
Journal of Algebra 324 (2010) 2971–2989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Classification of group gradings on simple Lie algebras of
types A, B, C and D ✩

Yuri Bahturin ∗, Mikhail Kochetov

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C5S7, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 December 2009
Available online 17 March 2010
Communicated by Nicolás Andruskiewitsch
and Robert Guralnick

MSC:
primary 17B70
secondary 17B60

Keywords:
Graded algebra
Simple Lie algebra
Grading
Involution

For a given abelian group G , we classify the isomorphism classes
of G-gradings on the simple Lie algebras of types An (n � 1),
Bn (n � 2), Cn (n � 3) and Dn (n > 4), in terms of numerical
and group-theoretical invariants. The ground field is assumed to
be algebraically closed of characteristic different from 2.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let U be an algebra (not necessarily associative) over a field F and let G be an abelian group,
written multiplicatively.

Definition 1.1. A G-grading on U is a vector space decomposition

U =
⊕
g∈G

U g
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such that

U g Uh ⊂ U gh for all g,h ∈ G.

U g is called the homogeneous component of degree g . The support of the G-grading is the set

{g ∈ G | U g �= 0}.

Definition 1.2. We say that two G-gradings, U = ⊕
g∈G U g and U = ⊕

g∈G U ′
g , are isomorphic if there

exists an algebra automorphism ψ : U → U such that

ψ(U g) = U ′
g for all g ∈ G,

i.e., U = ⊕
g∈G U g and U = ⊕

g∈G U ′
g are isomorphic as G-graded algebras.

The purpose of this paper is to classify, for a given abelian group G , the isomorphism classes of
G-gradings on the classical simple Lie algebras of types An (n � 1), Bn (n � 2), Cn (n � 3) and Dn

(n > 4), in terms of numerical and group-theoretical invariants. Descriptions of such gradings were
obtained in [4,8,5,2,1], but the question of distinguishing non-isomorphic gradings was not addressed
in those papers. Also, A. Elduque [13] has recently found a counterexample to [8, Proposition 6.4],
which was used in the description of gradings on Lie algebras of type A. The fine gradings (i.e., those
that cannot be refined) on Lie algebras of types A, B, C and D (including D4) have been classified,
up to equivalence, in [13] over algebraically closed fields of characteristic zero. For a discussion of the
difference between classification up to equivalence and classification up to isomorphism see [16]. The
two kinds of classification cannot be easily obtained from each other.

We will assume throughout this paper that the ground field F is algebraically closed. We will
usually assume that char F �= 2 and in one case also char F �= 3. We obtain a description of gradings
in type A without using [8, Proposition 6.4] and with methods simpler than those in [2,1]. We also
obtain invariants that allow us to distinguish among non-isomorphic gradings in types A, B, C and D.

The paper is structured as follows. In Section 2 we recall the description of G-gradings on a matrix
algebra R = Mn(F) and determine when two such gradings are isomorphic (Theorem 2.6). We also
obtain a canonical form for an anti-automorphism of R that preserves the grading and restricts to an
involution on the identity component Re (Theorem 2.10). In particular, this allows us to classify (up
to isomorphism) the pairs (R,ϕ) where R = Mn(F) is G-graded and ϕ is an involution that preserves
the grading (Corollary 2.15). In Section 3 we use affine group schemes to show how one can reduce
the classification of G-gradings on classical simple Lie algebras to the classification of G-gradings
on R = Mn(F) and of the pairs (R,ϕ) where ϕ is an involution or an anti-automorphism satisfying
certain properties. In Section 4 we obtain a classification of G-gradings on simple Lie algebras of
type A—see Theorem 4.9. Finally, in Section 5 we state a classification of G-gradings on simple Lie
algebras of types B, C and D (except D4)—see Theorem 5.2, which is an immediate consequence of
Corollary 2.15.

2. Gradings on matrix algebras

Let R = Mn(F) where F is an algebraically closed field of arbitrary characteristic. Let G be an
abelian group. A description of G-gradings on R was obtained in [3,7,6]. In this section we restate
that description in a slightly different form and obtain invariants that allow us to distinguish among
non-isomorphic gradings. Criteria for isomorphism of the so-called “elementary” gradings (see below)
on matrix algebras Mn(F) and on the algebra of finitary matrices were obtained in [11] and [9],
respectively.
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We start with gradings R = ⊕
g∈G R g with the property dim R g � 1 for all g ∈ G . As shown in the

proof of [3, Theorem 5], R is then a graded division algebra, i.e., any nonzero homogeneous element is
invertible in R . Consequently, the support T ⊂ G of the grading is a subgroup. Following [13], we will
call such R = ⊕

g∈G R g a division grading (the terms used in [3,7,6] and in [14] are “fine gradings” and

“Pauli gradings”, respectively). Note that since R ∼= F
σ T is semisimple, char F does not divide n2 = |T |.

For each t ∈ T , let Xt be a nonzero element in the component Rt . Then

Xu Xv = σ(u, v)Xuv

for some nonzero scalar σ(u, v). Clearly, the function σ : T × T → F
× is a 2-cocycle, and the G-graded

algebra R is isomorphic to the twisted group algebra F
σ T (with its natural T -grading regarded as a

G-grading). Rescaling the elements Xt corresponds to replacing σ with a cohomologous cocycle. Let

βσ (u, v) := σ(u, v)

σ (v, u)
.

Then β = βσ depends only on the class of σ in H2(T ,F
×) and β : T × T → F

× is an alternating
bicharacter, i.e., it is multiplicative in each variable and has the property β(t, t) = 1 for all t ∈ T .

Clearly, Xu Xv = β(u, v)Xv Xu . Since the centre Z(R) is spanned by the identity element, β is non-
degenerate in the sense that β(u, t) = 1 for all u ∈ T implies t = e. Conversely, if σ is a 2-cocycle such
that βσ is nondegenerate, then F

σ T is a semisimple associative algebra whose centre is spanned
by the identity element, so F

σ T is isomorphic to R . Therefore, the isomorphism classes of division
G-gradings on R = Mn(F) with support T ⊂ G are in one-to-one correspondence with the classes
[σ ] ∈ H2(T ,F

×) such that βσ is nondegenerate.
The classes [σ ] and the corresponding gradings on R can be found explicitly as follows. As shown

in the proof of [3, Theorem 5], there exists a decomposition of T into the direct product of cyclic
subgroups:

T = H ′
1 × H ′′

1 × · · · × H ′
r × H ′′

r (1)

such that H ′
i × H ′′

i and H ′
j × H ′′

j are β-orthogonal for i �= j, and H ′
i and H ′′

i are in duality by β . Denote
by �i the order of H ′

i and H ′′
i . If we pick generators ai and bi for H ′

i and H ′′
i , respectively, then εi :=

β(ai,bi) is a primitive �i -th root of unity, and all other values of β on the elements a1,b1, . . . ,ar,br

are 1. Pick elements Xai ∈ Rai and Xbi ∈ Rbi such that X�i
ai

= X�i
bi

= 1. Then we obtain an isomorphism
F

σ T → M�1 (F) ⊗ · · · ⊗ M�r (F) defined by

Xai 
→ I ⊗ · · · ⊗ I ⊗ Xi ⊗ I ⊗ · · · ⊗ I and Xbi 
→ I ⊗ · · · ⊗ I ⊗ Yi ⊗ I ⊗ · · · ⊗ I, (2)

where

Xi =

⎡
⎢⎢⎢⎣

εn−1
i 0 0 . . . 0 0

0 εn−2
i 0 . . . 0 0

. . .

0 0 0 . . . εi 0
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎦ and Yi =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . .

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎤
⎥⎥⎥⎦ (3)

are in the i-th factor, M�i (F).
It follows that the class [σ ] ∈ H2(T ,F

×), and hence the isomorphism class of the G-graded algebra
F

σ T , is uniquely determined by β = βσ . Conversely, since the relation Xu Xv = β(u, v)Xv Xu does not
change when we rescale Xu and Xv , the values of β are determined by the G-grading. We summarize
our discussion in the following
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Proposition 2.1. There exist division G-gradings on R = Mn(F) with support T ⊂ G if and only if char F does
not divide n and T ∼= Z

2
�1

×· · ·×Z
2
�r

where �1 · · ·�r = n. The isomorphism classes of division G-gradings with

support T are in one-to-one correspondence with nondegenerate alternating bicharacters β : T × T → F
× .

We also note that taking

X
(a

i1
1 ,b

j1
1 ,...,air

r ,b jr
r )

= Xi1
a1 X j1

b1
· · · Xir

ar
X jr

br
,

we obtain a representative of the cohomology class [σ ] that is multiplicative in each variable, i.e.,
it is a bicharacter (not alternating unless T is the trivial subgroup). In what follows, we will always
assume that σ is chosen in this way.

Definition 2.2. A concrete representative of the isomorphism class of division G-graded algebras with
support T and bicharacter β can be obtained as follows. First decompose T as in (1) and pick gener-
ators a1,b1, . . . ,ar,br . Then define a grading on M�i (F) by declaring that Xi has degree ai and Yi has
degree bi , where Xi and Yi are given by (3) and εi = β(ai,bi). Then M�1 (F)⊗· · ·⊗ M�r (F) with tensor
product grading is a representative of the desired class. We will call any representative obtained in
this way a standard realization.

If R has a division grading, then its structure is quite rigid. Any automorphism of the graded alge-
bra R must send Xt to a scalar multiple of itself, hence it is given by Xt 
→ λ(t)Xt where λ : T → F

× is
a character of T . Since β is nondegenerate, it establishes an isomorphism between T and T̂ . It follows
that the automorphism of R corresponding to λ is given by X 
→ X−1

t X Xt where t ∈ T is determined
by β(u, t) = λ(u) for all u ∈ T .

It follows from [8, Lemma 6.1] that the graded algebra R admits anti-automorphisms only when
T is an elementary 2-group (and hence char F �= 2 or T is trivial). In this case, we can regard T as
a vector space over the field of order 2 and think of σ(u, v) as a bilinear form on T (recall that
σ is chosen so that it is a bicharacter). Hence σ(t, t) is a quadratic form, and β(u, v) is the polar
bilinear form for σ(t, t). Note that σ(t, t) depends on the choice of σ , so it is not an invariant of the
graded algebra R . In fact, any quadratic form with polar form β(u, v) can be achieved by changing
generators ai,bi in the i-th copy of Z

2
2. However, once we fix a standard realization of R , σ(t, t)

is uniquely determined. Following the usual convention regarding quadratic forms, we will denote
σ(t, t) by β(t) so that β(u, v) = β(uv)β(u)β(v). Note that

Xβ = β(u)X for all X ∈ Ru, u ∈ T , (4)

is an involution of the graded algebra R . Hence any anti-automorphism of the graded algebra R
is given by X 
→ X−1

t Xβ Xt for a suitable t ∈ T . In the standard realization of R as M2(F)⊗r , the
involution β is given by matrix transpose on each slot of the tensor power. We summarize the above
discussion for future reference:

Proposition 2.3. Suppose R = Mn(F) has a division G-grading with support T ⊂ G and bicharacter β . Then
the mapping that sends t ∈ T to the inner automorphism X 
→ X−1

t X Xt is an isomorphism between T and the
group of automorphisms AutG(R) of the graded algebra R. The graded algebra R admits anti-automorphisms
if and only if T is an elementary 2-group. If this is the case, then, in any standard realization of R, the map-
ping X 
→ t X is an involution of the graded algebra R. This involution can be written in the form (4), where
β : T → {±1} is a quadratic form. The bicharacter β(u, v) is the polar bilinear form associated to β . The group
AutG(R) of automorphisms and anti-automorphisms of the graded algebra R is equal to AutG(R) × 〈β〉. In
particular, any anti-automorphism of the graded algebra R is an involution, given by X 
→ X−1

t Xβ Xt for a
uniquely determined t ∈ T .
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We now turn to general G-gradings on R . As shown in [3,7,6], there exist graded unital subalgebras
C and D in R such that D ∼= M�(F) has a division grading, C ∼= Mk(F) has an elementary grading given
by a k-tuple (g1, . . . , gk) of elements of G:

C g = Span
{

Eij
∣∣ g−1

i g j = g
}

for all g ∈ G,

where Eij is a basis of matrix units in C , and we have an isomorphism C ⊗ D → R given by c⊗d 
→ cd.
Moreover, the intersection of the support {g−1

i g j} of the grading on C and the support T of the
grading on D is equal to {e}.

Without loss of generality, we may assume that the k-tuple has the form

(
g(k1)

1 , . . . , g(ks)
s

)
where the elements g1, . . . , gs are pairwise distinct and we write g(q) for g, . . . , g︸ ︷︷ ︸

q times

.

It is important to note that the subalgebras C and D are not uniquely determined. We are now
going to obtain invariants of the graded algebra R . The partition k = k1 + · · · + ks gives a block de-
composition of C . Let ei be the block-diagonal matrix diag(0, . . . , Iki , . . . ,0) where Iki is in the i-th
position, i = 1, . . . , s. Consider the Peirce decomposition of C corresponding to the orthogonal idem-
potents e1, . . . , es: Cij = ei Ce j . We will write Ci instead of Cii for brevity. Then the identity component
is

Re = C1 ⊗ I ⊕ · · · ⊕ Cs ⊗ I.

It follows that the idempotents e1, . . . , es and the (non-unital) subalgebras C1, . . . , Cs of R are
uniquely determined (up to permutation). It is easy to verify that the centralizer of Re in R is equal
to e1 ⊗ D ⊕· · ·⊕es ⊗ D . Hence the (non-unital) subalgebras Di := ei ⊗ D of R are uniquely determined
(up to permutation). All Di are isomorphic to D as G-graded algebras, so the isomorphism class of
D is uniquely determined. This gives us invariants T and β according to Proposition 2.1. However,
there is no canonical way to choose the isomorphisms of D with Di . According to Proposition 2.3, the
possible choices are parameterized by ti ∈ T , i = 1, . . . , s. If we fix isomorphisms ηi : D → Di , then
each Peirce component Rij = ei Re j becomes a D-bimodule by setting d · r = ηi(d)r and r · d = rη j(d)

for all d ∈ D and r ∈ Rij . Taking ηi(d) = ei ⊗ d for all d ∈ D , we recover the subspaces Cij for i �= j as
the centres of these bimodules:

Cij = {r ∈ Rij | d · r = r · d for all d ∈ D}.
Also, the subalgebra D of R can be identified:

D = {
η1(d) + · · · + ηs(d)

∣∣ d ∈ D
}
.

If we replace ηi by η′
i(d) = ηi(X−1

ti
dXti ), then we get C ′

i j = ηi(X−1
ti

)Cijη j(Xt j ). Let C ′ = C1 ⊕ · · · ⊕ Cs ⊕⊕
i �= j C ′

i j and D ′ = {η′
1(d) + · · · + η′

s(d) | d ∈ D}. Then C ′ and D ′ are graded unital subalgebras of R .

Let Ψ = e1 ⊗ Xt1 + · · · + es ⊗ Xts . Then Ψ is an invertible matrix and the mapping ψ(X) = Ψ −1 XΨ

is an automorphism of the (ungraded) algebra R that sends C to C ′ and D to D ′ . The restriction
of ψ to D preserves the grading, whereas the restriction of ψ to C sends homogeneous elements
of degree g−1

i g j to homogeneous elements of degree t−1
i g−1

i g jt j (i.e., “shifts” the grading in the

(i, j)-th Peirce components by t−1
i t j ). We conclude that the G-grading of R associated to the k-tuple

(g(k1)
1 , . . . , g(ks)

s ) is isomorphic to the G-grading associated to the k-tuple ((g1t1)
(k1), . . . , (gsts)

(ks)).
Finally, we note that the cosets g−1

i g j T are uniquely determined by the G-graded algebra R , because
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they are the supports of the grading on the Peirce components Rij (i �= j). We have obtained an
irredundant classification of G-gradings on R .

To state the result precisely, we introduce some notation. Let

κ = (k1, . . . ,ks) where ki are positive integers.

We will write |κ | for k1 + · · · + ks and ei , i = 1, . . . , s, for the orthogonal idempotents in M|κ |(F)

associated to the block decomposition determined by κ . Let

γ = (g1, . . . , gs) where gi ∈ G are such that g−1
i g j /∈ T for all i �= j.

Definition 2.4. We will write (κ,γ ) ∼ (̃κ, γ̃ ) if κ and κ̃ have the same number of components s and
there exist an element g ∈ G and a permutation π of the symbols {1, . . . , s} such that k̃i = kπ(i) and
g̃i ≡ gπ(i)g (mod T ), for all i = 1, . . . , s.

Definition 2.5. Let D be a standard realization of division G-graded algebra with support T ⊂ G and
bicharacter β . Let κ and γ be as above. Let C = M|κ |(F). We endow the algebra M|κ |(D) = C ⊗ D with
a G-grading by declaring the degree of U ⊗d to be g−1

i tg j for all U ∈ ei Ce j and d ∈ Dt . We will denote
this G-graded algebra by M(G, T , D, κ,γ ). By abuse of notation, we will also write M(G, T , β,κ,γ ),
since the isomorphism class of D is uniquely determined by β .

Theorem 2.6. Let F be an algebraically closed field of arbitrary characteristic. Let G be an abelian group.
Let R = ⊕

g∈G R g be a grading of the matrix algebra R = Mn(F). Then the G-graded algebra R is isomor-
phic to some M(G, T , β,κ,γ ) where T ⊂ G is a subgroup, β : T × T → F

× is a nondegenerate alternating
bicharacter, κ and γ are as above with |κ |√|T | = n. Two G-graded algebras M(G, T1, β1, κ1, γ1) and
M(G, T2, β2, κ2, γ2) are isomorphic if and only if T1 = T2 , β1 = β2 and (κ1, γ1) ∼ (κ2, γ2).

Remark 2.7. In fact, it follows from the above discussion that, for any permutation π as in Defi-
nition 2.4, there exists an isomorphism from M(G, T , β, κ̃, γ̃ ) to M(G, T , β,κ,γ ) that sends ẽi to
eπ(i) . We can construct such an isomorphism explicitly in the following way. Let P = Pπ be the
block matrix with Iki in the (i,π(i))-th positions and 0 elsewhere (i.e., the block-permutation matrix
corresponding to π ). Pick ti ∈ T such that g̃i = gπ(i)tπ(i)g and let B be the block-diagonal matrix
e1 ⊗ Xt1 + · · · + es ⊗ Xts . Then the map X 
→ (B P )X(B P )−1 has the desired properties. We will refer
to isomorphisms of this type as monomial.

Let Sym(s) be the group of permutations on {1, . . . , s}. Let Aut(κ,γ ) be the subgroup of Sym(s)
that consists of all π such that, for some g ∈ G , we have ki = kπ(i) and gi ≡ gπ(i)g (mod T ) for all
i = 1, . . . , s.

Proposition 2.8. The group of automorphisms AutG(R) of the graded algebra R = M(G, T , β,κ,γ ) is an
extension of Aut(κ,γ ) by PGLκ (F) × AutG(D) where

PGLκ (F) = (
GLκ1(F) × · · · × GLκs (F)

)
/F

×,

where F
× is identified with nonzero scalar matrices.

Proof. Any ψ ∈ AutG(R) leaves the identity component Re invariant and hence permutes the idem-
potents e1, . . . , es . This gives a homomorphism f : AutG(R) → Sym(s). Looking at the supports of
the Peirce components, we see that f (ψ) ∈ Aut(κ,γ ). Conversely, any element of Aut(κ,γ ) is in
im f by Remark 2.7, since it comes from a monomial automorphism of the graded algebra R . Fi-
nally, any ψ ∈ ker f leaves Ci and Di invariant and hence is given by ψ(X) = Ψ −1 XΨ where
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Ψ = B1 ⊗ Q 1 ⊕ · · · ⊕ Bs ⊗ Q s for some Bi ∈ GLκi (F) and Q i ∈ D . In view of Proposition 2.3, we
may assume that Q i = Xti for some ti ∈ T . It is easy to see that ψ preserves the grading if and only
if t1 = · · · = ts . The result follows. �

In order to classify gradings on Lie algebras of types B, C and D, we will need to study involutions
on G-graded matrix algebras. A description of such involutions was given in [5]. Here we will slightly
simplify that description and obtain invariants that will allow us to distinguish among isomorphism
classes. We start with a more general situation, which we will need for the classification of gradings
in type A.

Definition 2.9. Let G be an abelian group and let U = ⊕
g∈G U g be a G-graded algebra. We will say

that an anti-automorphism ϕ of U is compatible with the grading if ϕ(U g) = U g for all g ∈ G . If U1
and U2 are G-graded algebras and ϕ1 and ϕ2 are anti-automorphisms on U1 and U2, respectively,
compatible with the grading, then we will say that (U ,ϕ1) and (U ,ϕ2) are isomorphic if there exists
an isomorphism ψ : U1 → U2 of G-graded algebras such that ϕ1 = ψ−1ϕ2ψ .

Suppose R = Mn(F) is G-graded and there exists an anti-automorphism ϕ compatible with the
grading and such that ϕ2|Re = id. Then ϕ leaves some of the components of Re invariant and swaps
the remaining components in pairs. Without loss of generality, we may assume that ei are ϕ-invariant
for i = 1, . . . ,m and not ϕ-invariant for i > m. It will be convenient to change the notation and write
e′

m+1, e′′
m+1, . . . , e′

k, e′′
k so that ϕ swaps e′

i and e′′
i for i > m. (Thus the total number of orthogonal

idempotents in question is 2k − m.) It will also be convenient to distinguish ϕ-invariant idempotents
of even and odd rank. Thus we assume that e1, . . . , e� have odd rank and e�+1, . . . , em have even rank.
We will change the notation for κ and γ accordingly:

κ = (q1, . . . ,q�,2q�+1, . . . ,2qm,qm+1,qm+1, . . . ,qk,qk) (5)

where qi are positive integers with q1, . . . ,q� odd, and

γ = (
g1, . . . , g�, g�+1, . . . , gm, g′

m+1, g′′
m+1, . . . , g′

k, g′′
k

)
(6)

where gi ∈ G are such that g−1
i g j /∈ T for all i �= j.

As shown in [8,5], the existence of the anti-automorphism ϕ places strong restrictions on the G-
grading. First of all, note that the centralizer of Re in R , which is equal to D1 ⊕ · · · ⊕ Dm ⊕ D ′

m+1 ⊕
D ′′

m+1 ⊕ · · · ⊕ D ′
k ⊕ D ′′

k , is ϕ-invariant. Since e1, . . . , em are ϕ-invariant and belong to D1, . . . , Dm ,
respectively, we see that D1, . . . , Dm are also ϕ-invariant. By a similar argument, ϕ swaps D ′

i and
D ′′

i for i > m. Each of the Di , D ′
i and D ′′

i is an isomorphic copy of D , so we see that D admits an
anti-automorphism. By Proposition 2.3, T must be an elementary 2-group and we have a standard
realization D ∼= M2(F)⊗r .

Since ϕ preserves the G-grading and ϕ(ei Re j) = e j Rei for i, j � m, the supports of these two
Peirce components must be equal, which gives g−1

i g j ≡ g−1
j gi (mod T ) for i, j � m. Similarly,

ϕ(e′
i Re′′

j ) = e′
j Re′′

i implies (g′
i)

−1 g′′
j ≡ (g′

j)
−1 g′′

i (mod T ) for i, j > m. Also, ϕ(ei Re′
j) = e′′

j Rei implies

g−1
i g′

j ≡ (g′′
j )

−1 gi (mod T ) for i � m and j > m. These conditions can be summarized as follows:

g2
1 ≡ · · · ≡ g2

m ≡ g′
m+1 g′′

m+1 ≡ · · · ≡ g′
k g′′

k (mod T ). (7)

If γ satisfies (7), then we have

g2
1t1 = · · · = g2

mtm = g′
m+1 g′′

m+1tm+1 = · · · = g′
k g′′

k tk
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for some t1, . . . , tk ∈ T . We can replace the G-grading by an isomorphic one so that γ satisfies

g2
1t1 = · · · = g2

mtm = g′
m+1 g′′

m+1 = · · · = g′
k g′′

k . (8)

Indeed, it suffices to replace g′′
i by g′′

i ti , i = m + 1, . . . ,k (which does not change the cosets mod T ).

Theorem 2.10. Let F be an algebraically closed field, char F �= 2. Let G be an abelian group. Let R =
M(G, T , β,κ,γ ). Assume that R admits an anti-automorphism ϕ that is compatible with the grading and
satisfies ϕ2|Re = id. Write κ and γ in the form (5) and (6), respectively. Then T is an elementary 2-group and
γ satisfies (7). Up to an isomorphism of the pair (R,ϕ), γ satisfies (8) for some t1, . . . , tm ∈ T and ϕ is given
by ϕ(X) = Φ−1( t X)Φ for all X ∈ R, where matrix Φ has the following block-diagonal form:

Φ =
�∑

i=1

Iqi ⊗ Xti ⊕
m∑

i=�+1

Si ⊗ Xti ⊕
k∑

i=m+1

(
0 Iqi

μi Iqi 0

)
⊗ I (9)

where, for i = � + 1, . . . ,m, each Si is either I2qi or
( 0 Iqi

−Iqi 0

)
, and μm+1, . . . ,μk are nonzero scalars.

Proof. There exists an invertible matrix Φ such that ϕ is given by ϕ(X) = Φ−1( t X)Φ for all X ∈ R .
Recall that conjugating ϕ by the automorphism ψ(X) = Ψ −1 XΨ replaces matrix Φ by tΨ ΦΨ , i.e., Φ

is transformed as the matrix of a bilinear form.
Recall that we fixed the idempotents

e1, . . . , e�, e�+1, . . . , em, e′
m+1, e′′

m+1, . . . , e′
k, e′′

k . (10)

It is also convenient to introduce ei = e′
i + e′′

i for i = m + 1, . . . ,k.
Following the proof of [5, Lemma 6 and Proposition 1], we see that, up to an automorphism of the

G-graded algebra R , Φ has the following block-diagonal form—in agreement with the idempotents
given by (10):

Φ =
�∑

i=1

Si Yi ⊗ Q i ⊕
m∑

i=�+1

Si Yi ⊗ Q i ⊕
k∑

i=m+1

Si Yi ⊗ Q i .

(This is formula (20) of just cited paper, rewritten according to our present notation.) For i = 1, . . . ,m,
the matrix Yi is in the centralizer of the simple algebra Ci , i.e., has the form Yi = ξi Iqi . For i =
m + 1, . . . ,k, the matrix Yi is in the centralizer of the semisimple algebra C ′

i ⊕ C ′′
i , i.e., has the form

Yi = diag(ηi Iqi , ξi Iqi ). Each Q i is in Di , and the map X 
→ Q −1
i ( t X)Q i is an anti-automorphism of

D . Hence, by Proposition 2.3, each Q i is, up to a scalar multiple, of the form Xti , for an appropriate
choice of ti ∈ T . The scalar can be absorbed in Yi . Finally, the matrix Si is Iqi for i = 1, . . . , �, either

I2qi or
( 0 Iqi

−Iqi 0

)
for i = � + 1, . . . ,m, and

( 0 Iqi
Iqi 0

)
for i = m + 1, . . . ,k. This allows us to rewrite the

above formula as follows:

Φ =
�∑

i=1

ξi Iqi ⊗ Xti ⊕
m∑

i=�+1

ξi Si ⊗ Xti ⊕
k∑

i=m+1

(
0 ξi Iqi

ηi Iqi 0

)
⊗ Xti .

Here ξi , ηi are some nonzero scalars. If we now apply the inner automorphism of the graded algebra
R given by the matrix P = 1√ e1 ⊗ I +· · ·+ 1√ ek ⊗ I , then ϕ is transformed to the anti-automorphism
ξ1 ξk
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given by the following matrix (which we again denote by Φ):

Φ =
�∑

i=1

Iqi ⊗ Xti ⊕
m∑

i=�+1

Si ⊗ Xti ⊕
k∑

i=m+1

(
0 Iqi

μi Iqi 0

)
⊗ Xti ,

for an appropriate set of nonzero scalars μm+1, . . . ,μk . It can be easily verified (and is shown in
the proof of [5, Theorem 3]) that t1, . . . , tk satisfy the following condition: g2

1t1 = · · · = g2
mtm =

g′
m+1 g′′

m+1tm+1 = · · · = g′
s g′′

s ts .
Finally, the inner automorphism ψ(X) = Ψ −1 XΨ of R where

Ψ −1 = e1 ⊗ I + · · · + em ⊗ I + e′
m+1 ⊗ I + e′′

m+1 ⊗ Xtm+1 + · · · + e′
k ⊗ I + e′′

k ⊗ Xtk

sends the G-grading to the one given by

(
g1, . . . , gm, g′

m+1, g′′
m+1tm+1, . . . , g′

k, g′′
k tk

)
and transforms ϕ to the anti-automorphism given by a matrix of form (9). �

If ϕ is an involution on R , then one can get rid of the parameters μm+1, . . . ,μs , and the selection
of S�+1, . . . , Sm is uniquely determined. Indeed, the matrix Φ is then either symmetric or skew-
symmetric. In the first case, ϕ is called an orthogonal (or transpose) involution. In the second case, ϕ
is called a symplectic involution. Set sgn(ϕ) = 1 if ϕ is orthogonal and sgn(ϕ) = −1 if ϕ is symplectic.
Similarly, set sgn(Si) = 1 if t Si = Si and sgn(Si) = −1 if t Si = −Si . We restate the main result of [5]
in our notation (and setting tm+1 = · · · = tk = e):

Theorem 2.11. (See [5, Theorem 3].) Under the conditions of Theorem 2.10, assume that ϕ2 = id. Then, up to an
isomorphism of the pair (R,ϕ), γ satisfies (8) for some t1, . . . , tm ∈ T and ϕ is given by ϕ(X) = Φ−1( t X)Φ

for all X ∈ R, where matrix Φ has the following block-diagonal form:

Φ =
�∑

i=1

Iqi ⊗ Xti ⊕
m∑

i=�+1

Si ⊗ Xti ⊕
k∑

i=m+1

Si ⊗ I (11)

where

• for i = � + 1, . . . ,m, each Si is either I2qi or
( 0 Iqi

−Iqi 0

)
, and

• for i = m + 1, . . . ,k, all Si are either
( 0 Iqi

Iqi 0

)
or

( 0 Iqi
−Iqi 0

)
such that the following condition is satisfied:

sgn(ϕ) = β(t1) = · · · = β(t�)

= β(t�+1) sgn(S�+1) = · · · = β(tm) sgn(Sm)

= sgn(Sm+1) = · · · = sgn(Sk). (12)

Conversely, if γ satisfies (8) and condition (12) holds, then Φ defines an involution of the type indicated by
sgn(ϕ) on the G-graded algebra R.
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It is convenient to introduce the following notation (for m > 0):

τ = (t1, . . . , tm). (13)

Note that for the elements t1, . . . , tm in (8), the ratios t−1
i t j are uniquely determined by the cosets

of g1, . . . , gm mod T , so it is sufficient to specify only one ti to find τ .

Definition 2.12. We will say that γ is ∗-admissible if it satisfies (7) and, for some t1, . . . , t� ∈ T , we
have g2

1t1 = · · · = g2
� t� and

β(t1) = · · · = β(t�). (14)

(If � � 1, then condition (14) is automatically satisfied.)

Definition 2.13. Let T ⊂ G be an elementary 2-group (of even rank) with a nondegenerate alternating
bicharacter β . Suppose γ is ∗-admissible, and γ and τ satisfy (8) and (14). If � > 0, let δ be the
common value of β(t1), . . . , β(t�). If � = 0, select δ ∈ {±1} arbitrarily. Consider R = M(G, T , β,κ,γ ).
Let Φ be the matrix given by (11) where the matrices Si are selected so that Eq. (12) holds with
sgn(ϕ) = δ. Then, by Theorem 2.11, ϕ(X) = Φ−1( t X)Φ is an involution on R that is compatible with
the grading. We will denote (R,ϕ) defined in this way by M∗(G, T , β,κ,γ , τ , δ). (Here τ is empty if
m = 0.)

Definition 2.14. Referring to Definition 2.13, we will write (κ,γ , τ ) ≈ (̃κ, γ̃ , τ̃ ) if κ and κ̃ have the
same number of components of each type, i.e., the same values of �, m and k, and there exist an
element g ∈ G and a permutation π of the symbols {1, . . . ,k} preserving the sets {1, . . . , �}, {� +
1, . . . ,m} and {m + 1, . . . ,k} such that q̃i = qπ(i) for all i, g̃i ≡ gπ(i)g (mod T ) for all i = 1, . . . ,m,
{̃g′

i, g̃′′
i } ≡ {g′

π(i)g, g′′
π(i)g} (mod T ) for all i = m + 1, . . . ,k, and

• if m > 0, then t̃i = tπ(i) for all i = 1, . . . ,m;
• if m = 0, then g̃′

i g̃′′
i = g′

π(i)g′′
π(i)g2 for some (and hence all) i = 1, . . . ,k.

In the case m = 0, τ is empty, so we may write (κ,γ ) ≈ (̃κ, γ̃ ).

Corollary 2.15. Let char F �= 2 and R = M(G, T , β,κ,γ ). Then the G-graded algebra R admits an invo-
lution if and only if T is an elementary 2-group and γ is ∗-admissible. If ϕ is an involution on R, then
(R,ϕ) is isomorphic to some M∗(G, T , β,κ,γ , τ , δ) where δ = sgn(ϕ). Two G-graded algebras with involu-
tion, M∗(G, T1, β1, κ1, γ1, τ1, δ1) and M∗(G, T2, β2, κ2, γ2, τ2, δ2), are isomorphic if and only if T1 = T2 ,
β1 = β2 , (κ1, γ1, τ1) ≈ (κ2, γ2, τ2) and δ1 = δ2 .

Proof. The first two statements are a combination of Theorems 2.10 and 2.11. It remains to prove the
last statement.

Let R1 = M(G, T1, β1, κ1, γ1), R2 = M(G, T2, β2, κ2, γ2) and let ϕ1 and ϕ2 be the corresponding
involutions. Suppose T1 = T2, β1 = β2, and (κ1, γ1, τ1) ≈ (κ2, γ2, τ2). Then, by Theorem 2.6, there
exists an isomorphism of G-graded algebras ψ : R1 → R2. By Remark 2.7, ψ can be chosen to be a
monomial isomorphism associated to the permutation π in Definition 2.14. The matrix of the involu-
tion ψ−1ϕ2ψ on R1 is then obtained from the matrix of ϕ2 by permuting the blocks on the diagonal
so that they align with the corresponding blocks of ϕ1 and possibly multiplying some of the blocks
by −1 (the extra condition for the case m = 0 in Definition 2.14 guarantees that the second tensor fac-
tor in each block remains I). If δ1 = δ2, then ψ−1ϕ2ψ can be transformed to ϕ1 by an automorphism
of the G-graded algebra R1 (see the proof of Theorem 2.10).

Conversely, suppose there exists an isomorphism ψ : (R1,ϕ1) → (R2,ϕ2). First of all, δ1 and δ2 are
determined by the type of involution (orthogonal or symplectic), so δ1 = δ2. By Theorem 2.6, we also
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have T1 = T2, β1 = β2, (κ1, γ1) ∼ (κ2, γ2). The partitions of κ1 and κ2 according to {1, . . . , �}, {� +
1, . . . ,m} and {m + 1, . . . ,k} are determined by ϕ1 and ϕ2, hence they must correspond under ψ . At
the same time, for some g ∈ G , the cosets of γ1 gT and γ2T must correspond under ψ up to switching
g′

i with g′′
i (i > m). In the case m > 0, by Proposition 2.3, τ1 and τ2 are uniquely determined by the

restrictions of ϕ1 and ϕ2 to D1, . . . , Dm and hence must match under the permutation determined
by ψ . Therefore, in this case (κ1, γ1, τ1) ≈ (κ2, γ2, τ2). It remains to consider the case m = 0. Looking
at the description of the automorphism group given by Proposition 2.8, we see that ψ = ψ0α where
ψ0 is a monomial isomorphism and α is in PGLκ1 (F) × AutG(D). The action of ψ0 on ϕ2 leads to the
permutation of blocks and the replacement of the second tensor factor I by Xt0 for some t0 ∈ T . Then
α must transform ψ−1

0 ϕ2ψ0 to ϕ1. The effect of α on one block is the following (we omit subscripts
to simplify notation):

((
t A 0
0 t B

)
⊗ t Xu

)((
0 I
ε I 0

)
⊗ Xt0

)((
A 0
0 B

)
⊗ Xu

)
= ±

(
0 t AB

ε t B A 0

)
⊗ Xt0 .

We see that α cannot change t0. It follows that t0 = e and (κ1, γ1) ≈ (κ2, γ2). �
3. Correspondence between Lie gradings and associative gradings

Let U be an algebra and let G be a group. Then a G-grading on U is equivalent to a structure
of an FG-comodule algebra (see e.g. [17] for background). If we assume that U is finite-dimensional
and G is abelian and finitely generated, then the comodule structure can be regarded as a morphism
of (affine) algebraic group schemes G D → Aut(U ) where G D is the Cartier dual of G and Aut(G) is
the automorphism group scheme of U (see e.g. [19] for background). Two G-gradings are isomorphic
if and only if the corresponding morphisms G D → Aut(U ) are conjugate by an automorphism of U .
Note also that, if U is finite-dimensional, then we may always assume without loss of generality that
G is finitely generated (just replace G by the subgroup generated by the support of the grading).

If char F = 0, then G D = Ĝ , the algebraic group of characters on G , and Aut(G) = Aut(G), the
algebraic group of automorphisms. If char F = p > 0, then we can write G = G0 × G1 where G0 has
no p-torsion and G1 is a p-group. Hence G D = Ĝ0 × G D

1 , where Ĝ0 is smooth and G D
1 is finite and

connected. The algebraic group Ĝ0 (which is equal to Ĝ) acts on U as follows:

χ ∗ X = χ(g)X for all X ∈ U g and g ∈ G.

The group scheme Aut(U ) contains the group Aut(U ) as the largest smooth subgroupscheme. The
tangent Lie algebra of Aut(U ) is Der(U ), so Aut(U ) is smooth if and only if Der(U ) equals the tangent
Lie algebra of the group Aut(U ).

We will be interested in the following algebras: Mn(F), psln(F), son(F) and spn(F), where
char F �= 2. In all these cases the automorphism group scheme is smooth, i.e., coincides with the
algebraic group of automorphisms (regarded as a group scheme). Indeed, for the associative alge-
bra R = Mn(F), it is well known that Aut(R) = PGLn(F) and Der(R) = pgln(F). For the Lie algebra
L = son(F) (n � 5, n �= 8) or spn(F) (n � 4), it is known that every automorphism of L is the conjuga-
tion by an element of On(F) or Spn(F), respectively—see [15] for the case char F = 0 and [18] for the
case char F = p (p �= 2). In particular, every automorphism of L is the restriction of an automorphism
of R . Similarly, every derivation of L is the restriction of a derivation of R (see e.g. [10]).

Let ϕ be the involution of R such that L = K(R,ϕ), the space of skew-symmetric elements with
respect to ϕ . Then the projectivizations of the groups On(F) and Spn(F) are equal to Aut(R,ϕ), and
their tangent algebras are equal to Der(R,ϕ). Hence the restriction map θ : Aut(R,ϕ) → Aut(L) is
a surjective homomorphism of algebraic groups such that dθ : Der(R,ϕ) → Der(L) is also surjective.
It follows that Aut(L) is smooth. Since L generates R as an associative algebra, both θ and dθ are
also injective. Hence θ : Aut(R,ϕ) → Aut(L) is an isomorphism of algebraic groups. For G-gradings
this means the following. Clearly, if R = ⊕

g∈G R g is a grading that is compatible with ϕ , then the
restriction Lg = R g ∩ L is a grading of L. Since θ : Aut(R,ϕ) → Aut(L) is an isomorphism and the
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automorphism groups are equal to the automorphism group schemes, the restriction map gives a
bijection between the isomorphism classes of G-gradings on L and the Aut(R,ϕ)-orbits on the set of
ϕ-compatible G-gradings on R . The orbits correspond to isomorphism classes of pairs (R,ϕ) where
R = Mn(F) is G-graded and ϕ is an involution on R that is compatible with the grading.

The case of L = psln(F) is more complicated. We have a homomorphism of algebraic groups
θ : Aut(R) → Aut(L) given by restriction and passing to cosets modulo the centre. It is well known
that this homomorphism is not surjective for n � 3, because the map X 
→ − t X is not an automor-
phism of the associative algebra R , but it is an automorphism of the Lie algebra R(−) and hence
induces an automorphism of L. Let Aut(R) be the group of automorphisms and anti-automorphisms
of R . Then we can extend θ to a homomorphism Aut(R) → Aut(L) by sending an anti-automorphism
ϕ of R to the map induced on L by −ϕ . This extended θ is surjective for any n � 3 if char F �= 2,3
(see [18]) and for any n > 3 if char F = 3 (see [10]). It is easy to verify that θ and dθ are injective and
hence θ is an isomorphism of algebraic groups (see e.g. [1, Lemma 5.3]). It is shown in [10] that, un-
der the same assumptions on char F, every derivation of L is induced by a derivation of R . It follows
that Aut(L) is smooth, i.e., Aut(L) = Aut(L).

Now let L = ⊕
g∈G Lg be a G-grading and let α : G D → Aut(L) be the corresponding morphism.

Then we have a morphism α̃ := θ−1α : G D → Aut(R), which gives a G-grading R = ⊕
g∈G R g on the

Lie algebra R(−) . The two gradings are related in the following way: Lg = (R g ∩ [R, R]) mod Z(R).
Set Λ = α̃−1(Aut(R)). Then Λ is a subgroupscheme of G D of index at most 2. Moreover, since G D

1
is connected, it is mapped by α̃ to Aut(R) and hence is contained in Λ. We have two possibilities:
either Λ = G D or Λ has index 2. Following [8], we will say that the G-grading on L has Type I in the
first case and has Type II in the second case. In Type I, the G-grading corresponding to α̃ is a grading
of R as an associative algebra. In Type II, we consider Λ⊥ , which is a subgroup of order 2 in G . Let h
be the generator of this subgroup. Note that, since char F �= 2, the element h is in G0.

Remark 3.1. For the readers more familiar with the language of Hopf algebras, there is an alternative
way to define the element h. The Hopf algebra F[Aut(R)] of regular functions on the algebraic group
Aut(R) has a group-like element f defined by f (ψ) = 1 if ψ is an automorphism and f (ψ) = −1
if ψ is an anti-automorphism. The morphism of group schemes α̃ : G D → Aut(R) corresponds to
a homomorphism of Hopf algebras F[Aut(R)] → FG . The element h is the image of f under this
homomorphism.

Let G = G/〈h〉. Then the restriction α̃ : Λ → Aut(R) corresponds to the coarsening of the G-grading
on R given by the quotient map G → G:

R =
⊕
g∈G

R g where R g = R g ⊕ R gh.

This G-grading is a grading of R as an associative algebra. The G-grading on R(−) can be recovered
as follows. Fix χ ∈ Ĝ0 = Ĝ such that χ(h) = −1. Then χ acts on R as −ϕ where ϕ is an anti-
automorphism preserving the G-grading. Then we have

R g = {
X ∈ R g

∣∣ −ϕ(X) = χ(g)X
} = {−ϕ(X) + χ(g)X

∣∣ X ∈ R g
}
.

Thus we obtain (1) a bijection between the isomorphism classes of G-gradings on L of Type I and the
Aut(R)-orbits on the set of G-gradings on R and (2) a bijection between the isomorphism classes of
G-gradings on L of Type II and Aut(R)-orbits on the set of pairs (R,ϕ) where R = Mn(F) is G-graded
and ϕ is an anti-automorphism on R that is compatible with the G-grading and has the property
ϕ2(X) = χ2 ∗ X for all X ∈ R .

Remark 3.2. If n = 2, then θ : Aut(R) → Aut(L) is an isomorphism, so there are no gradings of Type II.
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4. Gradings on Lie algebras of type A

Let L = psln(F) and R = Mn(F), where char F �= 2 and, for n = 3, also char F �= 3. Let L = ⊕
g∈G Lg

be a grading of L by an abelian group G . As discussed in the previous section, this grading belongs to
one of two types. Gradings of Type I are induced from G-gradings on the associative algebra R , which
have been classified in Theorem 2.6.

Definition 4.1. Let R = M(G, T , β,κ,γ ) and let Lg = (R g ∩ [R, R]) mod Z(R). We will denote the
G-graded algebra L obtained in this way as A(I)(G, T , β,κ,γ ).

Now assume that we have a grading of Type II. Then there is a distinguished element h ∈ G of
order 2. Let G = G/〈h〉. Then the G-grading on L is induced from a G-grading on the Lie algebra
R(−) that is obtained by refining a G-grading R = ⊕

g∈G R g on the associative algebra R . Let R =
M(G, T , β,κ,γ ) as a G-graded algebra. The refinement is obtained using the action of any character
χ ∈ Ĝ with χ(h) = −1, and the result does not depend on the choice of χ . So we fix χ ∈ Ĝ such that
χ(h) = −1.

Set ϕ(X) = −χ ∗ X for all X ∈ R . Then ϕ is an anti-automorphism of the G-graded algebra R .
Moreover, ϕ2(X) = χ2 ∗ X . Since χ2(h) = 1, we can regard χ2 as a character on G and hence its
action on X ∈ R g is given by χ2 ∗ X = χ2(g)X . In particular, ϕ2|Re = id. By Theorem 2.10, T is an
elementary 2-group, κ is given by (5) and γ is given by (6) with bars over the g ’s. We may also
assume that γ satisfies

g2
1t1 = · · · = g2

mtm = g′
m+1 g′′

m+1 = · · · = g′
s g′′

s (15)

for some t1, . . . , tm ∈ T , and ϕ is given by ϕ(X) = Φ−1( t X)Φ where

Φ =
�∑

i=1

Iqi ⊗ Xti
⊕

m∑
i=�+1

Si ⊗ Xti
⊕

k∑
i=m+1

(
0 Iqi

μi Iqi 0

)
⊗ I, (16)

where μi are nonzero scalars. We will use the notation τ introduced in (13).
Our goal now is to determine the parameters μi ∈ F

× that appear in the above formula. On the
one hand, the automorphism ϕ2 is the conjugation by matrix tΦ−1Φ given by

tΦ−1Φ =
�∑

i=1

β(ti)Iqi ⊗ I ⊕
m∑

i=�+1

β(ti) sgn(Si)I2qi ⊗ I ⊕
k∑

i=m+1

(
μi Iqi 0

0 μ−1
i Iqi

)
⊗ I.

On the other hand, ϕ2 acts as χ2. We now derive the conditions that are necessary and sufficient for
χ2 ∗ X = ( tΦ−1Φ)−1 X( tΦ−1Φ) to hold for all X ∈ R .

Recall the idempotents e1, . . . , ek ∈ C defined earlier (where ei = e′
i + e′′

i for i > m). We denote by
Uij any matrix in the Peirce component ei Ce j . Then, for 1 � i, j � m, we have, for all t ∈ T ,

χ2 ∗ (Uij ⊗ Xt) = χ2(g−1
i g jt

)
Uij ⊗ Xt

while

ϕ2(Uij ⊗ Xt) = ( tΦ−1Φ
)−1

(Uij ⊗ Xt)
( tΦ−1Φ

)
= β(ti) sgn(Si)β(t j) sgn(S j)(Uij ⊗ Xt).
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For m + 1 � i, j � k, we write Uij = ( A B
C D

)
according to the decompositions ei = e′

i + e′′
i and e j =

e′
j + e′′

j . Then, for all t ∈ T ,

χ2 ∗ (Uij ⊗ Xt) =
(

χ2((g′
i)

−1 g′
jt)A χ2((g′

i)
−1 g′′

j t)B

χ2((g′′
i )

−1 g′
jt)C χ2((g′′

i )
−1 g′′

j t)D

)
,

while

ϕ2(Uij ⊗ Xt) =
(

μ−1
i μ j A μ−1

i μ−1
j B

μiμ jC μiμ
−1
j D

)
.

For 1 � i � m and m + 1 � j � k, we write Uij = ( A B ) according to the decomposition e j = e′
j + e′′

j .

Then, for all t ∈ T ,

χ2 ∗ (Uij ⊗ Xt) = (
χ2(g−1

i g′
jt)A χ2(g−1

i g′′
j t)B

)
,

while

ϕ2(Uij ⊗ Xt) = β(ti) sgn(Si)
(
μ j A μ−1

j B
)
.

For m + 1 � i � k and 1 � j � m, we have a similar calculation.
By way of comparison, we derive χ2(t) = const for all t ∈ T , and so χ2(T ) = 1. Hence the natural

epimorphism π : G → G splits over T , i.e., π−1(T ) = T × 〈h〉, where T = π−1(T ) ∩ kerχ . So we may
identify T with T and write ti for the representative of the coset ti in T . Conversely, if π : G → G
splits over T , then χ2(T ) = 1.

In the case 1 � i, j � m, our relations are equivalent to β(ti) sgn(Si)χ
2(gi) = β(t j) sgn(S j)χ

2(g j).
Therefore, we have a fixed λ ∈ F

× such that

β(ti) sgn(Si)χ
2(gi) = λ for all i = 1, . . . ,m. (17)

In the case m + 1 � i, j � k, our relations are equivalent to

μ−1
i χ2(g′

i

) = μ−1
j χ2(g′

j

)
and

μ−1
i χ2(g′

i

) = μ jχ
2(g′′

j

)
.

Therefore, we have a fixed μ ∈ F
× such that

μ−1
i χ2(g′

i

) = μiχ
2(g′′

i

) = μ for all i = m + 1, . . . ,k. (18)

In the case 1 � i � m and m + 1 � j � k, our relations are equivalent to

μ−1
j χ2(g′

j

) = β(ti) sgn(Si)χ
2(gi) = μ jχ

2(g′′
j

)
. (19)

If both (17) and (18) are present (i.e., m �= 0,k), then (19) is equivalent to μ = λ. We have proved
that if the G-grading on R is the coarsening a G-grading on R(−) induced by π : G → G , and χ
acts on R as −ϕ , then π−1(T ) splits and conditions (17) and (18) hold with λ = μ. Conversely, if
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R = M(G, T , β,κ,γ ) is such that π−1(T ) splits, and an anti-automorphism ϕ is given by matrix (16)
such that (17) and (18) hold with λ = μ, then ϕ2 acts as χ2 on R and hence −ϕ defines a refinement
of the G-grading on R to a G-grading (as a vector space). The latter is automatically a grading of the
Lie algebra R(−) , since −ϕ is an automorphism of R(−) .

To summarize, we state the following

Proposition 4.2. Let h ∈ G be an element of order 2 and let π : G → G = G/〈h〉 be the quotient map. Fix
χ ∈ Ĝ with χ(h) = −1. Let R = M(G, T , β,κ,γ ) and let ϕ be the anti-automorphism of the G-graded
algebra R given by ϕ(X) = Φ−1( t X)Φ with Φ as in (16). Set H = π−1(T ). Then

R g = {
X ∈ R g

∣∣ −ϕ(X) = χ(g)X
}

for all g ∈ G

defines a G-grading on R(−) if and only if H splits as T × 〈h〉 with T = H ∩ kerχ and the following condition
holds (identifying T with T ):

β(t1)χ
2(g1) = · · · = β(t�)χ

2(g�)

= β(t�+1) sgn(S�+1)χ
2(g�+1) = · · · = β(tm) sgn(Sm)χ2(gm)

= μ−1
m+1χ

2(g′
m+1

) = μm+1χ
2(g′′

m+1

) = · · · = μ−1
k χ2(g′

k

) = μkχ
2(g′′

k

)
. (20)

It is convenient to distinguish the following three cases for a grading of Type II on L:

• The case with � > 0 will be referred to as Type II1;
• The case with � = 0 but m > 0, will be referred to as Type II2;
• The case with m = 0 will be referred to as Type II3.

Definition 4.3. We will say that γ is admissible if it satisfies

g2
1 ≡ · · · ≡ g2

m ≡ g′
m+1 g′′

m+1 ≡ · · · ≡ g′
k g′′

k (mod T ) (21)

and, for some t1, . . . , t� ∈ T , we have g2
1t1 = · · · = g2

�t� and

β(t1)χ
2(g1) = · · · = β(t�)χ

2(g�). (22)

(If � � 1, then condition (22) is automatically satisfied.)

Note that the above definition does not depend on the choice of χ ∈ Ĝ with χ(h) = −1. Indeed, if
we replace χ by χ̃ = χψ where ψ ∈ Ĝ satisfies ψ(h) = 1, then ψ can be regarded as a character on
G and we can compute:

χ̃2(g−1
i g j

) = χ2(g−1
i g j

)
ψ2(g−1

i g j

) = χ2(g−1
i g j

)
ψ

(
g−2

i g2
j

) = χ2(g−1
i g j

)
ψ(tit j)

for all 1 � i, j � �. On the other hand, for t ∈ T , we have

β(tti)β(tt j) = β(t)β(ti)β(t, ti)β(t)β(t j)β(t, t j) = β(ti)β(t j)β(t, tit j).

Therefore, if condition (22) holds for χ and t1, . . . , t� , then it holds for χ̃ and tt1, . . . , tt� where t is
the unique element of T such that β(t, u) = ψ(u) for all u ∈ T .

As pointed out earlier, for γ satisfying (21), we can replace g′′
i , i > m, within their cosets mod T

so that γ satisfies (15).
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We now give our standard realizations for gradings of Type II. Let H ⊂ G be an elementary 2-
group of odd rank containing h. Let β be a nondegenerate alternating bicharacter on T = H/〈h〉. Fix κ .
Choose γ formed from elements of G = G/〈h〉 and τ formed from elements of T = H/〈h〉 so that they
satisfy (15). Let R = M(G, T , β,κ,γ ). Fix χ ∈ Ĝ with χ(h) = −1 and identify T with T = H ∩ kerχ .

Definition 4.4. Suppose � > 0 and γ is admissible. Let Φ be the matrix given by (16) where the scalars
μi and matrices Si are determined by Eq. (20). Then, by Proposition 4.2, the anti-automorphism
ϕ(X) = Φ−1( t X)Φ defines a refinement of the G-grading on the associative algebra R to a G-grading
R = ⊕

g∈G R g as a Lie algebra. Set Lg = (R g ∩ [R, R]) mod Z(R). We will denote the G-graded algebra

L obtained in this way as A(II1)(G, H,h, β,κ,γ , τ ).

Definition 4.5. Suppose � = 0 and m > 0. Choose δ = (δ1, . . . , δm) ∈ {±1}m so that

β(t1)χ
2(g1)δ1 = · · · = β(tm)χ2(gm)δm.

(Note that there are exactly two such choices.) Let Φ be the matrix given by (16) where the matrices
Si are selected by the rule sgn(Si) = δi and the scalars μi are determined by Eq. (20). Then, by Propo-
sition 4.2, the anti-automorphism ϕ(X) = Φ−1( t X)Φ defines a refinement of the G-grading on the
associative algebra R to a G-grading R = ⊕

g∈G R g as a Lie algebra. Set Lg = (R g ∩ [R, R]) mod Z(R).

We will denote the G-graded algebra L obtained in this way as A(II2)(G, H,h, β,κ,γ , τ , δ).

Definition 4.6. Suppose m = 0. Then we have

χ2(g′
1 g′′

1

) = · · · = χ2(g′
k g′′

k

)
.

Let μ be a scalar such that μ2 is equal to the common value of χ2(g′
i g′′

i ). (There are two choices.)
Let Φ be the matrix given by (16) where the scalars μi are determined by equation

μ−1
1 χ2(g′

1

) = μ1χ
2(g′′

1

) = · · · = μ−1
k χ2(g′

k

) = μkχ
2(g′′

k

) = μ.

Then, by Proposition 4.2, the anti-automorphism ϕ(X) = Φ−1( t X)Φ defines a refinement of
the G-grading on the associative algebra R to a G-grading R = ⊕

g∈G R g as a Lie algebra. Set
Lg = (R g ∩ [R, R]) mod Z(R). We will denote the G-graded algebra L obtained in this way as

A(II3)(G, H,h, β,κ,γ ,μ).

Definition 4.7. Referring to Definition 4.5, we will write (κ,γ , τ , δ) ≈ (̃κ, γ̃ , τ̃ , δ̃) if κ and κ̃ have the
same number of components of each type, i.e., the same values of m and k, and there exist an element
g ∈ G and a permutation π of the symbols {1, . . . ,k} preserving the sets {1, . . . ,m} and {m + 1, . . . ,k}
such that q̃i = qπ(i) for all i, t̃i = tπ(i) , g̃i ≡ gπ(i)g (mod T ) and δ̃i = δπ(i) for all i = 1, . . . ,m, and

{g̃′
i, g̃′′

i } ≡ {g′
π(i)g, g′′

π(i)g} (mod T ) for all i = m + 1, . . . ,k.

Definition 4.8. Referring to Definition 4.6, we will write (κ,γ ,μ) ≈ (̃κ, γ̃ , μ̃) if κ and κ̃ have the
same number of components k and there exist an element g ∈ G and a permutation π of the symbols
{1, . . . ,k} such that q̃i = qπ(i) , {g̃′

i, g̃′′
i } ≡ {g′

π(i)g, g′′
π(i)g} (mod T ) and g̃′

i g̃′′
i = g′

π(i)g′′
π(i) g2 for all i,

and, finally, μ̃ = μχ2(g).

Theorem 4.9. Let F be an algebraically closed field, char F �= 2. Let G be an abelian group. Let L = psln(F)

where n � 3. If n = 3, assume also that char F �= 3. Let L = ⊕
g∈G Lg be a G-grading. Then the graded algebra

L is isomorphic to one of the following:
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• A(I)(G, T , β,κ,γ ),
• A(II1)(G, H,h, β,κ,γ , τ ),
• A(II2)(G, H,h, β,κ,γ , τ , δ),
• A(II3)(G, H,h, β,κ,γ ,μ),

as in Definitions 4.1, 4.4, 4.5 and 4.6, with |κ |√|T | = n in Type I and |κ |√|H|/2 = n in Type II. Graded algebras
belonging to different types listed above are not isomorphic. Within each type, we have the following:

• A(I)(G, T1, β1, κ1, γ1) ∼= A(I)(G, T2, β2, κ2, γ2) if and only if T1 = T2 , β1 = β2 , and (κ1, γ1) ∼ (κ2, γ2)

or (κ1, γ1) ∼ (κ2, γ
−1

2 );
• A(II1)(G, H1,h1, β1, κ1, γ1, τ1) ∼= A(II1)(G, H2,h2, β2, κ2, γ2, τ2) if and only if H1 = H2 , h1 = h2 , β1 =

β2 , and (κ1, γ1, τ1) ≈ (κ2, γ2, τ2) or (κ1, γ1, τ1) ≈ (κ2, γ
−1

2 , τ2);
• A(II2)(G, H1,h1, β1, κ1, γ1, τ1, δ1) ∼= A(II2)(G, H2,h2, β2, κ2, γ2, τ2, δ2) if and only if H1 = H2 , h1 =

h2 , β1 = β2 , and (κ1, γ1, τ1, δ1) ≈ (κ2, γ2, τ2, δ2) or (κ1, γ1, τ1, δ1) ≈ (κ2, γ
−1

2 , τ2, δ2);
• A(II3)(G, H1,h1, β1, κ1, γ1,μ1) ∼= A(II3)(G, H2,h2, β2, κ2, γ2,μ2) if and only if H1 = H2 , h1 = h2 ,

β1 = β2 , and (κ1, γ1,μ1) ≈ (κ2, γ2,μ2) or (κ1, γ1,μ1) ≈ (κ2, γ
−1

2 ,μ−1
2 ).

Proof. The first statement is a combination of Theorem 2.10 and Proposition 4.2. The non-iso-
morphism of graded algebras belonging to different types is clear.

For Type I, let R1 = M(G, T1, β1, κ1, γ1) and R2 = (G, T2, β2, κ2, γ2). By Theorem 2.6, R1 ∼= R2 if
and only if T1 = T2, β1 = β2, and (κ1, γ1) ∼ (κ2, γ2). It remains to observe that the outer automor-
phism X 
→ − t X transforms M(G, T , β,κ,γ ) to M(G, T , β,κ,γ −1).

For Type II, the element h, the subgroup H , and the bicharacter β on T = H/〈h〉 are uniquely deter-
mined by the grading, so we may assume H1 = H2, h1 = h2, and β1 = β2. Let R1 = M(G, T , β,κ1, γ1)

and R2 = M(G, T , β,κ2, γ2). Fix χ ∈ Ĝ with χ(h) = −1. Let ϕ1 and ϕ2 be the corresponding anti-
automorphisms. We have to check that (R1,ϕ1) ∼= (R2,ϕ2) if and only if

II1) (κ1, γ1, τ1) ≈ (κ2, γ2, τ2),
II2) (κ1, γ1, τ1, δ1) ≈ (κ2, γ2, τ2, δ2),
II3) (κ1, γ1,μ1) ≈ (κ2, γ2,μ2).

For Type II1, the “only if ” part is clear, since (κ,γ , τ ) is an invariant of (R,ϕ) (up to transfor-
mations indicated in the definition of the equivalence relation ≈). Indeed, (κ,γ ) is an invariant of
the G-grading, and τ corresponds to the restrictions of ϕ to D1, . . . , Dm by Proposition 2.3. To prove
the “if” part, assume (κ1, γ1, τ1) ≈ (κ2, γ2, τ2). Then, by Theorem 2.6, there exists an isomorphism
of G-graded algebras ψ : R1 → R2. By Remark 2.7, we can take for ψ a monomial isomorphism as-
sociated to the permutation π in Definition 2.14. The matrix of the anti-automorphism ψ−1ϕ2ψ on
R1 is then obtained from the matrix of ϕ2 by permuting the blocks on the diagonal so that they
align with the corresponding blocks of ϕ1, and possibly multiplying some of the blocks by −1. Hence,
by Theorem 2.10, ψ−1ϕ2ψ can be transformed to ϕ1 by an automorphism of the G-graded alge-
bra R1.

For Type II2, the proof is similar, since δ corresponds to the restrictions of ϕ to C1, . . . , Cm and
thus is an invariant of (R,ϕ).

For Type II3, we show in the same manner that if (κ1, γ1,μ1) ≈ (κ2, γ2,μ2), then (R1,ϕ1) ∼=
(R2,ϕ2). Namely, we take a monomial isomorphism of G-graded algebras ψ : R1 → R2 associated to
the permutation π in Definition 4.8. The effect of ψ on Φ2 is just the permutation of blocks. The
factor χ2(g) in Definition 4.8 makes sure that the block with μi = μ−1χ2(g′

i) in Φ2 matches up
with the block with μπ(i) = μ−1χ2(g′

π(i)) in Φ1. Conversely, suppose there exists an isomorphism
ψ : (R1,ϕ1) → (R2,ϕ2). As in the proof of Corollary 2.15, we write ψ = ψ0α where ψ0 is a monomial
isomorphism and α is in PGLκ1 (F) × AutG(D). The action of ψ0 on ϕ2 permutes the blocks and
replaces the second tensor factor I by Xt0 for some t0 ∈ T . The action of α on ψ−1

0 ϕ2ψ0 cannot
change t0 or the values of the scalars. We conclude that t0 = e and (κ1, γ1,μ1) ≈ (κ2, γ2,μ2). �
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Remark 4.10. Let F and G be as in Theorem 4.9. Let L = sl2(F). If L = ⊕
g∈G Lg is a G-grading,

then the graded algebra L is isomorphic to A(I)(G, T , β,κ,γ ) where |κ |√|T | = 2. This, of course,
gives two possibilities: either T = {e} or T ∼= Z

2
2. In the first case the G-grading is induced from a

Cartan decomposition by a homomorphism Z → G . The isomorphism classes of such gradings are in
one-to-one correspondence with unordered pairs of the form {g, g−1}, g ∈ G . In the second case the
G-grading is given by Pauli matrices. The isomorphism classes of such gradings are in one-to-one
correspondence with subgroups T ⊂ G such that T ∼= Z

2
2.

Remark 4.11. The remaining case L = psl3(F) where char F = 3 can be handled using octonions. Let
O be the algebra of octonions over an algebraically closed field F. Then the subspace O

′ of zero trace
octonions is a Malcev algebra with respect to the commutator [x, y] = xy− yx. If char F = 3, then O

′ is
a Lie algebra isomorphic to L. Assuming char F �= 2, we have xy = 1

2 ([x, y] − n(x, y)1) for all x, y ∈ O
′ ,

where n is the norm of O. We also have (ad x)3 = −4n(x)(ad x) for all x ∈ O
′ . It follows that if ψ is

an automorphism of O
′ , then ψ preserves n and, setting ψ(1) = 1, we obtain an automorphism of O.

Hence the restriction map Aut(O) → Aut(O′) is an isomorphism of algebraic groups. Similarly, one
shows that the restriction map Der(O) → Der(O′) is an isomorphism of Lie algebras.1 It follows that
Aut(O′) is smooth and can be identified with the algebraic group Aut(O). In particular, this means
that the isomorphism classes of G-gradings on O are in one-to-one correspondence (via restriction)
with the isomorphism classes of G-gradings on O

′ (cf. [12, Theorem 9]).
All gradings on O (in any characteristic) were described in [12]. For char F �= 2, they are of two

types:

• “elementary” gradings obtained by choosing g1, g2, g3 ∈ G with g1 g2 g3 = e and assigning degree
e to e1 and e2, degree gi to ui and degree g−1

i to vi , i = 1,2,3, where {e1, e2, u1, u2, u3, v1, v2, v3}
is a canonical basis for O;

• “division” gradings by Z
3
2 obtained by iterating the Cayley–Dickson doubling process three times.

It is easy to see when two G-gradings on O are isomorphic. The isomorphism classes of “elementary”
gradings are in one-to-one correspondence with unordered pairs of the form {S, S−1} where S is an
unordered triple {g1, g2, g3}, gi ∈ G with g1 g2 g3 = e. The isomorphism classes of “division” gradings
are in one-to-one correspondence with subgroups T ⊂ G such that T ∼= Z

3
2. An “elementary” grading

is not isomorphic to a “division” grading.
If char F = 3, then the above is also the classification of G-gradings on L = psl3(F). As shown

in [16], up to isomorphism, any grading on L is induced from the matrix algebra M3(F). Namely,
any “elementary” grading on L can be obtained as a Type I grading, and any “division” grading on L
is isomorphic to a Type II gradings. The only difference with the case of sl3(F) where char F �= 3 is
that there are fewer isomorphism classes of gradings in characteristic 3 (in particular, some “Type II”
gradings are isomorphic to “Type I” gradings).

5. Gradings on Lie algebras of types B, C, D

The classification of gradings for Lie algebras son(F) and spn(F) follows immediately from Corol-
lary 2.15. We state the results here for completeness. Recall M∗(G, T , β,κ,γ , τ , δ) from Defini-
tion 2.13. Let L = K(R,ϕ) = {X ∈ R | ϕ(X) = −X}. Then L = ⊕

g∈G Lg where Lg = R g ∩ L.

Definition 5.1. Let n = |κ |√|T |.

• If δ = 1 and n is odd, then necessarily T = {e}. We will denote the G-graded algebra L by
B(G, κ,γ ).

1 This argument was communicated to us by A. Elduque.
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• If δ = −1 (hence n is even), then we will denote the G-graded algebra L by C(G, T , β,κ,γ , τ ).
• If δ = 1 and n is even, then we will denote the G-graded algebra L by D(G, T , β,κ,γ , τ ).

Theorem 5.2. Let F be an algebraically closed field, char F �= 2. Let G be an abelian group.

• Let L = son(F), with odd n � 5. Let L = ⊕
g∈G Lg be a G-grading. Then the graded algebra L is isomorphic

to B(G, κ,γ ),
• Let L = spn(F), with even n � 6. Let L = ⊕

g∈G Lg be a G-grading. Then the graded algebra L is isomorphic
to C(G, T , β,κ,γ , τ ),

• Let L = son(F), with even n � 10. Let L = ⊕
g∈G Lg be a G-grading. Then the graded algebra L is isomor-

phic to D(G, T , β,κ,γ , τ ),

as in Definition 5.1. Also, under the above restrictions on n, we have the following:

• B(G, κ1, γ1) ∼= B(G, κ1, γ1) if and only if (κ1, γ1) ≈ (κ1, γ1);
• C(G, T1, β1, κ1, γ1, τ1) ∼= C(G, T2, β2, κ2, γ2, τ2) if and only if T1 = T2 , β1 = β2 and (κ1, γ1, τ1) ≈

(κ2, γ2, τ2);
• D(G, T1, β1, κ1, γ1, τ1) ∼= D(G, T2, β2, κ2, γ2, τ2) if and only if T1 = T2 , β1 = β2 and (κ1, γ1, τ1) ≈

(κ2, γ2, τ2).
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