
Discrete Applied Mathematics 127 (2003) 679–689
www.elsevier.com/locate/dam

Parametric min-cuts analysis in a network�

Y.P. Anejaa , R. Chandrasekaranb , K.P.K. Nairc
aFaculty of Business Administration, University of Windsor, Windsor, Ont., Canada N9B 3P4

bSchool of Computer Science, University of Texas at Dallas, Richardson, TX, USA
cFaculty of Administration, University of New Brunswick, Fredericton, N.B., Canada E3B5A3

Received 10 July 2001; received in revised form 24 April 2002; accepted 10 June 2002

Abstract

The all pairs minimum cuts problem in a capacitated undirected network is well known.
Gomory and Hu showed that the all pairs minimum cuts are revealed by a min-cut tree that
can be obtained by solving exactly (n− 1) maximum 7ow problems, where n is the number of
nodes in the network.
In this paper we consider 9rst the problem of 9nding parametric min-cuts for a speci9ed pair

of nodes when the capacity of an arc i is given by min{bi; �}, where � is the parameter, ranging
from 0 to ∞. Next we seek the parametric min-cuts for all pairs of nodes, and achieve this by
constructing min-cut trees for at most 2m di:erent values of �, where m is the number of edges
in the network.
? 2003 Elsevier Science B.V. All rights reserved.

Keywords: Multiterminal maximal 7ows; Parametric analysis; Combinatorial optimization

1. Introduction

Consider an undirected network G(N; A; b) with node set N (|N |=n), arc set A(|A|=
m) and a capacity vector b such that arc i∈A has capacity bi. The “all pairs minimum
cuts” problem in such a network has been solved eCciently by Gomory and Hu [8].
They showed that there are at most (n − 1) distinct min-cut values, and by solving
exactly (n− 1) maximum 7ow problems one can construct a so-called min-cut tree T,

� This work was supported by research grants to Y.P. Aneja and K.P.K. Nair from the Natural Sciences
and Engineering Research council of Canada.

E-mail address: aneja@uwindsor.ca (Y.P. Aneja).

0166-218X/03/$ - see front matter ? 2003 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(02)00496 -1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81956209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aneja@uwindsor.ca

680 Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689

where value on a link between nodes x and y in T , is the value of the minimum cut
separating x and y. Furthermore, one such min-cut is given by the partition of node
set N obtained by removing this link from T . Min-cut between any two nodes x and
y of N is given by the smallest value link on the unique path between x and y in T .
An elegant exposition of the above is available in Ford and Fulkerson [6]. It should
be noted that a link between nodes x and y on a min-cut tree has a di:erent meaning
from that of an arc between nodes x and y in the network. For this reason the terms
link and arc will be used appropriately.
Parametric analyses of optimization problems are of interest in many ways [1]. Re-

lating to networks, parametric analyses of spanning tree, shortest path, and maximum
7ow problems have received considerable attention [5,9]. Relating to maximum 7ows,
the parametrization if restricted to linear capacity and only for arcs at source and sink,
the problem has been shown to admit eCcient solution [7].
The parametric analysis that we consider can be thought of as a bottle-neck type

in the sense that the parametric capacity of arc i∈A is min{bi; �}, with parameter
� ranging from 0 to ∞. In Section 2 we consider the parametric min-cuts prob-
lem for a speci9ed pair of nodes and present a strongly polynomial algorithm to
compute its solution. The algorithm is a generalization of Newton’s method in the
context of combinatorial optimization. In several combinatorial problems analogous
specializations have been used [3,4,11]. An example is provided for illustrating the
algorithm.
In Section 3 we consider the problem of 9nding parametric min-cuts between all

pairs of nodes. It is shown that such min-cuts can be obtained by solving min-cut tree
problems for at most 2m di:erent values of �. Using this result a strongly polynomial
algorithm is presented and illustrated with an example. Finally in Section 4 we outline
some applications of this work.

2. Parametric min-cuts for a speci�ed s − t pair

Given parametric capacity bi(�)=min{bi; �} for each arc i=1; : : : ; m, let the network
G be denoted by G(�) and the speci9ed source sink pair by (s; t). A cut H separating s
and t is a set of arcs (X; OX) with s∈X and t ∈ OX . To simplify notation, we will simply
represent this cut by the node set X or OX . The problem is to identify a spectrum of
minimum cuts separating s and t as � increases from zero. Let v(�) be the value of
a minimum cut, separating s and t in G(�), expressed as a function of �. Obviously
v(�) is also the maximum 7ow value from s to t.

Lemma 1. The function v(�) is piecewise linear concave with integral slope for each
linear piece and has at most (n− 1) breakpoints.

Proof. Take any s − t cut H . Let h(�) =
∑

i∈H bi(�). Since each bi(�) is piecewise
linear concave in �, so is h(�) and represents the capacity of the cut H in G(�), Slope
of any linear piece in h(�), for a given �, is an integer with value equal to the number
of arcs with capacity �. Since v(�) = min{h(�) : H ∈�}, where � is the set of all

Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689 681

s− t cuts, v(�) is piecewise linear concave with integral slopes. Since the largest slope
(slope of the 9rst linear piece of v(�)) gives the cardinality of an s−t cut with minimal
cardinality, it is bounded by (n− 1). Further, there must be a drop of at least one unit
of slope between two consecutive linear pieces of v(�). Hence (n − 1) provides an
upper bound for the number of breakpoints in v(�).

It is important to note that there are two types of breakpoints in v(�). Each lin-
ear piece of v(�) corresponds to the capacity of some s − t min-cut D(�) in G(�).
However, two adjacent linear pieces of v(�) may correspond to the same cut and the
breakpoint between these two pieces then occurs due to saturation of some arc(s) at
that breakpoint. By saturation of an arc i we mean that � becomes equal to bi, the
capacity of that arc.
Our objective is to generate v(�) by identifying all its breakpoints. To describe

the algorithm, we need to introduce certain sets and de9nitions. For a given �, let
D(�) be a min-cut (separating s and t) with value v(�) in G(�), and q(�) denote the
number of arcs at capacity � in D(�). Let �max = max{bi: i∈A}. Choose �� such that
0¡��¡min{bi: i∈A}. Then clearly v(�max)=v∗, the maximum 7ow value in G, and
D(��) is a cut in G with minimum cardinality.
Let E denote the vector of equations in the �v-plane, sorted in descending order of

their slopes. The rth element of E de9nes the equation Er : vr(�)=v(�r)+q(�r):(�−�r),
and is stored as ((�r; v(�r)); q(�r); D(�r)). Let R denote the vector of breakpoints of
v(�) stored in ascending order of �-values and stored as [{(�1; v(�1));D1}; {(�2; v(�2));
D2}; : : : ; {(�p; v(�p));Dp}]. Here Dr is a min-cut for G(�) in the �-interval [�r−1�r],
assuming �0 ≡ 0. For �¿ �p, any min-cut in G is a min-cut in G(�). Each breakpoint
of v(�) is determined by the intersection of two consecutive line segments of v(�).
Equations in set F de9ne the initial segment of v(�), and de9ne all the breakpoints
generated so far.
At the start of the algorithm both E; F and R are null vectors. At termination, R

contains all the distinct breakpoints of v(�), and uniquely de9nes the function v(�).
Similarly, at termination F provides the set of equations that also de9ne v(�) uniquely.

Algorithm. Parametric Min-Cuts
Step 0: Find v(��); q(��); D(��); v(�max) and D(�max). Let E = [((0; 0); q(��); D(��)),

((�max; v∗); 0; D(�max))], Let D̂← D(��), R← ∅, and F ← ∅.
Step 1: Let (�0; v0) be the intersection point of the 9rst two equations in E. If for

�= �0, a min-cut has been found earlier then insert ((�0; v0); D̂) as the last element of
R and go to step 4, else go to step 2.
Step 2: If the slope of the 9rst equation is exactly one more than that of the second,

then insert ((�0; v0), D̂) as the last element in R and go to step 4, else go to step 3.
Step 3: Find v(�0) and D(�0). If v(�0) = v0 then insert ((�0; v0); D̂) as the last

element of R, let D̂ ← D(�0), and go to step 4, else insert equation represented by
((�0; v(�0)); q(�0); D(�0)) between the 9rst two equations in E and go to step 1.
Step 4: Remove the 9rst equation from E and store it as the last element in F . If

E=[((�max; v∗); 0; D(�max))]; then store it as the last element in F and stop, else go to
step 1.

682 Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689

Let us make some observations about the algorithm. At step 0, the 9rst line in
E corresponds to a minimum cardinality cut, its slope is no more than (n − 1), the
maximum degree of node s. Successive lines generated at step 3 have strictly decreasing
integral slopes. Each time a breakpoint is discovered, cardinality of E decreases by one.
Step 1 handles a degenerate situation where at a given breakpoint �0, there are more
than two cuts optimal in G(�0). In step 2, when the slope of the 9rst two lines in R
di:ers by one, their intersection point must be a breakpoint. Hence the algorithm stops
in no more than q(��) iterations. Step 3 identi9es breakpoints whose two adjacent linear
pieces have slopes that di:er by more than one unit. In fact it is easy to show that the
exact number of max-7ow problems that need to be solved equals (1+min{q(��); 2p}),
where p is the number of breakpoints of v(�).
The algorithm enters breakpoints in R in ascending order of �-values, and terminates

with all the breakpoints of v(�). Intuitively, in step 1, if v0=v(�0) then the 9rst equation
identi9es a linear piece of v(�).
The validity of the algorithm follows from the discussions in [3,4,11]. A brief proof

is given below.

Lemma 2. At termination of the above algorithm, set F correctly de=nes v(�).

Proof. Recall from Lemma 1 that v(�) = min{h(�) : H ∈�}, where h(�) is the
cut-capacity of H in G(�). Hence each h(�) acts as an upper bound for v(�). Also,
since h(�) is piecewise linear concave, its every linear piece also provides an upper
bound for v(�). Since each equation in E, and hence in F , corresponds to some cut,
we have v(�)6min{vr(�): r = 1; : : : ; |F |}. Further, if for some �1¡�2, both points
(�1; v(�1)) and (�2; v(�2)), correspond to the same linear equation in E, then the entire
line segment joining these two points de9nes a part of v(�). In this case (step 3), the
intersection point of the 9rst two equations in E is recorded as a breakpoint of v(�), and
the 9rst equation in E is moved to F . Further if two consecutive equations in E di:er in
slopes by exactly one then the intersection point of these two lines must be a breakpoint
of v(�), and the 9rst equation in E is moved to F . At termination, therefore, equations
in F de9ne the complete v(�) function and v(�) = min{vr(�): r = 1; : : : ; |F |}.

The following example illustrates the algorithm. Consider the network in Fig. 1 with
the arc capacities as shown. Let the source sink pair be (2,5).
Here �max = 7, and let �� = 0:5. Then v(�max) = v∗ = 11, the maximum 7ow value

with a min-cut given by D(�max) = {2}. As mentioned earlier, the cut {2} represents
the set of arcs in the set (X; OX), where X ={2}. Also, v(��)=4(0:5)=2 with a min-cut
(a minimum cardinality cut) given by D(��) = {1; 2; 3; 4; 6}= {5}, and q(��) = 4.
The algorithm Parametric Min-Cuts proceeds as follows:
Iteration 1:
Step 0: E = [((0; 0); 4; {5}); ((7; 11); 0; {2})], D̂ = {5}, R← ∅; F ← ∅.
Step 1: (�0; v0) = (11=4; 11)—the intersection point of the two equations in E.
Step 3: Now v(�0) = 9:5, D0 = {2} provides a min-cut, and q(�0) = 2. Since

v(�0)
= v0, we insert ((11=4; 9:5); 2; {2}) between the two equations of E. So E =
[((0; 0); 4; {5}); ((11=4; 9:5); 2; {2}); ((7; 11); 0; {2})].

Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689 683

2

1

3 5

4

6

7

1

3

6

1

4

4

5

4

2

Fig. 1. An example network.

Iteration 2:
Step 1: (�0; v0)= (2; 8)—the intersection point of the 9rst two equations: v=4� and

v= 4 + 2�.
Step 3: v(�0) = 8 = v0, with D0 = {2}. Hence (2; 8) is a breakpoint of v(�). We

update E and R so that E=[((11=4; 9:5); 2; {2}); ((7; 11); 0; {2})], R=[((2; 8); {5}], and
F = [((0; 0); 4; {5})].
Iteration 3:
Step 1: (�0; v0) = (3:5; 11).
Step 3: v(�0) = 10:5, with D0 = {2} with q(�0) = 1. Since v(�0)¡ 11 = v0, E is

updated to

E = [((11=4; 9:5); 2; {2}); ((3:5; 10:5); 1; {2}); ((7; 11); 0; {2})]:
Iteration 4:
Step 1: (�0; v0) = (3; 10).
Step 2: Since slope di:erence between the 9rst two equations is exactly 1, (3; 10)

is the next breakpoint of v(�). After updating
R = [((2; 8); {5}); ((3; 10); {2})], E = [((3:5; 10:5); 1; {2}); ((7; 11); 0; {2})], and F =

[((0; 0); 4; {5}); ((11=4; 9:5); 2; {2})].
Iteration 5:
Step 1: (�0; v0) = (4; 11).
Step 2: Since slope di:erence between the 9rst two equations is exactly 1, (4; 11)

is the next breakpoint of v(�). After updating
R=[((2; 8); {5}; ((3; 10); {2}); ((4; 11); {2})] E=[((7; 11); 0; {2})] and F=[((0; 0); 4;
{5}); ((11=4; 9:5); 2; {2}); ((3:5; 10:5); 1; {2})].

Step 4: Termination criterion is met and the algorithm stops with F=[((0; 0); 4; {5});
((11=4; 9:5); 2; {2}); ((3:5; 10:5); 1; {2}); ((7; 11); 0; {2})].

684 Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689

The function v(�) has three breakpoints listed in R. For �∈ [0−2], D={5} provides
a min-cut in G(�), and for �∈ [2− 4], a min-cut in G(�) is given by D= {2}. Since
D(�max) = {2} is a min-cut in G, {2} is also a min-cut for �¿ 4.
Thus, although v(�) has three breakpoints with four linear pieces, there are only two

min-cuts needed to de9ne the function. Equivalently, there is only one change in the
parametric min-cut and this occurs at �= 2.
It should be noted that since the algorithm generates breakpoints in increasing order

of �, max 7ow in G(�1) is a feasible 7ow for G(�2) for �1¡�2.Thus the successive
max 7ow problems can use previous max 7ows for reducing computational e:ort.

3. Parametric min-cut trees

Recall the min cut-tree problem in an undirected network [6,8], mentioned earlier.
Here we consider a parametric version of the problem in which the parametric capacity
of arc i∈A is min{bi; �}. We wish to 9nd a spectrum of min-cut trees in G(�) as �
varies from 0 to in9nity. Each such parametric min-cut tree will be a min-cut tree in
G(�) for an interval of �. Before we describe an algorithm to 9nd a spectrum, we want
to establish a bound on the number of di:erent min-cut trees that will be generated as
� varies over R+. Since, for a given source–destination pair, v(�) can have at most
(n− 1) breakpoints, entire R+ line is divided into at most n intervals by this pair of
nodes. As there are (n2) pairs of nodes, the breakpoints for (

n
2) di:erent v(�) functions

super imposed divide R+ into at most (n2(n − 1)=2) intervals. Clearly, the min-cut
tree of G(�) does not change as � ranges over any such interval. Hence (n2(n− 1)=2)
is an upper bound on the number of di:erent min-cut trees that the spectrum would
contain. We show below that this bound is very loose, and that the maximum number
of di:erent min-cut trees is less than 2m, m being the number of arcs in the network.
Let T1; T2; : : : : ; TL denote the di:erent min cut-trees of G(�) as � increases. Assume

the 9rst cut-tree T1 is a cut-tree in G(��), where, as de9ned earlier, �� is chosen
such that 0¡��¡min{bi: i∈A}. Denoted by �1; �2; : : : ; �L−1 the min cut-tree change
points. Thus [�‘�‘+1] is the interval of � for which T‘+1 is a min cut-tree in G(�),
noting that �0 ≡ 0 and �L ≡ ∞. Also note that both T‘ and T‘+1 are min cut-trees in
G(�‘).
Consider the tree T‘. If it has a link g that connects nodes x and y in T‘, then,

as mentioned earlier, removal of this link provides a partition of the node set N and
thereby reveals a min-cut separating x and y in G(�) for �∈ [�‘−1�‘]. As established
in the previous section, the function v(�) for this cut is a piecewise linear concave
function on R+, with integral slope for each linear piece. Let sg be the initial slope
of v(�) in the open interval (�‘−1�‘) and S‘ =

∑
g∈T‘ sg.

Lemma 3. S1¿S2¿ · · ·¿SL.

Proof. Consider the tree T‘ which is a min-cut tree of G(�) for �∈ (�‘−1�‘). Each
link of this tree represents a cut—a min-cut between any pair of nodes which are
disconnected by removal of this link in T‘. Thus, for �∈ (�‘−1�‘), v(�), for every pair

Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689 685

of nodes, is de9ned by a cut represented by one of the links in T‘. Since T‘+1 di:ers
from T‘ in at least one of the links, the v(�) function for some pair of nodes must be
de9ned by two di:erent cuts for the two intervals (�‘−1�‘) and (�‘�‘+1), resulting in
a decrease in initial slopes in v(�) for that pair of nodes, for the two intervals.

Lemma 4. S16 2m−maxj{dj}, where dj is the degree of node j.

Proof. Recall that T1 is a min-cut tree in G(��), and hence provides cuts with minimum
cardinality between every pair of nodes. Thus S1 is the sum of cardinalities of minimum
cardinality cuts separating nodes corresponding to the links of T1. Since

∑
j∈N dj=2m,

the proof follows from the fact that the cardinality of a minimum cardinality cut
separating a node j from any other node cannot be more than dj.

Before we describe the algorithm for generating T1; T2; : : : : ; TL, consider the v(�)
function for a given pair of nodes. As we mentioned in Section 2, v(�) has two kinds
of breakpoints—some breakpoints that result in a min-cut change, and others that do
not. Consider a breakpoint �̃ that results in a min-cut change. That is, for any &¿ 0
and arbitrarily small, any min-cut D(�̃0−&) in G(�̃0−&) is not a min-cut in G(�̃0+&).
Note that D(�̃0−&) and D(�̃0 +&) are both min-cuts in G(�̃0). In the algorithm below,
we will refer to D(�+ &) as D(�+), a min-cut in G(�).

Algorithm. Spectrum
Step 0: Set �0 ← ��. Determine T1, a min-cut tree in G(��). Set ‘← 1.
Step 1: For each pair of nodes connected by a link in T‘, record the corresponding

v(�) function if it has not been found earlier. Among all the breakpoints of v(�) func-
tions, for the pairs of nodes directly connected by links in T‘, determine (�‘; v(�‘))—the
breakpoint with the smallest �¿�‘−1 that results in a min-cut change. Terminate if
no such � exits.
Step 2: Starting with the cut D(�+‘), determine a min-cut tree in G(�‘). Label this

min-cut tree as T‘+1. Set ‘← ‘ + 1, and go to step 1.

Lemma 5. Algorithm “Spectrum” determines all min-cut trees in at most (2m −
maxj{dj}) iterations.

Proof. Consider a min-cut tree T‘ at some iteration of the algorithm. obtained by
solving the min-cut tree problem in G(�‘−1). Step 1 determines the smallest �-value
¿�‘−1 (say �‘) such that for some link in T connecting nodes x and y, the min-cut
separating x and y in G(�‘) is di:erent than the one represented by the current min-cut
tree T‘. Thus the S-value of the min-cut tree in G(�‘) is less than that of T‘. It must,
therefore, be a di:erent min-cut tree than T‘. Since (from Lemma 3) the S-value of
the initial cut tree is no more than 2m − maxj{dj}, the algorithm would stop in no
more that 2m−maxj{dj} iterations.

As evident from the algorithm, the e:ort needed will be proportional to the number
of parametric min-cut trees. Although the bound established for this number in Lemma

686 Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689

1

2

6

4

3

5

10

3

4

5

7

3
8

2

2

4

2

Fig. 2. Network for parametric min-cut trees

1 2 6 4

5

3

Fig. 3. Min-cut tree T1

5 is (2m − maxj{dj}), we believe that the actual number will be considerably less.
In algorithm “Spectrum” also, we may require solving max 7ow problem in G(�)
for several values of �, for the same source–sink pair. As these �-values are always
increasing, we can take advantage of the previous solutions in such situations.
An Example. Consider the network in Fig. 2.
Iteration number 1:
Step 0: �� = 1. Following is a min-cut tree in G(1), labeled as T1 in Fig. 3.
Step 1: We now use the v(�) function for each link to identify the breakpoints that

correspond to a min-cut change:
Link (1; 2) : Cut X1 = {1} remains optimal for all �¿ 0.
Link (2; 6) : Cut X1 = {1; 2} remains optimal for all �¿ 0.
Link (4; 6) : Cut X1 = {4} remains optimal for all �¿ 0.
Link (5; 6) : Cut X1 ={5} optimal for �∈ (0; 4] and X1 ={3; 5; 4} optimal for �¿ 4.

Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689 687

1 2 6 4

5

3

Fig. 4. Min-cut tree T2.

1 2 6 4

3

5

Fig. 5. Min-cut tree T3.

Link (3; 6) : Cut X1 = {3} optimal for �∈ (0; 3:5] and X1 = {3; 5; 4} optimal for
�¿ 3:5. Thus �1 = 3:5.
Step 2: We start with cut X1 ={3; 5; 4} and 9nd a min-cut tree in G(3:5). Following

is the min-cut tree T2 in Fig. 4:
Iteration number 2:
Step 1: We need to determine G(�) for the new links in T2 : (3; 5) and (3; 4).
Link (3; 5) : Cut X1 = {5} optimal for �∈ (0; 6] and OX 1 = {3} optimal for �¿ 6.
Link (3; 4) : Cut X1 = {4} remains optimal for all �¿ 0. Thus �2 = 6.
Step 2: We start with cut OX 1 = {3} and 9nd a min-cut tree in G(6). Following is

the min-cut tree T3 in Fig. 5:
Iteration number 3:
Step 1: No new � is discovered and the algorithm stops.
Thus, in G(�), T1 is a min-cut tree for �∈ [0; 3:5]; T2 for �∈ [3:5; 6] and T3 for

�¿ 6.

4. Applications

The results of this work have applications or strong potential for applications in a
variety of areas. In this section we outline a few of these brie7y.

688 Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689

4.1. Network ?ows subject to an arc destruction

Consider an s−t 7ow and assume that an arc will be destroyed by an adversary. The
problem of maximizing the residual 7ow upon destruction of an arc has been studied
recently [2]. Generalization of this to solve for all source–sink pairs eCciently will be
facilitated by the results in Section 3 above.
For a given source–sink pair, let �̂ be the smallest �-value for which max 7ow is

obtained. As shown in [2], the arc that will be destroyed has a 7ow value of �̂, and the
maximum residual 7ow value is v(�̂)−�̂. These values, for all source–sink pairs, can be
generated easily from the parametric min-cut trees generated in Section 3. Furthermore,
it follows that there are at most (n−1) distinct values of maximal residual 7ows when
we consider the all source–sink pair problem. Also, the set of arcs which will give an
arc to be destroyed for each source–sink pair will consist of exactly (n− 1) arcs.

4.2. Maximum multiroute ?ows

In communication networks, improving reliability by using multiroute channels for
sending 7ows has been studied recently [10]. A k-route 7ow from s to t is de9ned as
a 7ow where every unit of 7ow sent by an s − t chain is matched by a unit 7ow on
each of the (k−1) additional s− t arc disjoint chains, so that this unit 7ow can survive
(k − 1) arc failures. The problem of maximizing such k-route s − t 7ows has been
addressed and solved in [10] by breaking the problem into two parts: 9rst identifying
the maximal value of this 7ow, and then determining a 7ow pattern that attains this
value. A fairly complicated procedure is given in [10] to 9nd this value. This value,
however, can be found trivially by 9nding the intersection of v(�) function, developed
in Section 2, with the line v = k�, allowing one to 9nd the maximum k-route 7ow
value for all applicable values of k.
The above can be generalized for 9nding k-route 7ows between all pairs of nodes

and for all applicable values of k. The analysis of Section 3 will help identify, for
each k, the at most (n− 1) di:erent values in an eCcient manner.

4.3. Flow-based two person games

Consider a two person zero sum game de9ned as follows. Player 1 sends a 7ow
from a speci9ed source s to a speci9ed sink t. Knowing the 7ow implemented by
Player 1, Player 2 destroys an arc which results in a 7ow loss. The objective of Player
1 is to maximize this residual 7ow while that of Player 2 is to minimize the same or
equivalently to maximize the 7ow loss resulting from the destruction of an arc. Thus
an optimal strategy for Player 1 is to implement a 7ow that minimizes the maximum
amount of 7ow on any arc. As discussed in the 9rst application, �̂ is the desired
maximum 7ow on any arc. Therefore, an equilibrium strategy for Player 1 is to use
maximal 7ow in G(�̂) with v(�̂) = v∗, and for Player 2 is to destroy any arc with
7ow �̂, resulting in a unique maximal residual 7ow value of v(�̂)− �̂. The parametric
min-cut trees developed in Section 3 facilitate evaluation of equilibrium solutions for
all source–sink pairs.

Y.P. Aneja et al. / Discrete Applied Mathematics 127 (2003) 679–689 689

Acknowledgements

The authors thank the referees for helpful comments on an earlier version of the
paper which resulted in improvement of this paper.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice-Hall, Englewood Cli:s, NJ, 1993,
Networks 38 (2001) 194–198.

[2] Y.P. Aneja, R. Chandrasekaran, K.P.K. Nair, Maximizing residual 7ow under an arc destruction,
Networks 38 (2001) 194–198.

[3] Y.P. Aneja, K.P.K. Nair, Bicriteria transportation problem, Management Sci. 25 (1979) 73–78.
[4] Y.P. Aneja, K.P.K. Nair, Maximal expected 7ow in a network subject to arc failures, Networks 10

(1980) 45–57.
[5] R. Chandrasekaran, Minimal ratio spanning trees, Networks 7 (1977) 335–342.
[6] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[7] G. Gallo, M.D. Grigoriadis, R.E. Tarjan, A fast parametric maximum 7ow algorithm and applications,

SIAM J. Comput. 18 (1989) 30–35.
[8] R.E. Gomory, T.C. Hu, Multiterminal network 7ows, J. SIAM 9 (1961) 551–570.
[9] D. Gus9eld. Sensitivity analysis for combinatorial optimization, Ph.D. Thesis, University of California,

Berkley, 1980.
[10] W. Kishimoto, A method for obtaining the maximum multiroute 7ows in networks, Networks 27 (1996)

279–291.
[11] T. Radzik, Newton’s method for fractional combinatorial optimization, Proceedings of the 33rd IEEE

Symposium on FOCS, 1992, pp. 659–669.

	Parametric min-cuts analysis in a network
	Introduction
	Parametric min-cuts for a specified s- t pair
	Parametric min-cut trees
	Applications
	Network flows subject to an arc destruction
	Maximum multiroute flows
	Flow-based two person games

	Acknowledgements
	References

