4\}$ optimal for $\lambda \geqslant 4$.

Fig. 4. Min-cut tree T_{2}.

Fig. 5. Min-cut tree T_{3}.

Link $(3,6):$ Cut $X_{1}=\{3\}$ optimal for $\lambda \in(0,3.5]$ and $X_{1}=\{3,5,4\}$ optimal for $\lambda \geqslant 3.5$. Thus $\lambda_{1}=3.5$.

Step 2: We start with cut $X_{1}=\{3,5,4\}$ and find a min-cut tree in $G(3.5)$. Following is the min-cut tree T_{2} in Fig. 4:

Iteration number 2 :
Step 1: We need to determine $G(\lambda)$ for the new links in $T_{2}:(3,5)$ and $(3,4)$.
Link $(3,5):$ Cut $X_{1}=\{5\}$ optimal for $\lambda \in(0,6]$ and $\bar{X}_{1}=\{3\}$ optimal for $\lambda \geqslant 6$.
Link $(3,4):$ Cut $X_{1}=\{4\}$ remains optimal for all $\lambda>0$. Thus $\lambda_{2}=6$.
Step 2: We start with cut $\bar{X}_{1}=\{3\}$ and find a min-cut tree in $G(6)$. Following is the min-cut tree T_{3} in Fig. 5:

Iteration number 3:
Step 1: No new λ is discovered and the algorithm stops.
Thus, in $G(\lambda), T_{1}$ is a min-cut tree for $\lambda \in[0,3.5], T_{2}$ for $\lambda \in[3.5,6]$ and T_{3} for $\lambda \geqslant 6$.

4. Applications

The results of this work have applications or strong potential for applications in a variety of areas. In this section we outline a few of these briefly.

4.1. Network flows subject to an arc destruction

Consider an $s-t$ flow and assume that an arc will be destroyed by an adversary. The problem of maximizing the residual flow upon destruction of an arc has been studied recently [2]. Generalization of this to solve for all source-sink pairs efficiently will be facilitated by the results in Section 3 above.

For a given source-sink pair, let $\hat{\lambda}$ be the smallest λ-value for which max flow is obtained. As shown in [2], the arc that will be destroyed has a flow value of $\hat{\lambda}$, and the maximum residual flow value is $v(\hat{\lambda})-\hat{\lambda}$. These values, for all source-sink pairs, can be generated easily from the parametric min-cut trees generated in Section 3. Furthermore, it follows that there are at most $(n-1)$ distinct values of maximal residual flows when we consider the all source-sink pair problem. Also, the set of arcs which will give an arc to be destroyed for each source-sink pair will consist of exactly $(n-1)$ arcs.

4.2. Maximum multiroute flows

In communication networks, improving reliability by using multiroute channels for sending flows has been studied recently [10]. A k-route flow from s to t is defined as a flow where every unit of flow sent by an $s-t$ chain is matched by a unit flow on each of the $(k-1)$ additional $s-t$ arc disjoint chains, so that this unit flow can survive $(k-1)$ arc failures. The problem of maximizing such k-route $s-t$ flows has been addressed and solved in [10] by breaking the problem into two parts: first identifying the maximal value of this flow, and then determining a flow pattern that attains this value. A fairly complicated procedure is given in [10] to find this value. This value, however, can be found trivially by finding the intersection of $v(\lambda)$ function, developed in Section 2, with the line $v=k \lambda$, allowing one to find the maximum k-route flow value for all applicable values of k.

The above can be generalized for finding k-route flows between all pairs of nodes and for all applicable values of k. The analysis of Section 3 will help identify, for each k, the at most $(n-1)$ different values in an efficient manner.

4.3. Flow-based two person games

Consider a two person zero sum game defined as follows. Player 1 sends a flow from a specified source s to a specified sink t. Knowing the flow implemented by Player 1, Player 2 destroys an arc which results in a flow loss. The objective of Player 1 is to maximize this residual flow while that of Player 2 is to minimize the same or equivalently to maximize the flow loss resulting from the destruction of an arc. Thus an optimal strategy for Player 1 is to implement a flow that minimizes the maximum amount of flow on any arc. As discussed in the first application, $\hat{\lambda}$ is the desired maximum flow on any arc. Therefore, an equilibrium strategy for Player 1 is to use maximal flow in $G(\hat{\lambda})$ with $v(\hat{\lambda})=v^{*}$, and for Player 2 is to destroy any arc with flow $\hat{\lambda}$, resulting in a unique maximal residual flow value of $v(\hat{\lambda})-\hat{\lambda}$. The parametric min-cut trees developed in Section 3 facilitate evaluation of equilibrium solutions for all source-sink pairs.

Acknowledgements

The authors thank the referees for helpful comments on an earlier version of the paper which resulted in improvement of this paper.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cliffs, NJ, 1993, Networks 38 (2001) 194-198.
[2] Y.P. Aneja, R. Chandrasekaran, K.P.K. Nair, Maximizing residual flow under an arc destruction, Networks 38 (2001) 194-198.
[3] Y.P. Aneja, K.P.K. Nair, Bicriteria transportation problem, Management Sci. 25 (1979) 73-78.
[4] Y.P. Aneja, K.P.K. Nair, Maximal expected flow in a network subject to arc failures, Networks 10 (1980) 45-57.
[5] R. Chandrasekaran, Minimal ratio spanning trees, Networks 7 (1977) 335-342.
[6] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[7] G. Gallo, M.D. Grigoriadis, R.E. Tarjan, A fast parametric maximum flow algorithm and applications, SIAM J. Comput. 18 (1989) 30-35.
[8] R.E. Gomory, T.C. Hu, Multiterminal network flows, J. SIAM 9 (1961) 551-570.
[9] D. Gusfield. Sensitivity analysis for combinatorial optimization, Ph.D. Thesis, University of California, Berkley, 1980.
[10] W. Kishimoto, A method for obtaining the maximum multiroute flows in networks, Networks 27 (1996) 279-291.
[11] T. Radzik, Newton's method for fractional combinatorial optimization, Proceedings of the 33rd IEEE Symposium on FOCS, 1992, pp. 659-669.

[^0]: This work was supported by research grants to Y.P. Aneja and K.P.K. Nair from the Natural Sciences and Engineering Research council of Canada.

 E-mail address: aneja@uwindsor.ca (Y.P. Aneja).

