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Background: To develop a pharmacokinetic–pharmacodynamic (PK–PD) model using individual-level data of
Positive and Negative Syndrome Scale (PANSS) total score to characterize the antipsychotic drug effect taking
into account the placebo effect and dropout rate. In addition, a clinical utility (CU) criterion that describes the
usefulness of a drug therapy was calculated using the efficacy of the drug and dropout rates.
Methods: Data from 12 clinical trials in schizophrenia patients was used to quantify the effects of the antipsy-
chotic drugs (APs), namely, haloperidol, risperidone, olanzapine, ziprasidone and paliperidone. Compart-
mental PK models were used to describe the time course of plasma drug concentrations. The combination
of an Emax and the Weibull model was used to describe the drug and placebo effects. The steady-state drug
concentrations were assumed to be the drivers of the exposure–response relationship. An exponential
model was utilized to identify the predictors of probability of dropout. Simulations were performed to
check the predictability of the model, and to calculate the CU of the drugs based on PANSS scores and dropout
rates.

Results: The maximal drug effect (Emax) was highest for olanzapine whilst it was lowest for ziprasidone.
Higher observed PANSS scores resulted in a greater likelihood of dropout. Taking into account the efficacy
and the drop-out rate, all APs possessed a comparable CU at the therapeutic doses. The resulting PK–PD
model parameters were used to compute the effective concentration and dose required to produce a clinical-
ly meaningful 30% drop in PANSS score from the baseline.
Conclusions: The developed PK–PDmodel and the associated CU score allow the evaluation of the time course
of the PANSS scores of the different APs and a proper comparison of their clinically relevant treatments
effects.
© 2013 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

The discovery and development of new antipsychotic drugs (APs) is
complicated by the subjectivity in the diagnosis of schizophrenia and in
the evaluation of the clinical effect of the drugs, the lack of truly predic-
tive preclinical animal models, the significant placebo effects (PE) and
the high dropout rates in clinical trials (Nucci et al., 2009). A better un-
derstanding of the link between drug exposure and clinical effect is
one of the ways whereby the efficiency of developing new antipsy-
chotics can be improved. Model-based approaches which have become
indispensible tools in drug development offer an opportunity to achieve
tics, Toxicology and Targeting,
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evier OA license.
this purpose (Kimko et al., 2000; Nucci et al., 2009). Recently, Kemp et al.
(2010) discussed the role of advancedmethods such as pharmacokinetic–
pharmacodynamic (PK–PD) modeling and simulation that could even-
tually help in discriminating the overlapping drug and placebo effects
as commonly seen in antipsychotic clinical trials.

The traditional linear regression methods applied to most expo-
sure or dose–response curves in psychiatric research rely on observed
variables and assume a linear relationship between the exposure and
these variables. In real life, the trajectory of treatment effects or drop-
out events often exhibits non-linear trends limiting the use of linear
regression models (Mandema et al., 2011; Mould, 2012). In contrast,
PK–PDmodels that typically utilize a non-linear mixed-effects model-
ing approach, usually allow discrimination between system and
drug-specific properties, both of which can be defined as model
parameters. This conceptual difference in data analysis has major
implications in the interpretation of results.
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In our earlier papers (Pilla Reddy et al., 2011a, 2011b; 2012a,
2012b), the trends in the placebo effect (PE) in schizophrenia trials
using the Positive and Negative Syndrome Scale (PANSS) total score
were explored by pooling data from different trials conducted be-
tween 1989 and 2009. A model was developed describing this PE
which identified predictors of the PE (normalized PE) and dropouts.

In addition to a significant PE, high dropout rates are very com-
mon in psychiatric clinical trials (Rabinowitz and Davidov, 2008).
Therefore, while developing models to evaluate the drug effect, data
from patients who drop out of a trial should be taken into account
to allow an accurate interpretation of the results. More details on
the concepts of dropout modeling and its consequences during the
model building process are discussed elsewhere (Roderick and
Rubin, 2002; Hu and Sale, 2003; Rabinowitz and Davidov, 2008;
Gastonguay et al., 2010). Recently, using a pooled dataset from five
antipsychotic drug trials, Rabinowitz and Davidov (2008), demon-
strated that dropouts in these trials are related to the observed
PANSS scores and suggested there is a need for a methodology that
jointly describes the longitudinal scores and the hazard of dropout
related to the clinical response variables.

Thus, it is very important that dropout rates will be taken into ac-
count when studying the effectiveness of a new pharmacotherapeutic
treatment in patients care during AP drug development. The clinical
utility (CU) criterion is a tool that quantifies the proportion of pa-
tients completing the trial while maintaining a predetermined effica-
cy level which eventually helps in optimizing proof-of-concept trials
(Lesko et al., 2010). In other words, the CU of a treatment is defined
as the average trial time during which a patient, while continuously
receiving that treatment and not dropping out, maintains a clinically
relevant efficacy level. This criterion helps in true risk–benefit assess-
ment as compared to the traditional approach based on comparing
the % change from baseline in the efficacy score during the trial period
accounting for placebo response and dropouts (Goyal and Gomeni,
2012).

Therefore, to quantify the true drug effect in the presence of a het-
erogeneous placebo response and high dropout rates, one would re-
quire normalization of the PE by accounting for different predictors of
the PE and the likelihood of dropout should be linked to the change in
PANSS score or exposure following antipsychotic drug administration.

The objective of this study (part I) was to develop a PK–PD model
to describe the longitudinal changes in total PANSS score using
individual-level data across a range of compounds accounting for a
(normalized) placebo effect. In addition, a clinical utility criterion
was constructed using the efficacy of the drug and dropout rates.
The developed PK–PD model was subsequently utilized to quantify
the efficacy of APs based on the PANSS subscales with the aim of
investigating the hypothesis that atypical antipsychotics result in a
better negative symptom control than conventional antipsychotics.
These results are presented in a separate publication (part II) includ-
ing also the relationship between the clinical efficacy, in vitro receptor
pharmacology profiles, and the dopamine or serotonin receptor occu-
pancy (D2RO or 5-HT2ARO levels).

2. Methods

2.1. Patients and study design

The individual-level pharmacokinetic (plasma concentrations) and
pharmacodynamic (PANSS) data from 4999 schizophrenic patients
was used to develop and to evaluate the PK–PD models. We used all
data from 12 clinical studies available within the Dutch Top Institute
Pharma project Mechanism-based PKPD modeling platform (www.
tipharma.com). Data used in this analysis were provided by Janssen Re-
search and Development (Belgium), Merck (The Netherlands), Pfizer
(USA), and Ludwig Maximillian University (Munich, Germany). The
APs included in this analysis were haloperidol (a typical antipsychotic),
and four atypical antipsychotics (ATAPs), namely, risperidone,
olanzapine, ziprasidone, and paliperidone extended release. The PK and
PANSS data (n=387) of paliperidone palmitate (intramuscular formula-
tion), which was not available at the time of model development, were
used for the purpose of external validation of the developed PK–PD
model. Exposure–response results of haloperidol obtained from a PK
and PK–PD model developed earlier (Pilla Reddy et al., 2012a) were
used along with that of ATAPs for defining the CU. The overview of trial
designs, summary statistics of the PANSS scores and dropout rates across
the studies used in the development of exposure–response models is
shown in Table 1.

2.2. Overall model development approach

An overview of the PK–PD model is shown in Fig. 1. In PK–PD
modeling of AP drugs in schizophrenia, it is essential to first develop
a disease progression and a placebo model, before adding a model
for the drug effect. At any given point of time, the status of the patient
is a reflection of the status of the disease. The disease status changes
with time, therefore modeling of the disease status in the absence of
treatment describes the expected changes in patient's disease pro-
gression. The disease progression model can be extended by includ-
ing the treatment effects (placebo or drug) that refer to all the
underlying PK and PD processes involved in producing a treatment
effect on the time course of disease progression as shown below
(Mould, 2007).

PANSS tð Þ ¼ PANSS t0ð Þ þ disease progression tð Þ
þ placebo effect tð Þ þ drug effect tð Þ ð1Þ

A model for the natural disease progression and the placebo effect
can be developed separately for diseases such as Alzheimer's and
Parkinson's disease (Bhattaram et al., 2009; Ploeger and Holford,
2009). However, in other cases, it is difficult to separate the disease
progression from the placebo effect due to the episodic nature of
the disease (e.g. schizophrenia). In such cases disease progression
and PE need to be considered as a single entity and Eq. (1) reduces to

PANSS tð Þ ¼ PANSS t0ð Þ þ placebo effect tð Þ þ drug effect tð Þ ð2Þ

To describe the time course of the PE, several placebomodels were
tested as described earlier by Pilla Reddy et al. (2012b). In order to es-
timate the drug effect, a patient-specific steady state concentration
(Css) was calculated using the dosing regimen and the empirical
Bayesian estimate of clearance obtained by fitting a PK model to the
measured plasma concentrations. The calculated individual Css was
then linked to the time-course of PANSS score via an Emax model.

Estimation of the inter-individual variability (IIV) accounts for dif-
ferences in variability between individuals among the population. IIV
for structural model parameters was evaluated using a log-normally
or a normally distributed model. The intra-individual or residual
unexplained variability (RUV) describes the difference between ob-
served and model predicted values that remain unexplained by IIV.
Residual variability in the plasma concentration was modeled using
a proportional error model, while, an additive error model was used
to account for the unexplained variability in the PANSS scores.

The non-linear mixed-effects modeling approach to describe the
time course of PK and PANSS scores was implemented using the
NONMEM VII software (Beal et al., 2009). Perl-speaks-NONMEM (PsN,
v 3.2.4) was used to communicate with NONMEM. R (version 2.11;
www.r-project.org) and Pirana (Keizer et al., 2011) were used for
graphical inspection of the results.

http://www.tipharma.com
http://www.tipharma.com
http://www.r-project.org


Table 1
Overview of clinical trials in subjects with schizophrenia included in the development of the PK–PD model.

Study Study
year

Trial
phase

Study
duration

ROA Population Drug/Dose Subjects# Baseline PANSS (SE) PANSS
change⁎

Dropout (%)

SCH-303 2004 III 6 weeks Oral/QD Acute Paliperidone ER 6, 9 ,12 mg 373 93 (0.58) −19.5 29
Olanzapine 10 mg 128 94 (0.94) −19.9 30
Placebo 125 93 (0.96) −4.1 54

SCH-304 2004 III 6 weeks Oral/QD Acute Paliperidone ER 6, 12 mg 219 92 (0.79) −16.4 52
Olanzapine 10 mg 105 94 (1.21) −18.1 52
Placebo 101 94 (1.18) −7.6 66

SCH-305 2004 III 6 weeks Oral/QD Acute Paliperidone ER 3, 9, 15 mg 356 93 (0.67) −16.8 36
Olanzapine 10 mg 125 92 (1.09) −18.1 30
Placebo 118 93 (1.15) −2.9 60

INT-2 1989 III 8 weeks Oral/BID Chronic Risperidone 0.5, 2, 4, 6, 8 mg 1136 90 (0.53) −16.4 25
Haloperidol 5 mg 226 87 (1.1) −14.8 28

INT-3 1992 III 8 weeks Oral/BID Chronic Risperidone 1, 3, 5, 8 mg 335 91 (1.05) −11.7 45
Haloperidol 10 mg 82 92.5 (2.08) −5.0 60
Placebo 83 91 (1.92) 3.5 70

128-114 1994 III 6 weeks Oral/BID Acute Ziprasidone 40, 80 mg 210 95 (1.54) −14.6 42
Placebo 92 93.5 (2.37) −6.5 51

128-115 1995 III 6 weeks Oral/BID Acute Ziprasidone 20, 60, 100 mg 251 90 (1.05) −8.7 45
Haloperidol 10 mg 85 94 (1.86) −15.0 44
Placebo 83 91 (1.87) −0.4 67

128-303 1995 III 54 weeks Oral/BID Chronic Ziprasidone 20, 40, 80 mg 219 83 (1.22) −6.6 55
Placebo 75 88 (2.25) −0.7 81

128-307 1997 III 54 weeks Oral/QD Chronic Ziprasidone 40, 60 mg 126 90 (1.32) −2.4 53
Placebo 64 87.5 (2.14) 8.5 75

SCH-2002 2009 II 6–12 weeks Oral/BID Acute Placebo 98 90.4 (1.0) −4.8 46
Olanzapine 15 mg (QD) 90 92 (1.19) −25.7 22

LMU – Open 4 weeks Oral/QD Acute Haloperidol 2.5–40 mg 80 106 (2.4) −41.8 42
SCH-3003 2005 III 13 weeks IM/once a month Acute/Stable Paliperidone palmitate

50, 100, 150 mg eq
244 89 (0.29) −9.6 45

Placebo 143 90 (1.04) −4.9 57

ROA: route of administration, QD: once daily; BID: twice daily; IM: intramuscular; SE: standard error. Data of haloperidol are also shown in this Table 1.
# Subjects, baseline and change results are for all treatment groups from that study excluding the placebo arm.
⁎ Mean change in PANSS from baseline using last observation carried forward (LOCF).
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2.3. Pharmacokinetic model

The plasma concentration–time profiles of each antipsychotic
drug were modeled using a compartmental model. During model
building, differences in NONMEM objective function value (OFV;
difference denoted as ΔOFV) between the models together with %
Fig. 1. Schematic representation of the conce
RSE (b30%) of the parameters and goodness-of-fit plots were used to
guide the selection of the best base PKmodels. The PK dataset consisted
of sparse PK samples collected on different days under steady-state con-
dition for olanzapine and paliperidone (6 samples/patient), and for
ziprasidone (3–6 samples/patient). Independent PK models were de-
veloped for olanzapine, paliperidone, and ziprasidone. On the other
pt of population-based PK–PD modeling.
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hand, the PK model parameters of risperidone were estimated by com-
bining the sparse dataset (where only single PK sample per patient was
available) with rich PK datasets, that were earlier used by Vermeulen et
al. (2007). The CYP2D6 polymorphism of risperidone conversion to
9-hydroxy-risperidone, both during first-pass as well as during system-
ic circulation,was also accounted for in the risperidonePKmodel.More-
over, the active moiety (risperidone+9-hydroxy-risperidone) was
assumed to be responsible for the efficacy, and therefore the calculated
individual Css of active moiety (for equations see Supplementary files:
Appendix 1) was used in the PD model.

2.4. Pharmacokinetic and pharmacodynamic model

As a first step in building the exposure–effect relationship, a place-
bo model developed and validated previously (Pilla Reddy et al.,
2012b) was incorporated into the PK–PD model such that the phar-
macological effectiveness of the drug was estimated on top of the
PE. The treatment effect was modeled as a relative change from the
baseline PANSS score as shown in Eq. (3).

PANSS score ¼ Baseline PANSS � 1−placebo effectð Þ
� 1−drug effectð Þ ð3Þ

2.4.1. Placebo model
Among the various placebo models tested, the Weibull and the

Indirect Response Models were shown to be the best models to
describe the change in PANSS from the baseline score for placebo
treated patients. In this paper, we used the Weibull placebo model
for the reason of simplicity and the fact that parameters are easier
to interpret in clinical practice.

Placebo effect ¼ Baseline PANSS

� 1−Pmax � 1− exp− TIME
TDð ÞPOW

� �� �
ð4Þ

The Weibull model (Eq. (4)) describes the decrease of the PANSS
score from baseline, which eventually reaches a plateau. Pmax is the
maximum PE, TD is the time to reach 63.2% of the maximum change
from baseline, and POW is the shape parameter. In this model, the
IIV for the BASL and Pmax parameters were assumed to follow a
log-normal and normal distribution, respectively. The normal distri-
bution of the IIV for the Pmax parameter allows the PE to be worsening
(negative Pmax) or improving (positive Pmax).

2.4.2. Drug effect model
In the drug effect model, the PK model-predicted steady-state

concentrations (Css) of APs were related to the PANSS score using
an Emax model as shown in Eq. (5).

Drug effect ¼ Emax � Css

EC50 þ Css

� �
� 1−e−KT�TIME
� �

ð5Þ

where Emax is themaximumeffect reached, EC50 is the steady-state con-
centration required to achieve half Emax. KT is a rate constant associated
with the time required to obtain the maximum drug effect. The IIV for
EC50 and Emax parameters were assumed to follow a log-normal and
normal distribution, respectively. The normal distribution of the IIV
for the Emax parameter allows the drug effect to beworsening (negative
Emax) or improving (positive Emax). An additive errormodel was used to
describe the RUV in PANSS score. The pharmacokinetics and efficacy of
haloperidol (a typical antipsychotic) obtained from a PK and PK–PD
model developed earlier were discussed elsewhere (Pilla Reddy et al.,
2012a). A common PK–PD model for four ATAPs was developed by es-
timating separate PD parameters (Emax and EC50) for each drug (PK–
PD model NONMEM code is shown in the Supplementary files:
Appendix 2). A common value for the parameter KT was assumed for
the ATAPs.

2.4.3. Covariate model
The covariates of the PE were identified and their clinical rele-

vance was discussed recently (Pilla Reddy et al., 2012b). In addition
to the predictors of the PE, the influence of various covariates on
the PK and PK–PD model parameters were also investigated. To test
the covariate–parameter relationship, the covariates were added to
the structural parameters using the step-wise covariate modeling ap-
proach (SCM), as implemented in the software package PsN (Wahlby
et al., 2002; Lindbom et al., 2005). This technique tests different co-
variate–parameter relationships in a forward fashion (pb0.05 and
ΔOFV:3.84, df=1) to build up the full model, which in turn are
evaluated in the backward elimination step (pb0.01 and ΔOFV:6.63,
df=1). The resulting final PK–PD model contains only covariates
that meet the pre-defined statistical criteria, in addition to an accept-
able precision of parameter estimates.

2.4.4. Study-specific vs. normalized placebo effect for quantifying the
drug effect

To quantify the true drug effect in the presence of a heterogeneous
placebo response and high dropout rates, normalization of the PE is
required by accounting for different predictors and the likelihood of
dropout. We used an earlier reported placebo model (Pilla Reddy et
al., 2012b) to quantify the antipsychotic drug effect sequentially
under two circumstances i) by using the normalized PE, and ii) by
considering the study-specific PE.

2.4.5. Dropout model
Knowing the actual dropout event time allows the modeler to

predict the probability of a patient dropping out, conditioned on the
current PANSS score via time-to-event dropout models. Based on
the data exploration and earlier reported results (Pilla Reddy et al.,
2012b), an exponential model was employed to account for dropouts.
The exponential time-to-event (TTE) dropout model (Eq. (6)) as-
sumes that the baseline hazard (BHAZ) is independent of time and es-
timates the BHAZ and BETA as dropout model parameters.

h tð Þ ¼ BHAZ� exp −predictor� BETAð Þ ð6Þ

BHAZ is the baseline hazard without influence of predictors, while
BETA is a parameter that describes the probability of a patient
dropping out based on the predictors such as the observed PANSS
score, unobserved or predicted PANSS scores, and change in the
PANSS score from baseline or drug exposure. Several predictors can
be included within the TTE model structure with parameterizing
different BETAs for each of the predictors, but only the significant
predictors, based on ΔOFV and Kaplan–Meier-based VPC plots were
included in the dropout model.

The probability of a patient dropping out can be modeled by de-
scribing the hazard for the event. Hazard is the instantaneous rate
or probability of the event: h(t). Cumulative hazard (CHZ) predicts
the risk of a patient dropping out from the study over a time interval,
which is obtained by integrating the hazard with respect to time:
∫0
th(t). The probability of not dropping out can be predicted from

the cumulative hazard: S(t)=exp(−CHZ). Finally, the probability of
dropping out at any given time is described as D(t)=S(t)×h(t).
The BHAZ parameter describing the baseline hazard of a patient
dropping out at baseline levels of covariates or predictors may be
different for different treatments, hence we estimated separate
BHAZ for different drugs. A BETA parameter that describes the hazard
of a patient dropping out from a trial based on the observed PANSS
irrespective of treatment was estimated.
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2.5. Model evaluation

The bootstrap re-sampling technique and the Monte-Carlo simula-
tions were used as model evaluation tools to check the stability and
predictability of the model, respectively. Parameter estimates for
each of the re-sampled bootstrap datasets (stratified based on the
study) were obtained by fitting the final PK, and PK–PD models to
each of the newly generated datasets. Finally, 95% confidence inter-
vals (95% CIs) of all model parameters were calculated, and the
medians of the bootstrap estimates were compared with parameter
values obtained from the original dataset (Efron, 1987; Ette, 1997).
Monte-Carlo simulations were performed for the PK–PD model by
simulating 1000 datasets identical in structure and covariate values
to the original dataset. Visual Predictive Check plots (VPC) were plot-
ted after calculating the 2.5th, 50th and 97.5th percentiles of PANSS
scores for the simulated datasets.

2.6. External validation

The Monte-Carlo simulations (n=1000) were performed to eval-
uate the predictive performance of the PK–PD model to a new dataset
that was not available during the time of model development and
evaluation. The dataset for external validation was obtained from a
randomized, double-blind, placebo-controlled, dose–response study
evaluating the efficacy and safety of paliperidone palmitate at doses
of 50, 100 and 150 mg equivalent. A previously reported paliperidone
palmitate PK model (Samtani et al., 2009) was utilized to fit the ob-
served PK profiles. A patient-specific Css was then calculated using
the dosing regimen and the empirical Bayesian estimate of clearance
values. One thousand simulations were performed based on the avail-
able covariates in the external dataset to obtain model-based individ-
ual predicted PANSS scores. These predicted PANSS scores were then
plotted versus the PANSS scores that were actually observed in this
external dataset. Adequacy of the model was tested by calculating
the % bias and % RMSE (Root Mean Squared Error) as described by
Sheiner and Beal (1981).

2.7. Clinical utility of antipsychotics based on the PK–PD model

Joint modeling of a PK–PD model with a dropout model is consid-
ered be helpful to assess the CU of an AP drug at an individual patient
level. CU calculations based on the simulations (n=200), using the
joint model (PK–PDmodel with a dropout model), at the antipsychot-
ic therapeutic doses as reported in the literature (Davis and Chen,
2004; Pilla Reddy et al., 2012a) and FDA documents, were performed.
For CU calculations, we used only datasets of 6-week efficacy trials,
identical in structure and covariate values to the original dataset.
Model predicted Css values at their respective therapeutic doses
were used during the simulations.

For each of the simulated datasets the proportion of subjects com-
pleting the trial (1−number of dropouts/ total number of patients)
and the proportion of trial duration for which a subject maintains a
pre-defined efficacy level (number of the PANSS observations lower
than pre-defined PANSS score/total number of the PANSS observa-
tions) on a particular drug treatment were computed. The desired
pre-defined efficacy level or desired % change in PANSS score from
the baseline can be calculated using following equation

% Change in PANSS ¼ PANSS−Baseline PANSS
Baseline PANSS−30

� 100 ð7Þ

where baseline PANSS was estimated by the PK–PD model. The corre-
sponding PANSS value was obtained using the desired percentage
change. For 30% decrease in PANSS from baseline (Leucht et al.,
2009): PANSS=−30/100∗(Baseline PANSS−30)+Baseline PANSS.
For baseline PANSS of 90, the pre-defined efficacy level will be 72.
As the PANSS individual items are scored on an interval scale (range
1–7), resulting in the lowest level of PANSS total score of 30 points
for a patient with no symptoms, the scale level was changed into a
ratio scale by subtracting 30 points while calculating percentage
change from baseline score (Obermeier et al., 2010; Obermeier et
al., 2011). CU in this paper is the product of the proportion of patients
that remained in the study and percentage of trial time the patients
spent with a pre-defined efficacy level.

3. Results

3.1. Pharmacokinetic model

The disposition of risperidone (active-moiety) was adequately de-
scribed using a two-compartment PK model with a consecutive zero-
and first-order absorption process and a lag-time (Vermeulen et al.,
2007). The PK of paliperidone ER was adequately modeled according
to a one-compartment model with a sequential zero-order (with a lag
time) and first-order absorption, while a classical one-compartment
model with first-order absorption described the olanzapine and
ziprasidone PK profiles adequately. The typical PK parameters listed
along with 95% CIs obtained from bootstrap analysis are depicted in
Table 2. Due to the long run times we did not perform a bootstrap anal-
ysis for the risperidone PKmodel, however we reported parametric 95%
CIs obtained from the NONMEM model estimation step. The significant
covariate–PK parameter relationships are shown in Table 2. The estimat-
ed typical CL/F values for each drugwere comparable to reported values
in the literature (Yukawa et al., 2002; Cirincione et al., 2007; Vermeulen
et al., 2007; de Greef et al., 2011; Pilla Reddy et al., 2012a).

3.2. Pharmacokinetic and pharmacodynamic model

The PK–PDmodel parameter estimates for different antipsychotics
using the normalized PE model are depicted in Table 2. The uncer-
tainties in the parameters estimates were less than 30%, except for
the EC50 parameter of risperidone, olanzapine, and paliperidone,
which ranged from 33 to 46%. The maximum drug effect (Emax) was
found to be highest for olanzapine, followed by haloperidol, risperi-
done, paliperidone, and ziprasidone. Estimation of a KT for each of
the ATAPs separately resulted in a similar value for each of them;
hence, we estimated a single KT parameter. The time required to
achieve half of the Emax was about 18 days for ATAPs while, it was
5 days for haloperidol. Covariate analysis failed to identify any clini-
cally relevant potential relationship between the PD model parame-
ters (Emax and EC50) at a p value of 0.01.

Various predictors of dropouts such as the observed PANSS, the
predicted PANSS, the change in PANSS from the baseline, baseline
PANSS, antipsychotic drug's exposure (Css) and combination of ob-
served PANSS and Css resulted in a significant drop in OFV. However,
hazard relating to observed PANSS had the lowest OFV. Thus, based
on the ΔOFV and Kaplan–Meier-based VPC plots (data not shown),
the probability of a patient dropping out from a trial was best de-
scribed by the observed PANSS score. We used an earlier published
methodology (Pilla Reddy et al., 2012a) based on parameter esti-
mates of the PK–PD model to calculate the antipsychotic drug's ther-
apeutic dose and respective exposure to produce a 30% decrease in
PANSS score from baseline at the same time accounting for the PE.
The calculated effective mean concentrations and doses (Table 2)
were comparable to values reported in the literature (Mauri et al.,
2007; Giegling et al., 2010; Nazirizadeh et al., 2010).

3.3. Model evaluation and external validation of the final PK–PD model

In the bootstrap analysis of the population PK, PK–PD, and dropout
models, the median parameter estimates obtained from the success-
ful bootstrap replicates were in agreement with the original model



Table 2
Model parameter estimates (with bootstrap 95% CI) obtained from the PK and PKPD models using total antipsychotic drug concentrations.

PK model Haloperidol (Pilla Reddy et al., 2012a) Risperidone Olanzapine Ziprasidone Paliperidone

2-Compartment 2-Compartment 1-Compartment 1-Compartment 1-Compartment

ALAG1 (h) – 0.16 (0.13–0.18) – – 0.67*
DUR (h) – 0.47 (0.40–0.54) – – 23.6*
Ka (1/h) 0.23 (0.056–0.39) 2.37 (1.65–3.08) 0.30 (11) 0.07 (0.05–0.08) 0.57*
CL (L/h) 88 (77–101) 2.57 (0.99–4.41) 21.8 (20.5–23.1) 54 (51–56) 14.1 (13.2–14.9)
CL LBM (Power) – – – – 0.82 (0.44–1.25)
CL (gender) (L/h) – – –0.25 (−0.323 to −0.173) – −0.14 (−0.25 to −0.024)
CL: Poor
metabolizers

– 0.44 (0–0.9) – – –

CL: Medium
metabolizers

– 2.81 (1.44–4.18) – – –

CL: Fast
metabolizers

– 18.4 (15.6–21.2) – – –

Q (L/h) 233 (56–391) 3.8 (2.9–4.6) – – –

Vc (L) 669 (91–1143) 144 (122–165) 700 (560–814) 87.5 (67–115) 475 (325–678)
Vp (L) 2500 (573–3565) 101 (71–130) – – –

IIV CL (CV%) 44 (31–55) 169 (137–196) – 33 (28–36) 51 (46–55)
IIV Vc (CV%) 116 (95–180) 54 (9–116) 39 (35–41) – –

IIV Ka (CV%) – – – 52 (41–60) –

RUV proportional 0.44 (0.38–0.50) 0.301 (0.25–0.35) 0.28 (0.26–0.31) 0.23 (0.20–0.25) 0.38 (0.35–0.40)
0.402 (0.35–0.45)

PKPD model Haloperidol Risperidone Olanzapine Ziprasidone Paliperidone

Baseline PANSS 91.6 (90.8–92.3) 91.1 (90.7–91.7) 91.1 (90.7–91.7) 91.1 (90.7–91.7) 91.1 (90.7–91.7)
Pmax 0.081 (0.064–0.096) 0.073 (0.058–0.089) 0.073 (0.058–0.089) 0.073 (0.058–0.089) 0.073 (0.058–0.089)
Emax 0.31 (0.19–0.66) 0.23 (0.20–0.25) 0.39 (0.23–0.70) 0.22 (0.15–0.32) 0.23 (0.16–0.29)
EC50 (ng/ml) 3.58 (1.89–10.78) 3.72 (0.55–8.92) 24.8 (4.81–69.1) 39.7 (11.9–114) 6.89 (0.5–19.3)
KT (1/day) 0.116 (0.062–0.167) 0.039 (0.029–0.057) 0.039 (0.029–0.057) 0.039 (0.029–0.057) 0.039 (0.029–0.057)
BHAZ (1/day) 0.0009 (0.00066–0.00111) 0.00032 (0.00024–0.00042) 0.00047 (0.00035–0.00062) 0.00022 (0.00017–0.00029) 0.00059 (0.00045–0.00077)
BETA −0.0295 (−0.0317 to−0.0271) −0.035 (−0.038 to−0.032) −0.035 (−0.038 to−0.032) −0.035 (−0.038 to−0.032) −0.035 (−0.038 to−0.032)
IIV Pmax (SD) 0.20 (0.19–0.22) 0.20 (0.19–0.21) 0.20 (0.19–0.21) 0.20 (0.19–0.21) 0.20 (0.19–0.21)
IIV BL (CV%) 16 (15–17) 16.1 (15.7–16.4) 16.1 (15.7–16.4) 16.1 (15.7–16.4) 16.1 (15.7–16.4)
IIV Emax (SD) 0.50 (0.41–0.67) 0.22 (0.07–0.30) 0.22 (0.07–0.30) 0.22 (0.07–0.30) 0.22 (0.07–0.30)
RUV as SD
(additive)

8.7 (8.3–9.1) 8.3 (8.1–8.5) 8.3 (8.1–8.5) 8.3 (8.1–8.5) 8.3 (8.1–8.5)

Effective conc.#

(ng/ml)
2.7 5.2 13.8 63 9.8

Effective dose#

(mg/day)
5.6 0.8 7.3 82 3.3

For risperidone, total clearance was calculated as a sum of parent, conversion to its metabolite and metabolite elimination. Inter-individual variability is expressed as percent
coefficient of variation (% CV) which is the square root of ω2∗100 or as standard deviation (square root of ω2).
CL=apparent total clearance; CV=coefficient of variation; DUR=duration of input for the zero order process; Q=inter-compartmental clearance; IIV=inter-individual
variability; ka=absorption rate constant; ALAG1=lag time; Vc=central volume of distribution; Vp=peripheral volume of distribution; BASL=Baseline; Emax=maximum
drug effect; EC50: steady-state concentration required to achieve half of Emax; RUV=residual unexplained variability; IIV=inter-individual variability; KT=rate constant associ-
ated with the time required to obtain the maximum drug effect; PANSS=Positive and Negative Syndrome Scale; SD=standard deviation; BHAZ: baseline hazard without influence
of predictors; BETA: indicates that probability of a patient dropping out from a trial increased exponentially with increasing PANSS score.

1 For parent.
2 For metabolite.
# Effective dose and its respective exposure required to have a 30% decrease in the PANSS score from Baseline.
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parameter estimates obtained from an original data set. The narrow
range of bootstrap 95% CIs for most of the PK and PK–PD model pa-
rameters (Table 2) indicate that they were estimated with good
precision.

VPC plots for the base PK–PD model and the PK–PD model ac-
counting for the dropouts and predictors of the PE are shown in
Fig. 2. In the first scenario, simulations were performed only with
the base PK–PD model without predictors of the PE and the dropout
model (Fig. 2A; top panel). For the second scenario, simulations
were performed with the combined PK–PD model, including PE
with its predictors and dropout model, in which the observed
PANSS scores were replaced with the simulated PANSS scores from
the PK–PD model accounting for dropouts via the dropout model
(Fig. 2A; bottom panel). When dropout was ignored, the simulations
showed wide prediction intervals at the end of the study, while the
actual observed percentile intervals were much narrower. When the
dropout model was included in the simulations, the simulated predic-
tion intervals were in close agreement with those of the observed
percentile intervals, indicating that patients who had higher PANSS
(worsening of disease condition), had a higher chance to drop out
from a trial before the end of the study.

The final PK–PD model was utilized to determine the model's ade-
quacy to describe the PANSS scores data obtained from paliperidone
palmitate as an external validation. The final PK–PD model describes
the PANSS time course reasonably well (Fig. 2B). The accuracy (%
bias) and precision (% RMSE) of the model predictions were 2.8 and
4.4%, respectively.

3.4. Study-specific vs. normalized placebo effect for quantifying the drug
effect

In order to understand the influence of the strongly increasing PE
as observed in clinical trials over the years (Kemp et al., 2010) on the
drug effect, we used a drug-specific PE (placebo data from a specific
drug trial; e.g. placebo arm of several paliperidone trials) and normal-
ized PE (pooled placebo data with predictors of PE). We tested the in-
fluences of these two placebo effects on ziprasidone and paliperidone
drug effects, as for these drugs rich data with a wide dose range were



Fig. 2. A: Visual predictive check (VPC) plots of the PK–PD model for different antipsychotics. Top panel: base PK–PD model; bottom panel: final PK–PD model with dropout model
and placebo effect with its predictors. The gray shaded areas represents the 95% confidence intervals of the corresponding 2.5th, 50th and 97.5th percentiles of the simulated data,
the black dashed represents the 2.5th, 97.5th percentiles of the observed data and black solid line represents median of the observed data. B: Visual predictive check plots for
external validation dataset using the final PK–PD model (including covariates of placebo effect and dropout model). The gray shaded areas represents the 95% confidence intervals
of the corresponding 2.5th, 50th and 97.5th percentiles of the simulated data, the black dashed represents the 2.5th, 97.5th percentiles of the observed data and black solid line
represents median of the observed data.
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available. Moreover these studies were conducted in the mid-1990s
and mid-2000s, respectively, allowing to evaluate the effect of the
study year. Table 1 of the Supplementary file shows that the use of
a study-specific PE leads to a higher drug effect for ziprasidone than
the use of a normalized PE. On other hand, no difference in drug effect
was observed for paliperidone ER. However, utilization of the normal-
ized placebo model with a drug effect model resulted in more precise
parameter estimates.
3.5. Clinical utility of antipsychotics based on the PK–PD model

The CU for the different APs based on 200 simulations is depicted
in Fig. 3. The left panel of Fig. 3A shows the proportion of patients
remaining in the study against the percentage of trial time with
PANSS score below the pre-defined value of 72. Each of the individual
open circles corresponds to predictions from a single simulated trial.
Placebo treatment had the lowest % time spent with the PANSS
score of at least 72 and high dropout rates due to lack of efficacy.
Fig. 3A exhibits different characteristics for different APs in terms of
efficacy and dropout rates. The box plot (Fig. 3B; right panel) displays
the CU for the different antipsychotics. Results indicated that all anti-
psychotic drugs showed quite similar CU scores.
4. Discussion

In the present analysis, a potential interaction of placebo effects
with AP drug effects on the efficacy and CU was investigated by
using a PK–PD model and adding the drug effect sequentially to the
placebo effect. To our knowledge, there is no literature available com-
paring the efficacy and the CU of APs using a PK–PD modeling
approach.

In our earlier placebo data analysis, a clear trend of increase in the
PE (Pmax) with study year was observed. It should be noted that this
PE is the sum of disease progression, changes in patient characteris-
tics, and the true PE. It is not completely understood how the study
year could affect the PE, thus it is a covariate with an as yet unknown
mechanistic background. Therefore, in our placebo model, the effect
of study year was included to take the increase in Pmax with study
year into account. The trend in PE over study year is included as a
fixed factor while estimating the antipsychotic drug effect parame-
ters. We investigated both the sequential (with fixed placebo param-
eters), and the simultaneous (estimating both the placebo and the
drug parameters) approach with respect to placebo and drug effect
parameters. However, when analyzed simultaneously, we could not
estimate the parameter that relates the study year as a covariate to
the PE precisely (153% RSE) and EC50 estimates of risperidone and

image of Fig.�2


Fig. 3. Clinical Utility of antipsychotics based on joint PK–PD and dropout model for
different antipsychotics at their therapeutic doses. Haloperidol (5–7.5 mg/day), risper-
idone (4–8 mg/day), olanzapine (10–15 mg/day), ziprasidone (40–100 mg/day) and
paliperidone (6–12 mg/day). Left panel — Fig. 3A: shows the proportion of patients
remaining in the study against the percentage of trial time with PANSS score less
than predefined value of 72. Right panel — Fig. 3B: Displays the clinical utility for the
different antipsychotics.
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paliperidone were less precise (>50% RSE). Hence, the sequential es-
timation method was utilized to estimate the drug effect parameters.

To quantify the exposure–response relationship, we linked a patient
specific steady-state concentration obtained from a PK model to the
PANSS score. Reasonably rich PK profiles includingpeakplasma concen-
trations were available for paliperidone, ziprasidone, and olanzapine;
however, at least one steady-state concentration was measured for all
the drugs. Hence, we decided to use the Css rather than the peak plasma
concentrations. The plasma Css exposure also seemed to be more phys-
iologically plausible than peak levels assuming that clinical improve-
ment in schizophrenia may be related to the average D2 dopamine
receptor occupancy, which in turn is dependent on the average
steady-state plasma exposure.

Ignoringmissing data due to dropoutsmay bias themodel-simulated
trial outcome (thus biasing the prediction of future trial results). Joint
modeling of the PANSS scores with dropout events using only the place-
bo data showed the relationship between the chance of a patient
dropping out of a trial and the high preceding observed PANSS scores.
The dropout model combined with the drug effect, where drug treat-
ment showed a lower dropout rate compared to placebo, also indicated
that the dropout rate is related to the observed PANSS score. Moreover,
our dataset allows using the dropout hazard relating to the observed
PANSS scores as it is a reasonable choice for the primary analysis in
the highly controlled situation of confirmatory clinical trials. Relating
the dropout hazard jointly to the observed and unobserved (predicted)
PANSSmay result in better dropout predictions than relating to only the
observed PANSS scores under certain assumptions (Lane, 2008; Siddiqui
et al., 2009), but these assumptions are difficult to test and model
misspecification could be more severe with the former approach.

Clinical utility is a novel concept that describes the usefulness of a
therapeutic intervention and may help in making a decision to pro-
ceed to Phase III after a Phase II proof-of-concept trial. Moreover,
comparison of CU of a test drug with existing drugs may help in
ascertaining its market penetration value. The clinical efficacy and
the proportion of patients remaining in the trial are important clinical
endpoints for CU criterion that enable quantitative decision-making
for critical questions that arise in drug development. The ideal treat-
ment outcome is the situation where every subject completes the
trial while achieving an adequate efficacy level and exhibiting mini-
mal adverse events throughout the study duration. The CU results
demonstrate that haloperidol has a high efficacy (Fig. 3A), but with
high dropout rate due to adverse events suggesting haloperidol may
not be an ideal drug at higher doses (Pilla Reddy et al., 2012a). One
the other hand, ziprasidone show low dropout rates but lower effica-
cy. High doses of antipsychotic drugs are expected to be more effica-
cious, but may lead to side effects and therefore, dropouts (e.g.,
Haloperidol). Careful comparison of CU between different drugs at
different doses allows estimation of usefulness of drugs in clinical
practice. Additionally, the CU criterion can be extended by incorpo-
rating other endpoints such as adverse events, tolerability, and pa-
tient compliance information. An integrated approach for comparing
relative treatment effect of marketed antipsychotics on top of nor-
malized PE helps in detecting the true drug effect. Recently, Goyal
and Gomeni (2012) demonstrated the use of a model-based joint ap-
proach to define the CU of a treatment. We applied the samemetric to
a more number of compounds at their respective therapeutic doses.
Our data shows that with this approach new drugs can be compared
to existing ones and an effective dose at which the patient gets max-
imum benefit out of the drug can be identified.

In conclusion, using a combined PK–PD, PE and drop-out model it
was shown that the effect size (Emax) of the different ATAPs is in the
same range as that for the typical antipsychotic drug haloperidol.
Based on exposure–response analysis, the effect size was highest for
olanzapine. All APs exhibited similar CU scores with the highest for
risperidone. This integrated modeling approach and associated CU
score allow the evaluation of the time course of the PANSS scores of
the different APs and a proper comparison of their clinically relevant
treatments effects.
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