
Electronic Notes in Theoretical Computer Science �� No� � ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

A Concurrent Object Calculus�
Reduction and Typing

Andrew D� Gordon
�

University of Cambridge Computer Laboratory

Cambridge� United Kingdom

Paul D� Hankin

University of Cambridge Computer Laboratory

Cambridge� United Kingdom

Abstract

We obtain a new formalism for concurrent object�oriented languages by extending

Abadi and Cardelli�s imperative object calculus with operators for concurrency from

the ��calculus and with operators for synchronisation based on mutexes� Our syntax

of terms is extremely expressive� in a precise sense it uni�es notions of expression�

process� store� thread� and con�guration� We present a chemical�style reduction

semantics� and prove it equivalent to a structural operational semantics� We identify

a deterministic fragment that is closed under reduction and show that it includes

the imperative object calculus� A collection of type systems for object�oriented

constructs is at the heart of Abadi and Cardelli�s work� We recast one of Abadi and

Cardelli�s �rst�order type systems with object types and subtyping in the setting of

our calculus and prove subject reduction� Since our syntax of terms includes both

stores and running expressions� we avoid the need to separate store typing from

typing of expressions� We translate asynchronous communication channels and the

choice�free asynchronous ��calculus into our calculus to illustrate its expressiveness�

the types of read�only and write�only channels are supertypes of read�write channels�

� Motivation

A great deal of software is coded in terms of concurrent processes and objects�

The purpose of our work is to develop a new formalism for expressing� typing�

and reasoning about computations based on concurrent processes and objects�

�
Current a�liation� Microsoft Research�

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81956094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Gordon and Hankin

Our concurrent object calculus concςm consists of Abadi and Cardelli�s

imperative object calculus impς extended with primitives for parallel compo�

sition and for synchronisation via mutexes� Our work extends the analysis by

Abadi and Cardelli ��� of object�oriented features to concurrent languages� At

the heart of their work is a series of type systems able to express a great vari�

ety of object�oriented idioms� Given concςm� we may smoothly and soundly

extend these type systems to accommodate concurrency�

There are by now many formalisms capable of encoding objects and con�

currency� Support of Abadi and Cardelli�s type systems is one distinctive

feature of our calculus� Others are the following� Unlike most process calculi�

the syntax of concςm includes sequential composition of expressions that are

expected to return results� there is no need to encode results in terms of contin�

uations� Rather than reducing concurrent objects to other concepts� concςm
treats objects as primitive� Rather than introduce auxiliary notions of stores

or con�gurations or labelled transitions� we directly describe the semantics of

concςm in terms of a reduction relation on expressions�

As evidence of the expressiveness of our calculus� we present an encoding

of the asynchronous ��calculus� An extended version of this paper� available

from the authors� includes more examples� as well as full de�nitions and full

proofs� Here are our main technical results�

First� we describe a semantics for concurrent objects based on a reduction

relation and a structural congruence relation in the style of Milner�s reduction

semantics ��	� for the ��calculus ��
�� We prove that our reduction seman�

tics is equivalent to a classical structural operational semantics de�ned using

auxiliary notions of stores� threads� and con�gurations�

Second� we identify a single�threaded subset of our calculus that is pre�

served by reduction and includes the impς�calculus�
Third� given a few simple rules for parallel composition and restriction� we

confer Abadi and Cardelli�s �rst�order type system with objects and subtyping�

Ob
���

� on our calculus� We prove subject reduction for this system without

needing any notion of store typing separate from the notion of expression

typing�

��� Related work

Plotkin�s structural operational semantics ���� is a standard technique for con�

current languages� A computation is described as a sequence of con�gurations�

A con�guration typically consists of a collection of runnable threads� a store�

and other data such as the state of communication channels� Di Blasio and

Fisher ��� describe their calculus of concurrent objects in this style� Other

languages treated in this style include an actor language ��� and CML ������

Ferreira� Hennessy� and Je�rey ��� avoid con�gurations in their operational

semantics for CML by employing a CCS�style labelled transition system� In

their work� and in ours� the parallel composition a � b of two expressions a

�

Gordon and Hankin

and b is an expression consisting of a and b running in parallel� Any result

returned by b is returned by the whole composition� any result returned by a is

discarded� So unlike the situation in most process calculi� parallel composition

is not commutative� the e�ects of a � b and b � a are di�erent� In implemen�

tation terms this is perfectly natural� running a � b amounts to forking o� a

as a new thread and then running b�

Our reduction semantics is directly inspired by Milner�s ��	� presentation of

the chemical abstract machine of Berry and Boudol ���� In a chemical seman�

tics� a computation state is represented by a term of the calculus� there is no

need for the auxiliary notion of a con�guration� Previous chemical semantics

for concurrent languages use evaluation contexts to treat sequential composi�

tion of expressions ���	����� instead� our semantics exploits a non�commutative

parallel composition�

Di Blasio and Fisher�s paper is the work most closely related to ours�

Their principal results are the de�nition of a con�guration�based reduction

semantics for their calculus� a type soundness theorem� and the proof that

certain guard expressions used for synchronisation have no side�e�ects� As in

their work� we prove the soundness of a type system for concurrent objects�

Our chemical semantics has no need for the auxiliary notions of con�gurations

and reduction contexts used in theirs� Unlike their work� ours includes two

independent but equivalent characterisations of our operational semantics�

Various formalisms in the ��calculus family have been used to model im�

perative or concurrent objects �
������������������ All these models use

formalisms based on processes� computations with no concept of returning a

result� instead of expressions� The operation of returning a result is translated

using continuations into sending a message on a result channel� Our concς�
calculus is based on expressions that return results because its precursor impς
is based on expressions� because we do not wish to presuppose channel�based

communication for returning results� and because expressions with results are

a fundamental aspect of many programming languages and therefore deserve

a semantics in their own right�

��� Organisation of the paper

In Section � we present the syntax and semantics of a core calculus of con�

current objects� the concς�calculus� In Section � we add mutexes to obtain

the concςm�calculus� Our syntax of terms uni�es auxiliary notions of process�

expression� store� and con�guration� and hence supports a particularly simple

reduction semantics� In Section we show that our semantics corresponds

precisely to a more conventional� but more complex� semantics phrased in

terms of con�gurations� In Section � we demonstrate the soundness of the

Ob��� type system for concςm� Section 	 concludes the paper�

�

Gordon and Hankin

� Concurrent Objects

We extend the imperative object calculus by adding names to objects� and

adding parallel composition and name scoping operators from the ��calculus�

��� Syntax

We assume there are disjoint in�nite sets of names� variables� and labels� We

let p� q� and r range over names� We let x� y� and z range over variables� We

let � range over labels� We de�ne the sets of results� denotations� and terms

by the grammars�

Syntax of the concς�calculus

u� v ��� results

x variable

p name

d ��� denotations

��i � ς�xi�bi
i����n� object

a� b� c ��� terms

u result

p �� d denomination

u�� method select

u��� ς�x�b method update

clone�u� cloning

let x�a in b let

a � b parallel composition

��p�a restriction

In a method ς�x�b� the variable x is bound� its scope is b� In a term

let x�a in b� the variable x is bound� its scope is b� In a restriction� ��p�a�

the name p is bound� its scope is a� Let fn�a� and fv�a� be the sets of names

and variables� respectively� free in the term a� We write affx � vgg for the

substitution of the result v for each free occurrence of x in term a� We write

a � b to mean that the terms a and b are equal up to the renaming of bound

names and bound variables� and the reordering of the labelled components of

objects�

Some syntactic conventions� ��p�a � b is read ���p�a� � b� u��� ς�x�b � c

is read �u��� ς�x�b� � c� and let x�a in b � c is read �let x�a in b� � c� We

write ���p�a for ��p����p�� � � � ��pn�a where �p � p�� p�� � � � � pn�

Our syntax distinguishes names� which represent the addresses of stored

objects� from variables� which represent intermediate values� The distinction

re�ects the di�erent uses of names and variables� but is not essential� we

believe it will be useful when we come to treat observational equivalences�

Results in our syntax are atomic names or atomic variables� our techniques

would easily extend to structured results� such as tuples or ��abstractions� We

Gordon and Hankin

obtained our syntax by directly combining that of the impς�calculus and the ��

calculus� Our syntax uses separate constructs� restriction and denomination�

for name scoping and name de�nition� respectively� This allows for cyclic

dependencies between de�nitions� An alternative is to use a single construct

de�ning several names simultaneously with mutually recursive scopes� as in

the join�calculus ���� for example� Due to the generality of our syntax� we

need a simple type system� de�ned in Section � to rule out certain terms as

not well�formed� For example� a process such as �p �� �� � p �� ��� � p� that

contains two denominations for the same name� is not well�formed�

��� Informal Semantics

We may interpret a term of our object calculus either as a process or as an

expression� A process is simply a concurrent computation� An expression

is a concurrent computation that is expected to return a result� In fact� an

expression may be regarded as a process� since we may always ignore any

result that it returns�

A result u is an expression that immediately returns itself�

A denomination p �� ��i � ς�xi�bi
i����n

� is a process that confers the name

p on the object ��i � ς�xi�bi
i����n

�� We say that the object ��i � ς�xi�bi
i����n

�

is the denotation of the name p� Intuitively� the process represents an object

stored at a memory location and the name p represents the address of the

object�

A method select p�� is an expression that invokes the method labelled �

of the object denoted by p� In the presence of a denomination p �� ��i �

ς�xi�bi
i����n

�� where � � �j for some j � ���n� the e�ect of p�� is to run the

expression bjffxj � pgg� that is� to run the body bj of the method labelled ��

with the variable xj bound to the name of the object itself�

A method update p�� � ς�x�b is an expression that updates the method

labelled � of the object denoted by p� In the presence of a denomination

p �� ��i � ς�xi�bi
i����n

�� where � � �j for some j � ���n� the e�ect of p��� ς�x�b
is to update the denomination to be p �� ��j � ς�x�b� �i � ς�xi�bi

i�����n��fjg
��

and to return p as its result�

A clone clone�p� is an expression that makes a shallow copy of the object

denoted by p� In the presence of a denomination p �� ��i � ς�xi�bi
i����n

�� the

e�ect of clone�p� is to generate a fresh name q with denomination q �� ��i �

ς�xi�bi
i����n

� and to return q as its result� After a clone� the names p and q

denote two copies of the same denotation ��i � ς�xi�bi
i����n

�� updates to one

will not a�ect the other�

A let let x�a in b is an expression that �rst runs the expression a� and if

it returns a result� calls it x� and then runs the expression b�

A parallel composition a � b is either an expression or a process� depending

on whether b is an expression or a process� In a � b the terms a and b are

running in parallel� If b is an expression then a � b is an expression� whose

�

Gordon and Hankin

result� if any� is the result returned by b� Any result returned by a is ignored�

A restriction ��p�a is either an expression or a process� depending on

whether a is an expression or a process� A restriction ��p�a generates a fresh

name p whose scope is a�

��� Formal Semantics

We base our operational semantics on structural congruence and reduction

relations� Reduction represents individual computation steps� and is de�

�ned in terms of structural congruence� Structural congruence allows the

rearrangement of the syntactic structure of a term so that reduction rules

may be applied� We may regard our semantics as a concurrent extension

of the small�step substitution�based semantics of impς described by Gordon�

Hankin� and Lassen �����

The most interesting aspect of our formal semantics is the management

of concurrent expressions that return results� We intend that the result of an

expression be that returned from the right�hand side of the topmost parallel

composition� Therefore� as we discussed in Section �� in contexts expecting a

result� parallel composition is not commutative� On the other hand� in con�

texts immediately to the left of a parallel composition� where any result is

discarded� parallel composition is commutative� Therefore� structural congru�

ence identi�es �a � b� � c with �b � a� � c� since any results returned by a or b

are discarded�

Let structural congruence be the least congruence on terms to satisfy�

Structural congruence a � b

�a � b� � c � a � �b � c�

�a � b� � c � �b � a� � c

��p���q�a � ��q���p�a

��p��a � b� � a � ��p�b if p �� fn�a�

��p��a � b� � ���p�a� � b if p �� fn�b�

let x��let y�a in b� in c � let y�a in �let x�b in c� if y �� fv�c�

��p�let x�a in b � let x���p�a in b if p �� fn�b�

a � let x�b in c � let x��a � b� in c

Let reduction be the least relation on terms to satisfy�

Reduction a� b

For the �rst three rules� let d � ��i � ς�xi�bi
i����n

��

�p ��d� � p��j � �p ��d� � bjffxj � pgg if j � ���n

�p ��d� � �p��j � ς�x�b�� �p �� d�� � p if j � ���n� d� � ��j � ς�x�b�
�i � ς�xi�bi

i�����n��fjg
�

�p ��d� � clone�p�� �p ��d� � ��q��q �� d � q� if q �� fn�d�

let x�p in b� bffx� pgg

��p�a� ��p�a� if a� a�

	

Gordon and Hankin

a � b� a
�
� b if a� a

�

b � a� b � a
� if a� a

�

let x�a in b� let x�a
� in b if a� a

�

a� b if a � a
�� a� � b

�� b� � b

We can embed all the expressions of the impς�calculus in concς via the

following abbreviations� If a is not a result� let a��� a��� ς�x�b� and clone�a�

be short for let x�a in x��� let y�a in y��� ς�x�b� and let x�a in clone�x��

respectively� In contexts expecting a term� let an object ��i � ς�xi�bi
i����n�

be short for the term ��p��p �� ��i � ς�xi�bi
i����n� � p� where p �� fn���i �

ς�xi�bi
i����n��� We show in Section that the reductions of any term of impς

embedded in concς are deterministic�

��� An Example

The following example from Abadi and Cardelli�s book illustrates these ab�

breviations and the reduction rules for eliminating a let and for method select

and update�

�� � ς�x�x��� ς�y�x���
� let z��� � ς�x�x��� ς�y�x� in z��

� let z���p��p �� �� � ς�x�x��� ς�y�x� � p� in z��

� ��p��p �� �� � ς�x�x��� ς�y�x� � let z�p in z���

� ��p��p �� �� � ς�x�x��� ς�y�x� � p���

� ��p��p �� �� � ς�x�x��� ς�y�x� � p��� ς�y�p�
� ��p��p �� �� � ς�y�p� � p�

� Synchronisation

Since concς can express atomic reads and writes on a shared memory� we

could use a standard shared memory mutual exclusion algorithm for encoding

synchronisation mechanisms� We prefer not to for two reasons� First� such

an encoding would be anachronistic since mutual exclusion is normally solved

using hardware primitives �such as inhibition of interrupts� rather than reads

and writes on a shared memory� Second� such an encoding would lead to

complicated calculations about the reduction behaviour of higher level syn�

chronisation mechanisms� such as communication channels�

Instead� we prefer to encode such higher level mechanisms in a calcu�

lus concςm obtained by extending the concς�calculus with mutexes �binary

semaphores�� Unlike shared variable mutual exclusion algorithms� mutexes

are commonly used in the runtime systems of object�oriented languages and

have simple reduction rules� Still� we have de�ned a compositional transla�

tion of concςm into concς� though we omit it here� We use a two process

mutual exclusion algorithm ���� to guarantee exclusive access to the objects

representing mutexes�

Gordon and Hankin

A third approach would be to add synchronisation mechanisms to the
primitive operations on objects� as in the calculus of Di Blasio and Fisher ����

To keep the primitives of our calculus simple� we prefer not to integrate a
speci�c synchronisation construct into the semantics of method select and

method update�

��� Syntax

We enrich the syntax to include the denotations locked and unlocked � and to in�

clude the terms acquire�u� and release�v�� As before� we adopt the convention
that if a denotation d is used as a term� it abbreviates the term ��p��p �� d � p�

for p �� fn�d�� Moreover� if a is not a result� let acquire�a� and release�a� be

short for let x�a in acquire�x� and let x�a in release�x�� respectively�

��� Informal Semantics

A denomination p �� locked or p �� unlocked represents a mutex� denoted by
p� whose state is locked or unlocked� respectively� Intuitively� the mutex is a

bit stored at memory location p�

A mutex acquisition acquire�p� attempts to lock the mutex denoted by p�

If a denomination p �� unlocked is present� the acquisition acquire�p� changes

its state to p �� locked � and returns p as its result� Otherwise the acquisition

blocks�

A mutex release release�p� unconditionally unlocks the mutex denoted by

p� If a denomination p �� d is present� for d � flocked � unlockedg� the release
release�p� sets its state to p ��unlocked � and returns p as its result�

��� Formal Semantics

We de�ne the structural congruence relation � by exactly the same rules as
in Section �� The reduction relation � is de�ned by the rules in Section �

together with two new rules for mutex acquisition and release�

Additional reduction rules

�p ��unlocked� � acquire�p�� �p �� locked� � p

�p ��d� � release�p�� �p ��unlocked� � p for d � flocked � unlockedg

��� An Example

We can use mutexes to encode standard forms of synchronisation� such as

critical regions and synchronised objects in which at most one method may be
active at once� Here we focus on one example� the encoding of asynchronous

communications channels similar to those in Pict ����� Such a channel is an

object named by p� that either contains a result or is empty� and has two meth�

ods read and write� If the channel p is empty� the operation p�write�v� updates

�

Gordon and Hankin

p so that it contains v� while the operation p�read blocks� If the channel p

contains the result v� the operation p�read returns v and updates p so that it

is empty� while the operation p�write�u� blocks� Di Blasio and Fisher ��� im�

plement a similar abstraction in their calculus of concurrent objects� We code

channel behaviour as follows� As usual� a� b abbreviates let x�a in b� where

x �� fv�b�� We borrow from the impς�calculus an encoding of ��abstractions

��x�b and function applications b�a� using objects�

newChan
�

�

let rd�locked in let wr�unlocked in

�reader � ς�s�rd �writer � ς�s�wr � val � ς�s�s�val �

read � ς�s�acquire�s�reader�� let x�s�val in �release�s�writer� � x��

write � ς�s���x�

�acquire�s�writer�� s�val � ς�s�x� release�s�reader�� � x��

This code maintains the invariant that at any time at most one of the locks

reader and writer is unlocked� If reader is unlocked� the result in val is the

contents of the channel� If writer is unlocked� the channel is empty�

Given asynchronous channels� we can encode the asynchronous ��calculus�

��xy�� � x�write�y�� ��x�y��P �� � let y�x�read in ��P ��� ��P j Q�� � ��P �� � ��Q���

���new x�P �� � let x�newChan in ��P ��� and� for s �� fx� yg� fv�P �� ���x�y��P �� �

�rep � ς�s�let y�x�read in ���P �� � s�rep���rep� We conjecture that this trans�

lation is sound with respect to a suitable notion of observational equivalence�

This particular translation is not fully abstract� since the encoding of channels

allows an observer to discover the last message sent on a channel�

� A Structural Characterisation of Reduction

The purpose of this section is to characterise our reduction semantics in terms

of a more conventional structural operational semantics� This is desirable

for two reasons� First� it increases our con�dence in the correctness of our

semantics� Second� it provides a convenient way to enumerate all possible

reductions of a term� For the sake of brevity� we work just with concς� it is
easy to extend our treatment to concς

m
�

Section �� describes the well�formed terms of concς using a rudimentary

type system that distinguishes expressions �terms expected to return a result�

from processes� In Section ��� we demonstrate that on well�formed terms our

reduction semantics coincides with a structural operational semantics de�ned

using con�gurations� Finally� in Section ��� we identify a single�threaded

fragment of concς by omitting a single rule from the rudimentary type system�

This fragment is deterministic and includes the impς�calculus�

�

Gordon and Hankin

��� Well�formed Terms

We present a type system for well�formed terms that distinguishes expressions

from processes� In this type system� there are only two types Proc and Exp�

They represent processes and expressions respectively� Since we may always

ignore the result of an expression� any term of type Exp is also a term of type

Proc� The type system is very liberal and provides only two guarantees about

well�formed terms� First� it guarantees that a proper process does not occur

in a context expecting an expression� Second� it guarantees that the top�level

denominations of free names in a term represent a partial function from names

to objects whose domain is preserved by computation steps�

Let the domain of a term a� dom�a�� be given by� dom�p �� d� � fpg�

dom�let x�a in b� � dom�a�� dom�a � b� � dom�a� � dom�b�� dom���p�a� �

dom�a�� fpg� and dom�a� � � for any other kind of a�

Let T stand for either Proc or Exp� The well�formed terms are given by

the judgment a � T de�ned in the following table� We say that a term a is a

process or an expression if and only if a � Proc or a � Exp� respectively�

Well�formed terms

�Well Concur�

a � Exp

a � Proc

�Well Result�

u � Exp

�Well Object�

bi � Exp dom�bi� � � �i � ���n

p �� ��i � ς�xi�bi
i����n� � Proc

�Well Select�

u�� � Exp

�Well Update�

b � Exp dom�b� � �

u��� ς�x�b � Exp

�Well Clone�

clone�u� � Exp

�Well Res�

a � T p � dom�a�

��p�a � T

�Well Let�

a � Exp b � Exp dom�b� � �

let x�a in b � Exp

�Well Par�

a � Proc b � T dom�a� 	 dom�b� � �

a � b � T

Lemma ��� Suppose a � T � If a � b or a � b then b � T and dom�a� �

dom�b��

Terms that are not well�formed include p �� d� � p �� d�� let x�p �� d in b�

��p�p��� and p �� �� � ς�x�q �� d�� None of these receives a type�

��� A Structural Operational Semantics

A conventional technique for describing the semantics of concurrent languages

with state relies on a syntactic category of con�gurations� which consist of a

store paired with a set of runnable threads� To mimic this technique� we

��

Gordon and Hankin

identify sets of terms that represent threads� stores� and con�gurations�

Let an elementary thread� e� be one of the following� a result� a method

update or select� or a clone� Let a thread� t� be either an elementary thread�

or a term let x�t� in b� where t� is a thread� Let a store� �� be a term of the

form p� �� d� �

 � pm �� dm� Let a con�guration� ���q�h� k t�� � � � � tni� be an

abbreviation for the term ���q��� � t� �

 � tn��

We may transform any term into a con�guration as follows�

Normalising terms to con�gurations

N �e�
�

� h� k ei

N �p ��d�
�

� hp �� d k �i

N �let x�a in b�
�

� ���p�h� k 	� let x�t in bi

where N �a� � ���p�h� k 	� ti and f�pg 	 fn�b� � �

N ���p�a�
�

� ��p�N �a�

N �a � b�
�

� ���p����q�h�� �� k 	� 	�i

where N �a� � ���p�h� k 	i� N �b� � ���q�h�� k 	�i� and

f�pg 	 �fn���� � fn�	��� � f�qg 	 �fn��� � fn�	�� � �

We can show by induction on the derivation of a � T � that a � T implies

that N �a� is well de�ned and in particular that T � Exp implies that N �a�

takes the form ���p�h� k 	� ti�

We de�ne the structural operational semantics to be a relation on terms

a
SOS
� b� In the de�nition� the term a is normalised to a con�guration before

being reduced to the term b� which is always a con�guration�

Structural operational semantics

�SOS Select� �where f�pg 	 fn��� 	�� 	�� � ��

� � ��� p �� ��i � ς�xi�bi i����n�� �� j � ���n N �bjffxj � pgg� � ���p�h�� k 	�i

h� k 	�� p��j� 	�i
SOS
� ���p�h�� �� k 	�� 	

�� 	�i

�SOS Update�

d � ��i � ς�xi�bi i����n� d� � ��j � ς�x�b� �i � ς�xi�bi i�����n��fjg�

h��� p ��d� �� k 	�� p��j � ς�x�b� 	�i
SOS
� h��� p ��d�� �� k 	�� p� 	�i

�SOS Clone� �where q �� fn��� 	�� 	���

d � ��i � ς�xi�bi i����n� � � ��� p ��d� ��

h� k 	�� clone�p�� 	�i
SOS
� ��q�h�� q �� d k 	�� q� 	�i

��

Gordon and Hankin

�SOS Let Result� �where f�pg 	 fn��� 	�� 	�� � ��

N �bffx � pgg� � ���p�h�� k 	�i

h� k 	�� let x�p in b� 	�i
SOS
� ���p�h�� �� k 	�� 	

�� 	�i

�SOS Let� �where f�pg 	 fn�	�� b� 	�� � ��

h� k ti
SOS
� ���p�h�� k 	�� t�i

h� k 	�� let x�t in b� 	�i
SOS
� ���p�h�� k 	�� 	

�� let x�t� in b� 	�i

�SOS Res�

a
SOS
� ���p��� k 	�

��p�a
SOS
� ��p����p��� k 	�

�SOS Norm�

N �a�
SOS
� ���p�h� k 	i

a
SOS
� ���p�h� k 	i

The structural operational semantics coincides with the reduction seman�

tics up to structural congruence� We write a
SOS
�� b to mean there is c such

that a
SOS
� c and c � b�

Theorem ��� For all a� b � Exp� a � b if and only a
SOS
�� b�

Theorem �� suggests a procedure for discovering all possible reductions

of an expression� normalise the expression� then see what
SOS
� reductions are

derivable� It is not obvious how to use the � relation directly to discover all
possible reductions of an expression� since they are de�ned up to structural
congruence�

Theorem �� fails to hold for processes that are not expressions� Consider
the process p�� � p �� �� � ς�s�s�� This term has type Proc but not Exp� It
has no reductions� because composition is not commutative� On the other
hand� it is normalised to a con�guration hp �� �� � ς�s�s� k p��i and we have

hp �� �� � ς�s�s� k p��i
SOS
� hp �� �� � ς�s�s� k pi�

The di�culty here is that the reduction relation a� b does not represent
all of the behaviour of processes that are running as subterms to the left of a
composition� where composition is commutative� To remedy this situation� we
de�ne versions of structural congruence and reduction specialised to processes

situated to the left of a composition� Let a
Proc

� b if and only if there is

p �� fn�a� � fn�b� such that a � p � b � p� Roughly�
Proc

� is the same as

�� except that composition is commutative at the top level� Let a
Proc
� b if

and only if a
Proc

� a�� a� � b�� and b�
Proc

� b� �An alternative de�nition is to
specify these relations by a set of inference rules� simultaneously with the

de�nitions of a � b and a � b�� We can show that a � b
Proc

� b � a and that

p�� � p �� �� � ς�s�s� Proc� p � p �� �� � ς�s�s�� Moreover� we have�

��

Gordon and Hankin

Proposition ��� For all a� b � Proc� a
Proc
� b if and only if a

SOS
�

Proc

� b�

��� A Single�Threaded Fragment

To identify a deterministic fragment of concς� let the single�threaded type

system for concς be the judgment a �
� T de�ned by the typing rules except

for �Well Concur�� We can show that if a �
� Proc then a � ���p�h� k �i� and

if a �
� Exp then a � ���p�h� k ti� Moreover� we have�

Lemma ��� Suppose a �
� Exp� If a � b or a � b then b �� Exp�

Theorem ��� Suppose a �
� Exp� If a � a� and a� a�� then a� � a���

We can show that if a represents a term of impς� then a �
� Exp� Hence it

follows that impς is embedded within a deterministic fragment of concς that

is closed under reduction�

� A First�Order Type System

The types of our type system consist of the �rst�order object types of Abadi

and Cardelli�s Ob��� together with types for processes and expressions� As in

Section � we work with concς� concς
m
needs an additional type for mutexes�

Let a type A be either Proc� Exp� or ��i � Ai
i����n

�� where the �i are distinct�

and Ai �� Proc for each i � ���n� As in the rudimentary type system� Exp

is the type of expressions� and Proc is the type of processes� As in Ob����

��i � Ai
i����n

� is the type of objects with methods ��� � � � � �n that return results of

types A�� � � � � An� respectively� We identify object types up to the reordering

of their components� The subtype relation A
� B is the least re�exive and

transitive relation on types that satis�es ��i � Bi
i����n�m

�
� ��i � Bi
i����n

��

��i � Ai
i����n

�
� Exp� and Exp
� Proc�

Let an environment E be a list v� � A�� � � � � vn � An� we write E � to

mean that the results vi are distinct� We de�ne the typing judgment E � a � A

as follows�

Typing rules

�Val Subsumption�

E � a � A A
� B

E � a � B

�Val u�

E� u � A�E � �

E� u � A�E � � u � A

�Val Select�

E � u � ��i � Bi
i����n

� j � ���n

E � u��j � Bj

�Val Object� �where A � ��i � Bi
i����n

��

E � E�� p � A�E� E� xi � A � bi � Bi dom�bi� � � �i � ���n

E � p �� ��i � ς�xi�bi i����n� � Proc

��

Gordon and Hankin

�Val Update� �where A � ��i � Bi
i����n��

E � u � A j � ���n E� x � A � b � Bj dom�b� � �

E � u��j � ς�x�b � A

�Val Clone�

E � u � ��i � Bi
i����n�

E � clone�u� � ��i � Bi
i����n�

�Val Let� �where A
� Exp and B
� Exp�

E � a � A E� x � A � b � B dom�b� � �

E � let x�a in b � B

�Val Par� �where dom�a� 	 dom�b� � ��

E � a � Proc E � b � B

E � a � b � B

�Val Res�

E� p � A � a � B p � dom�a�

E � ��p�a � B

These rules are a straightforward combination of the rules of Abadi and
Cardelli�sOb��� and the rules of the rudimentary type system from Section �

Lemma ��� If E � a � A� A
� T � and T � fProc�Expg then a � T �

Theorem ��� Suppose E � a � A� If a � b or a� b then E � b � A�

To prove a subject reduction theorem like Theorem ��� for typed forms of
impς� Abadi and Cardelli need to introduce the standard auxiliary notion of
store typing� Since the terms of our calculus include both sequential threads
and stores� we have no need to separate the notion of store typing from the
notion of a typable term� The outcome is a crisper statement of subject
reduction than for the imperative form ofOb��� in Abadi and Cardelli�s book�

The forms of structural congruence and reduction specialised to processes
situated to the left of a composition preserve typing at type Proc�

Proposition ��� Suppose E � a � Proc� If a
Proc

� b or a
Proc
� b then E � b �

Proc�

Let A� B be short for �arg � A� val � B�� as usual in object calculi� Let lA
be the type �read � A�write � A� A�� Using subsumption to hide the internal
methods reader � writer � and val � we get � � newChan � lA where � is the
empty environment� To further re�ne usage of these channel types we de�ne
a type of write�only channels� �A � �write � A � A�� and a type of read�only
channels� �A � �read � A�� as in the work of Pierce and Sangiorgi ����� The
inclusions lA
� �A and lA
� �A are part of the de�nition of Pierce and
Sangiorgi�s system but are derivable in ours�

�

Gordon and Hankin

� Conclusions

We described a concurrent extension of Abadi and Cardelli�s imperative object

calculus� impς� The syntax of our calculus is essentially that of impς together
with parallel composition and restriction from the ��calculus� and new primi�

tives for synchronisation via mutexes� This syntax is extremely expressive� in a

precise sense it uni�es notions of expression� process� store� thread� and con�g�

uration� We presented a novel reduction semantics for concurrent expressions�

without any need for evaluation contexts� and proved that it corresponds to

a more conventional structural operational semantics de�ned in terms of con�

�gurations� We exhibited translations of the asynchronous ��calculus and the

impς�calculus into our calculus� and showed that it supports the �rst�order

type system Ob���
of objects with subtyping�

Our translations of � and impς into our calculus raise questions concerning
observational equivalences that we intend to study in future work� Another

avenue to investigate is the encoding of other concurrency primitives� like

monitors� condition variables� and named threads�

Acknowledgements

Thanks to Alan Je�rey and S�ren Lassen for useful conversations about con�

current objects� Mart�	n Abadi� Luca Cardelli� S�ren Lassen� and Andy Pitts com�

mented on a draft of this paper� This work was supported by a Royal Society

University Research Fellowship� an EPSRC Research Studentship� and by the EP�

SRC project
An Operational Theory of Objects�� Gordon�s current a�liation is

Microsoft Research�

References

�� M� Abadi and L� Cardelli� A Theory of Objects� Springer�Verlag� �����

�� G� Agha� I� Mason� S� Smith� and C� Talcott� A foundation for actor

computation� Journal of Functional Programming� ����� January �����

�� R� Amadio� L� Leth� and B� Thomsen� From a concurrent ��calculus to the

��calculus� In Proceedings Foundations of Computation Theory ��� volume ���

of Lecture Notes in Computer Science� Springer�Verlag� �����

�� D� Berry� R� Milner� and D� N� Turner� A semantics for ML concurrency

primitives� In Proceedings POPL���� pages �������� �����

�� G� Berry and G� Boudol� The chemical abstract machine� Theoretical Computer

Science� �������������� April �����

�� G� Boudol� The pi�calculus in direct style� In Proceedings POPL���� pages

�������� �����

�� S� Dal Zilio� Concurrent objects in the blue calculus� ����� Draft�

��

Gordon and Hankin

�� P� Di Blasio and K� Fisher� A calculus for concurrent objects� In Proceedings

CONCUR���� August �����

�� W� Ferreira� M� Hennessy� and A� Je�rey� A theory of weak bisimulation for
core CML� Technical Report ������ Computer Science� School of Cognitive and
Computing Sciences� University of Sussex� �����

��� C� Fournet and G� Gonthier� The re�exive CHAM and the Join�calculus� In
Proceedings POPL���� pages �������� January �����

��� A� D� Gordon� P� D� Hankin� and S� B� Lassen� Compilation and equivalence of
imperative objects� In Proceedings FST�TCS���� volume ���� of Lecture Notes
in Computer Science� pages ������ Springer�Verlag� ����� Full version available
as Technical Report ���� University of Cambridge Computer Laboratory� �����

��� K� Honda and M� Tokoro� An object calculus for asynchronous communication�
In Proceedings ECOOP���� volume ��� of Lecture Notes in Computer Science�
pages �������� Springer�Verlag� �����

��� C� Jones� A pi�calculus semantics for an object�based design notation� In
Proceedings CONCUR��	� volume ��� of Lecture Notes in Computer Science�
pages �������� Springer�Verlag� �����

��� J� Kleist and D� Sangiorgi� Imperative objects and mobile processes� In
Proceedings PROCOMET��
� �����

��� L� Lamport� A fast mutual exclusion algorithm� Technical Report �� Digital
Systems Research Center� November �����

��� R� Milner� Functions as processes� Mathematical Structures in Computer

Science� ���������� �����

��� R� Milner� J� Parrow� and D� Walker� A calculus of mobile processes� parts I
and II� Information and Computation� ��������� �����

��� S� L� Peyton Jones� A� D� Gordon� and S� Finne� Concurrent Haskell� In
Proceedings POPL���� pages �������� �����

��� B� C� Pierce and D� Sangiorgi� Typing and subtyping for mobile processes�
Mathematical Structures in Computer Science� ������������� ����� Summary
in Proceedings LICS��	� pp� ������� �������

��� B� C� Pierce and D� N� Turner� Concurrent objects in a process calculus� In
Proceedings TPPP���� volume ��� of Lecture Notes in Computer Science� pages
�������� Springer�Verlag� �����

��� B� C� Pierce and D� N� Turner� Pict� A programming language based on the pi�
calculus� Technical Report CSCI ���� Computer Science Department� Indiana
University� ����� To appear in Proof� Language and Interaction� Essays in

Honour of Robin Milner� G� Plotkin� C� Stirling� and M� Tofte� editors� MIT
Press� �����

�	

Gordon and Hankin

��� G� D� Plotkin� A structural approach to operational semantics� Technical
Report FN���� DAIMI� Aarhus University� September �����

��� J� H� Reppy� HigherOrder Concurrency� PhD thesis� Department of Computer
Science� Cornell University� ����� Available as Technical Report ��������

��� V� T� Vasconcelos� Typed concurrent objects� In Proceedings ECOOP���� �����

��� D� Walker� Objects in the pi�calculus� Information and Computation�
��������������� February �����

�

