
Research Paper 519 

Structural basis for engineering of retinoic acid receptor 
isotype-selective agonists and antagonists 
Mat-tine GBhin, Vakrie Vivat, Jean-Marie Wurtz, R6gine Losson, 
Pierre Chambon, Dino Moras and Hinrich Gronemeyer 

Background: Many synthetic retinoids have been generated that exhibit a 

distinct pattern of agonist/antagonist activities with the three retinoic acid 

receptors (RARa, RARP and RARy). Because these retinoids are selective tools 

with which to dissect the pleiotropic functions of the natural pan-agonist, 

retinoic acid, and might constitute new therapeutic drugs, we have determined 

the structural basis of their receptor specificity and compared their activities in 

animal and yeast cells. 

Results: There are only three divergent amino acid residues in the ligand 

binding pockets (LBPs) of RARa, RARP and RARy. We demonstrate here that 

the ability of monospecific (class I) retinoid agonists and antagonists to bind to 

and induce or inhibit transactivation by a given isotype is directly linked to the 

nature of these residues. The agonist/antagonist potential of class II retinoids, 

which bind to all three RARs but depending on the RAR isotype have the 

potential to act as agonists or antagonists, was also largely determined by the 

three divergent LBP residues. These mutational studies were complemented by 

modelling, on the basis of the three-dimensional structures of the RAR ligand- 

binding domains, and a comparison of the retinoid agonist/antagonist activities 

in animal and yeast cells. 

Conclusions: Our results reveal the rational basis of RAR isotype selectivity, 

explain the existence of class I and II retinoids, and provide a structural concept 

of ligand-mediated antagonism. Interestingly, the agonist/antagonist 

characteristics of retinoids are not conserved in yeast cells, suggesting that 

yeast co-regulators interact with RARs in a different way than the animal cell 

homologues do. 
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Introduction 
Three retinoic acid receptors (RARa, RARP and RAR$ 
and three retinoid X receptors (RXRa, RXRP and RXRy), 
members of the nuclear receptor (NR) superfamily [l], 
mediate the biological effects of retinoic acids (all-tratis 
and 9-cis retinoic acids; t-RA and 9c-RA) upon develop- 
ment, cell differentiation and proliferation, and homeosta- 
sis [l--5]. RARs, which bind t-RA or 9c-RA, and RXRs, 
which bind only 9c-RA, form heterodimers and act as 
ligand-dependent transcriptional regulators. Crystal struc- 
ture data [6-81 and a structure-based alignment [9] of the 
NR ligand-binding domains (LBDs) have led to a general 
model of NR function: binding of either agonist or antago- 
nist induces a major structural transition of the carboxy- 
terminal part of the LBD comprising helix Hll, loop 
11-12 and helix H12. This positions helix H12, which 
comprises the conserved core of the activation function-Z 
(AF-2 AD), the presence and integrity of which is essen- 
tial for agonist-induced transactivation [l,Z], in a new 
LBD environment. Note that additional changes occur, for 
example, at the levels of helix H3 and the R-loop, which 

together result in a compaction of the LBD. It is believed 
that the repositioning of helix Hll upon ligand binding 
initiates the LBD transconformation. Upon agonist 
binding, helix H12 in its new environment contributes to 
the generation of a surface to which LXXLL (using 
single-letter amino acid code and where X denotes any 
amino acid) NR boxes of co-activators bind, as shown by 
both functional and co-crystallization studies ([ 10-121; for 
reviews see [13,14]). Simultaneously the allosteric changes 
destabilize the interface between some NRs and co- 
repressors. The binding of (certain) antagonists also com- 
pacts the LBD in a similar way to that of agonists but 
steric constraints mean that helix HlZ cannot bind in the 
agonist position and thus no co-activator-binding surface is 
generated. Instead, H12 binds to the groove that in 
agonist complexes is occupied by the LXXLL NR boxes 
of co-activators [l&13,15]. Note that the agonist-induced 
allosteric receptor transconformation is apparently also 
required for other ligand-dependent NR activities, such as 
the binding to target gene response elements in az’vo 
[16,17] and the ‘crosstalk’ with other signal transduction 
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Chemical structures and agonisticl 
antagonistic activities of synthetic retinoids 

used in the present study. (a) Chemical 

structures of Am580, BMS753, BMS614, 

BMS961 and BMS411. Common structures 
are shown in blue, antagonistic substitutions 

in red; the dihedral angles discussed in the 
Materials and methods section on modelling 

are characterized by atoms a-f. (b) False 

colour representation of retinoid-induced 
luciferase activity in HeLa cells, stably 

transfected with the recombinant 

(17 m),-G-luc and either GAL-RARa, 
GAL-RARP, or GAL-RARy, as indicated. As 

described previously [191, luciferaseinduced 

bioluminescence was monitored in viva using 
a single-photon-counting camera by seeding 

equal amounts of cells in a 24-well tissue 

culture plate and incubating them with 
increasing concentrations of BMS753, 

BMS961 or BMS614 alone (‘1’ lanes; 
revealing agonistic activities) or together with 

10 nM all-trans retinoic acid (‘2’ lanes; 

revealing antagonistic activities), as indicated. 
Activities in the absence of ligand (- in the 

‘1’ lanes) and in the presence of 10 nM all- 

trans retinoic acid alone (- in ‘2’ lanes) are 
shown for comparison. False colour 

representations were derived by using 

identical conditions for a given reporter cell 
line, except that the images of BMS753, 

BMS961 and BMS614 induction of the 
RARo reporter cells are shown at a higher 

sensitivity than for RARP and RARy reporter 

cells. Similar results have been obtained with 
several independently established reporter 

cell lines. 

- 

pathways, such as the mutual interference of the transacti- can show RARa, RARP or RARy isotype selectivity, and 
vation abilities of NRs and AP-1 (often referred to as tran- some retinoids can preferentially induce either target gene 
srepression; see [ 1, IS]). transactivation or AP-1 transrepression [19-211. 

Synthetic retinoids can be described as acting in (at least) Here we demonstrate the existence of two distinct classes 
four ways: synthetic retinoids can act as agonists or antago- of retinoids in animal cells; class I retinoids interact with 
nists, they can exhibit RAR or RXR selectivity, or they only one RAR isotype as either agonists or antagonists, 
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whereas class II retinoids exhibit similar affinities to, but 
distinct agonistic or antagonistic activities with, the RAR 
isotypes. We show that only the three divergent amino 
acid residues in the LBPs of RARa, RARP and RARy are 
responsible for the selective binding of class I monospe- 
cilic synthetic retinoid agonists and antagonists. In addi- 
tion, we provide evidence that these three residues are 
also specifically involved in determining the agonistic or 
antagonistic properties of class II retinoids. Furthermore, 
homology modelling based on the holo-RARy three- 
dimensional structure suggests the structural basis that 
accounts for the isotype selectivity of the retinoids investi- 
gated in this study, as well as the probable mechanism of 
antagonism. Finally, we demonstrate that in yeast cells the 
agonist/antagonist pattern of synthetic retinoids diverges 
from that seen in animal cells, most probably because of 
the distinct sets of co-regulators expressed in the two 
types of cells. 

Results and discussion 
Two classes of synthetic retinoids 
Studies of ligand binding and agonist/antagonist activities 
revealed the existence of at least two classes of synthetic 
retinoids: class I monospecific agonistic or antagonistic 
ligands like BMS7.53 and BMS614 (Figure la) that act 
specifically on a given RAR isotype (RARa in this case) 
even at the highest concentration tested (1 PM; Figure lb) 
and either do not bind, or bind only very weakly, to the 
two other isotypes (Table 1, and data not shown); class II 
retinoids that bind, sometimes with very similar affinity 
(such as BMS411; Figure la and [19]) to all three RARs 
but act as agonists for a given RAR and as (partial) antago- 
nists (relative to the natural ligand all-trans retinoic acid, 
t-RA) for another isotype [19]. 

To investigate the structural basis for the RAR isotype-spe- 
cilic agonistic/antagonistic activities of synthetic retinoids, 
we examined the role of the three divergent amino acid 
residues (see Table 2) that have been previously identified 
[7] in helices H3, H5 and Hll of the LBPs of RARa, 
RARP and RARy. Note that these differences refer only to 
the LBP; in the LBD there are a total of 51 amino acid 
changes between the three RARs. For each isotype these 
residues were mutated into the corresponding residues of 
the two other isotypes, and we analysed the effect of these 
mutations on ligand binding and transcriptional properties 
of the resulting LBP chimeric receptors in response to 
various synthetic retinoids. 

Table 1 

Relative binding affinities for synthetic retinoids. 

Receptor 

RARCi 

RARy 

RART-XI 

Ki(nM) 

BMS614 BMS753 BMS961 

2.5 2.0 

1.5 

1.0 1.0 

The RARy-tcc mutant carries the three divergent LBP residues of the 
RARo in an RARy background. The competition assays were 
performed with 5 nM tritiated t-RA, a range of synthetic ligand 
concentrations between 1 nM and 1 PM, and 500 nM nonradioactive 
t-RA to determine nonspecific binding. - Indicates that the 
corresponding synthetic ligand was not able to compete significantly 
with tritiated t-RA in the range of concentrations used. 

RARy+a responded as specifically as wild-type RARa did 
to the BMS753 agonist and the BMS614 antagonist 
(Figure 2a; lanes 7-9 and 13-15, respectively), whereas the 
response to the RARy-selective agonist BMS961 was lost 
(Figure 2; lanes 10-12). A very similar switch in the ligand 
response repertoire was observed for the corresponding 
RARP mutant when the only divergent residue between 
RARa and RARP LBPs was mutated to the RARa identity 
(RARPA225S, termed RARP+a; Figure 2b). Similarly, 
converting the LBP of RARa or RARP into that of RARr 
yielded mutants (RARa(S232A, 1270M, V395A) termed 
RARa+y and RARP(V388A, 1263M) termed RARP+y, 
respectively) displaying a RARy-specific ligand response 
repertoire (Figures 2c,d). Finally, introducing the RARP 
LBP-specific residues into either RARa (RARaS232A) or 
RARr (RARy(M2721, A397V)) resulted in mutants that had 
lost their RARa- or RARy-specific ligand response charac- 
teristics (RARa+P and RARy+P in Figures 2e,f). In this 
case only the loss of RARa or RARy-specific responses 
could be determined, as no class I RARP-monospecific 
retinoid is presently available. In summary, both the loss 
and the gain of function by the above mutants demon- 
strates that the response to class I monospecific retinoid 

Table 2 

Three divergent residues in the RAR ligand-binding pockets. 

Helices 

Receptor H3 H5 Hll 

The three divergent residues in the ligand-binding pockets 
of RARs are critically involved in the binding of class I 
monospecific retinoids 

RARa 

RARP 

WRY 

Ser232 

Ala225 

Ala234 

lle270 

lle263 

Met272 

Va1395 

Va1388 

Ala397 

Mutation of the three divergent RARr LBP residues into 
their RARa counterparts ‘switched’ the ligand specificity 

The three divergent residues in the LBPs of RARa, RARP and RARy, 

of the mutant RARy(A234S, M2721, A397V); hereafter 
are located in helices H3, H5 and Hl 1. The single residues differing 
between RARcl and RARP LBPs are displayed in red, those differing 

referred to as RARy+q Table 3) to that of RARa. between RARP and RARr are shown in blue. 
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Table 3 

Mutated LBDs with swapped LBP identity. 

Helices 

Receptor 

RARo-$ 
RARa+y 

RARP+a 

RW-V 
RARy-ta 

RARy+$ 

H3 

Ser-+Ala 

Ser-tAla 
Ala+Ser 

Ala+Ser 

H5 Hll 

Ile+Met Val+Ala 

Ile-tMet Val+Ala 

Met-tile Ala-+/al 
Met-+lle Ala+Val 

One, two and three mutations are necessary to change the RAR LBP 

identity from a-@, p-+x and a+y respectively. 

agonists and antagonists is entirely dictated by the identity 
of, at most, the three RAR LBP-divergent residues. Since 

Figure 2 

the present study was finished others [2’2] have reported a 
limited RAR LBD chimera analysis that is also in keeping 
with our original prediction [7] of a critical role for the 
divergent residues in retinoid selectivity. Importantly, the 
agonistic or antagonistic response of a given LBP chimeric 
receptor that had acquired new ligand specificity was iden- 
tical to that of the wild-type receptor, which selectively 
binds this ligand. 

To test whether or not the new ligand-specific response of 
the various chimeric mutants was correlated with a change 
in ligand-binding specificity, the ligand-binding character- 
istics of the Eschtichia c&expressed LBD of one mutant 
(RARy-+a; Table 3) was compared in in vitro competition 
experiments with those of the corresponding LBDs of 
RARcx and RARy. As expected, the RARY-xx LBD bound 
the RARa-specific retinoids BMS753 and BMS614 with 
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The three divergent residues in the LBP of 
RARa, RARP and RARy determine the RAR 

selectivity of monospecific (class I) retinoids. 

The results obtained with two retinoid 
agonists, the RARa-selective BMS753 and 

the RARy and RARP-selective BMS961, and 
one antagonist, the RARa-selective BMS614, 

are shown. Transient transactivation assays in 

the absence and presence of the various 

retinoids (indicated at the bottom of the 
figure) were performed with Cos cells and the 

TRE,-tk-CAT reporter gene. Data are 
expressed relative to the maximal stimulation 

seen with t-RA (1 OO%), which also 

corresponded to 0% antagonistic activity. The 
results obtained with the various mutants, 

together with the corresponding wild-type 

counterparts, are given in the following 
panels: (a) hRARy+a (A234S, M2721, 

A397V); (b) hRARP-+a (A225S); 

(c) hRARa+y (S232A, 1270M, V395A); 

(d) hRARP+y (V388A, 1263M); 
te) hRARa+ (S232A); (f) hRARy-@ 
(M2721, A397V). RARa, blue; RARP, green; 

RARy, pink; mutants are depicted as bars with 

a paler colour of that of the parent receptor. 

Agonistic activities (lanes 4-l 2) are 
determined by exposing transfected cells to 

the retinoid alone, whereas antagonistic 
activities (lanes 13-I 5) are measured as the 

inhibition by a given retinoid of the 

transactivation seen in the presence of 10 nM 
t-RA. Note that BMS614 is devoid of any 

agonistic activity and that BMS753 and 
BMS961 do not display any antagonistic 

activity (see Figure 1 b). The results shown 

correspond to the mean IL standard deviation 
(see error bars) of three transfections. 
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the same affinity as RARa, whereas no binding of the 
RARy-selective retinoid BMS961 could be detected 
(Table 1). In conclusion, the functional specificity of the 
above monospecific synthetic retinoids is because of their 
RAR binding selectivity, which is itself determined by the 
identity of the residues that differ in the LBPs of RARa, 
RARB and RARy. 

The three divergent RAR LBP residues also determine the 
RAR isotype-specific agonistic/antagonistic activity of 
class II retinoids 
In contrast to class I retinoids, class II retinoids bind to all 
three RARs, sometimes with similar affinities [19], but the 
transcriptional outcomes of this interaction can be entirely 
different for each isotype. For example BMS411 and 
BMS453, typical class II retinoids, act as RARcx and RARy 
antagonists and RARfl agonists in stably transfected 
‘reporter’ cells and in viva [17,19]. These type II retinoids 
are, however, not completely devoid of agonist activity 
with RARa and RARy, because they can induce some 
transcriptional activity in transient transfections when 
used alone, most probably because of high amounts of the 

Figure 3 

expressed receptor and/or transfected reporter plasmid 
(Figure 3; [19]). Yet, this activity is weaker than that of 
t-RA or other class II agonists at similar concentrations, 
and is apparently insufficient to elicit a biological response 
in n&o, such as cell differentiation or target gene induction 
on its own [17,23,24]. 

To investigate the potential role of the three divergent 
LBP residues in the RAR isotype-specific response to the 
class II retinoid BMS411, we compared the agonistic 
(using 100 nM BMS411 alone) and antagonistic (reduction 
of 10 nM t-RA-induced activity by 1 /.tM BMS411) poten- 
tials for the three RAR isotypes and the chimeric RAR 
mutants in which LBPs were interconverted. Interest- 
ingly, when the LBP of RARy was converted into that of 
RARP, RARy-Q (Table 3) responded to BMS411 like 
RARP did, that is BMS411 acted as a full agonist, whereas 
it was a mixed agonist/antagonist for the parental RARy 
(Figure 3a). Similarly, BMS411 antagonised t-RA-induced 
activity of RARP+a (Figure 3c) and RARP+y 
(Figure 3d) of which the LBPs were converted into those 
of RARa and RARy, respectively. Also, by changing the 

The divergent residues of the ligand-binding 
pocket are responsible for the 

agonistic/antagonistic activities of class II 
retinoids. Similar analysis as in Figure 2 to 

determine the agonist and antagonistic 

potential of BMS411 with wild-type (wt) and 
LBP mutant receptors, as indicated in each 

panel. Data are given relative to the maximal 

stimulation seen with t-RA (= 1 OO%), which 

corresponds also to 0% antagonistic activity. 
The results obtained with the various mutants, 

together with the corresponding wild-type 

counterparts are given as follows: 
(a) hRARy-@ (M2721, A397V); 

(b) hRARa+ (S232A); (c) hRARP-+cL 

(A225S); (d) hRARP+ (V388A, 1263M). 

Data representation is as in Figure 2. Note 
that BMS411 is a RARP agonist (see, for 
example, (a), lanes 9 and 12) and acts as 

RARa and RARy antagonist relative to 10 nM 

t-RA ((a) and (b), compare lanes 4 and lo), 

but displays a weak agonist activity with 
RARa ((b), lane 7) and RARy ((a), lane 7). The 

results shown correspond to the 

mean + standard deviation (see error bars) of 
three transfections. 

r- 

0 0 
,l 2 3,,4 5 6,,7 fiO1112, ,l 2 3,,4 5 6,,7 6 9,,101112, 

1 

(b) 150 n RAR awildtype 
RARa+ 

n RARPwildtype 

1 2 3,,4 5 6,,789, 
J 0’ - 

,l 23,,45 6, 

t-RA 1OnM - + - + 

BMS411 1OOnM - - •t - 

BMS411 1uM - - - + 

- + - + 
- - + - 
- - - + 

Chemstly & Emlogy 



524 Chemistry & Biology 1999, Vol 6 No 8 

RARa LBP into that of RARP, RARc@ acquired addi- 
tional BMS41 l-induced agonistic potential when com- 
pared with RARcx (Figure 3b). Thus, the three divergent 
residues in the RAR isotype LBPs not only determine the 
binding selectivity of class I retinoids but also the relative 
agonistic/antagonistic strength of class II retinoids. 

Synthetic retinoids exert different agonistic/antagonistic 
potential in animal and yeast cells 
The observation that BMS614 is a class I RARa antagonist 
under a variety of conditions (e.g. in different animal cells 
with different reporter gene promoters) could suggest that 
the BMS614-RARa complex possesses an intrinsic antag- 
onistic potential. This is in contrast to class II retinoids, in 
which agonistic potential can significantly vary when dif- 
ferent conditions are compared (data not shown). Surpris- 
ingly, however, BMS614 is a RARcl agonist in yeast cells, 
inducing about 40% of the t-RA-induced transcriptional 
activity seen with RARa and the cognate reporter gene 
(Figure 4a). As expected from its isotype selectivity, 
BMS614 did not significantly affect RARP or RARy trans- 
activation (Figures 4b,c). Also the agonistic/antagonistic 
potential of the type II retinoids BMS453 and BMS411 
was entirely different in yeast and animal cells. Both 
ligands were classified as RARP agonists of similar 
potency in the ‘reporter’ cell assay [19], BMS411 acted as 
a RARP ‘superagonist’ in yeast cells, displaying nearly 
twice the agonistic potency of t-RA at 1 l.tM, but BMS453 
was completely inactive (Figure 4b). With RARa and 
RARy, BMS411 displayed significant agonistic activity in 

Figure 4 

yeast, whereas BMS453 was moderately active with RARcx 
and nearly inactive with RARy (Figures 4a,c). 

The co-regulators mediating RAR-dependent transactiva- 
tion in yeast are unknown and could not be used to inves- 
tigate the mechanistic basis of BMS614 agonistic activity. 
But the observation that a co-repressor binding-disabled 
RARcx mutant displayed a weak agonistic response with 
BMS614 [ZS] could suggest that the antagonistic activity 
of BMS614 might be related to the presence of co-repres- 
sors in animal cells [26,27] and the absence of such factors 
could possibly account for its agonistic potential in yeast 
cells. Co-expressing the silencing mediator for retinoid 
and thyroid hormone receptors (SMRT) [27] did not 
reduce the RARoz agonistic activity of BMS614 in yeast 
cells (data not shown), suggesting that if SMRT can form 
a functional co-repressor complex in yeast, its absence 
does not explain the BMS614 agonist activity. 

Together, the above results indicate that although nuclear 
receptors can transactivate in yeast cells, the involved co- 
regulator complexes interact very differently with the 
receptor than their animal cell counterparts. This is most 
probably caused by the interaction of the yeast cell co-regu- 
lators with receptor surfaces that are different from those 
interacting with animal cell co-regulators. Apparently, syn- 
thetic retinoids can induce receptor conformations that dif- 
ferentiate between these interfaces. These results indicate 
that the agonist/antagonist potential of class II retinoids 
might also vary in animal cells expressing distinct sets of co- 
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Synthetic retinoids have different agonisticlantagonistic characteristics 
in yeast. Transcriptional activities in response to BMS514 
(RARa-selective antagonist in mammalian cells), EMS41 1 and 
BMS453 were assayed in stably transformed yeast lines, established 
with ERE3XURA3 reporter gene and (a) RARa-ER-CAS, 

(b) RARP,-ER-CAS, and (c) RART(DEF)-ER-CA.!? Receptor activities 
were revealed by OMPdecase assays. Data are expressed relative to 
the maximal stimulation seen with 1 uM t-RA (= 1000/o). The values 
obtained fall into the range of the mean f 20% of three assays. 
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regulators. Obviously, such a scenario provides the concep- 
tual basis for cell-selective recinoid agonists and antagonists. 

Structural basis of RAR isotype selectivity towards the 
class I retinoid BMS753 
To understand the role of the three divergent RAR LBP 
residues in determining ligand-binding selectivity, we mod- 
elled these pockets according to the three-dimensional 
structure of /iolo RARr LBD [7]. Figures 5a and 6a 
(monoviews and stereoviews, respectively) show the RARa 
LBP into which BMS7.53 has been docked (see the Materi- 
als and methods section for details). The structural basis of 
its RARa selectivity is readily deduced from this model. A 
hydrogen bond can be established between the amino group 
of the retinoid and RARaS232, whereas in both RARP and 
RARr this hydrogen bond is lost. The replacement of 
Ser232 with an alanine residue (Table Z), most likely 
accounts for the much lower relative affinity of BMS753 to 
RARP and RARr and for the acquisition of binding affinity 
by the mutant RARy+cx (Table 1, and data not shown). 

Proposed mechanism for the antagonistic action of 
BMS614, an RARa-selective ligand 
Our generally accepted concept [7,9] that the agonist- 
induced transconformation of the LBD, involving most 
notably H12 (which encompasses the core of the ligand- 
dependent AF-2 activation domain), generates the sur- 
faces for co-activator interaction predicts that ligands 
inducing an alternate positioning of H12 should act as 
antagonists of the AF-2 function of nuclear receptors. This 
hypothesis has recently been confirmed by crystallisation 
of the oestrogen receptor complexes with oestradiol or the 
AF-2 antagonist raloxifen or tamoxifen [l&15]. 

The RARa antagonist BMS614 can be viewed as a quinolyl 
derivative of the RARa agonist Am580 [ZB] (Figure la). 

Figure 5 

Models of BMS753, BMS411 and BMS614 

in the LBP of RARa. (a) The RARcr-selective 
agonist BMS753 can be docked into the 

RARa LBP in the presence of H12 (removed 

for illustration purposes) in its holo position; 

the hydrogen bond established between the 
ligand amino group and RARoSer232 is 

illustrated as a green dotted line. (b) BMS411 
in a complex with the H12-less RARo LBP 

(conformer II, white ligand). BMS411 can bind 

in the alternate conformation I (not shown), 
which has the amide linker oriented as 

BMS753 in Figure 5a. Steric contacts with 
RARalle270 that do not exist in the case of 

BMS753 are illustrated as arrows. (c) The 

RARa-selective type I antagonist BMS614 in 
the LBP of RARo BMS614 can bind as two 

distinct conformers: conformer I (white) 
establishes the hydrogen bond to 

Modelling of BMS614 in the RAR LBPs without major 
adaptations of the sidechains was possible only when H12 
was removed. For RARa two conformers of BMS614, 
termed conformers I and II, could be docked into the 
ligand-binding cavity. The amino group of conformer I 
(white in Figure SC; blue in Figure 6c) is used for hydro- 
gen bonding to Ser232, whereas the keto group of con- 
former II (green in Figure 6c) is oriented towards Ser232, 
albeit with a bad hydrogen bond geometry. No H-bond 
can be established in RARfl, which has an alanine residue 
at the position corresponding to Ser232 (Table Z), thus 
accounting for the very weak relative binding affinity 
(-ZO-SO-fold lower than for RARa; Table 1 and data not 
shown). In addition to lacking the hydrogen bond, the 
RARr model predicts steric interference with Met272 
which ‘pushes’ the ligand into a position where steric 
clashes occur not only with H12 residues of the /zo/o-LBD 
but also with the CD of Ala397 in Hll (data not shown). 
Together these RARy features probably account for an 
RARy binding affinity of BMS614 that is too low to be 
determined in classical competition assays (Table 1). 

Indeed, attempts to add back helix H12 in the three- 
dimensional model of the HIZ-less RARa LBP-BMS614 
complex revealed that the quinolyl group precludes a 
proper positioning of H12 in its active conformation 
because of steric clashes with Ile410 (Figure 6c), thus most 
probably accounting for the RARa antagonistic nature of 
BMS614. This hypothesis is further strengthened by mod- 
elling of the LBD of the so-called RARa ‘AHT’ (Ala- 
His-Thr) triple mutant [26]. We have observed that this 
mutation converts the antagonistic response of RARa to 
BMS614 to a (weak) agonistic one, both in heterodimers 
with RXRa [ZS], as well as in GAL-RARcx chimeras (about 
8% of the transactivation seen with Am80 on the same 
17mer-tk-CAT reporter gene; data not shown). Originally 

RARoSer232 via the amine like EMS753 

in (a), whereas conformer II (not shown; 
analogous to conformer II of BMS411 in 

Figure 5b) uses its carboxyl group for 
hydrogen bonding to the same serine residue. 

Ligand docking was done without helix H12 
(white ligand) or without helix Hl (yellow 

ligand, see text). The three RARa-specific 

residues in the LBP that diverge in RARP and 

RARr are indicated in purple (see Table 2 for 
the divergent LBP residues), nitrogen is 

shown in blue, oxygen in red. The figure was 
prepared with the program SETOR. 
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Figure 6 

The selectivity of RAR isotype binding and 

agonist/antagonist potential of synthetic 

retinoids can be revealed by modelling. 
(a) Stereoview of the RARa-selective type I 

agonist BMS753 (blue) in the LBP of RARcx 

modelled according to the crystal structure of 
ho/o-RART [7,29]. Ligand docking was done 

in presence of Hl and H12. The residues and 
positions shown are those of RARa; the three 

RARa-specific residues that diverge in RARP 
and RART are shown in green; oxygens in red, 

nitrogens in blue and sulphur as yellow 

spheres; some helices are shown in red to 
facilitate orientation. (b) Stereoview of 

conformer II (see text) of BMS411 in the LBP 
of RARa (blue ligand), RARj3 (green ligand) 

and RART (pink ligand). C, tracing (helices 

H3, H5, Hl 1 and H12 are indicated) with the 

sidechains of the three divergent residues 
(Table 2) in the ligand color code; several 

invariant sidechains are shown in grey. Ligand 

docking was done without helix H12, which 
was subsequently added to reveal possible 

steric interference between the ligand and 
H12 residues. Positioning of H12 was 

possible for RARa and RARP, but required 
major sidechain adaptations for RART. 

(c) Stereoview of the RARa-selective type I 

antagonist BMS614 in the LBP of RARa. 
Ligand docking was done without H12 and 

subsequent H12 addition (green and blue 
ligands) or without Hl in presence of H12 

(pink ligand). Note that in the first case 

BMS614 can bind as two distinct conformers: 
conformer I (blue) establishes the hydrogen 

bond to RARcl Ser232 via the amine like 

BMS753 in (a), whereas conformer II (green; 

analogous to conformer II of BMS411 in 
Figure 5b) uses its keto group for hydrogen 

bonding to the same serine residue. Note the 
steric interference for both conformers 

between the quinolyl group and the H12 

residue RARa lle410, indicating that both 
conformers of BMS614 exert antagonistic 

activity. Only conformer II docks into the Hl- 
less LBP of RARa when H12 is in the ho/o 

position (pink ligand). Note that the 

carboxylate anchoring network [7] is slightly 
rotated around the long arm of the L-shaped 

ligand allowing the quinolyl moiety of the 

ligand to penetrate deeper into the ligand 
cavity provided some residue sidechains 

adapt (displayed in pink). The three 
RARa-specific residues that diverge in RAR8 

Chemistry & Biology 

and RART are shown in green and blue conformers; note the different positions of the 

according to the color code of the two RARa Ser232. 

this mutant was used as a co-repressor binding-disabled 
receptor [26] and we pointed out that these residues are 
involved in tethering helix Hl to the core of the LBD [13]; 
the triple mutation disrupts this interaction and should lib- 
erate Hl, thereby leading to co-repressor dissociation. 
Modelling of the RARa LBP without Hl is a good approx- 
imation to mimic (at least some of) the structural conse- 
quences of mutating the AHT residues. Interestingly, in 

contrast to the wild-type LBD, the BMS614 conformer II 
can be docked into the Hl-less RARa LBP with the 
anchoring carboxylate moiety slightly shifted (yellow and 
pink ligands in Figures 5c and 6c, respectively) relative to 
its position in the Ml’&less LBD (green ligand in 
Figure 6c) and might therefore account for the agonistic 
effect of BMS614 on the AHT-mutant. The rotation along 
the long arm of the L-shaped ligand allows the bulky 
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quinolyl group to penetrate deeper into the cavity, thus 
reducing the steric interference with HI2 residues. Full 
penetration requires some adaptation of LBP residue 
sidechains (purple in Figure 6~); this restriction might be 
responsible for the weakness of the agonistic activity of 
BMS614 with this mutant. 

Agonist/antagonist properties of the type II retinoid 

BMS411 

BMS411 is similar to BMS614 and can also be viewed as a 
derivative of Am580, but the quinolyl group of BMS411 is 
replaced by a less bulky phenyl group in BMS614 
(Figure la). Relative to t-RA, BMS411 acts as an RARa 
antagonist with some agonistic potential, and as an RARP 
agonist. As for Am580 [ZB], our previous ligand binding 
data [19] demonstrated that the relative binding affinity of 
BMS411 for RARa was approximately lo-fold and lOO- 
fold higher than for RARP and RARy, respectively. 
BMS411 can adopt two conformations in the RARcx LBP 
orientating either the amino (conformer I; similar orienta- 
tion of the linker group as in BMS7.53 in Figure 5a) or the 
keto (conformer II; Figure 5b; blue ligand in Figure 6b) 
moiety towards Ser232. In contrast to conformer I, con- 
former II can only establish a suboptimal hydrogen bond, 
as its keto group sterically interferes with the serine 
residue thus forcing the ligand to move towards IleZ70 
residue in H5. Importantly, only the position of the less 
favoured conformer II is compatible with the ho10 position 
of H12 and is expected to exert some agonistic activity. 
Conformer I generates significant steric interference with 
Ile410 of /zolo H12 that could account for the antagonistic 
potential of BMS411 with RARa. 

The differential possibility of BMS411 to establish a 
hydrogen bond in the LBP of RARP is likely to account 
for the lower affinity of RARP than RARa [19]. The 
RARP agonistic activity of this retinoid is possibly the con- 
sequence of its ability to adopt both an antagonistic and an 
agonistic conformation in the binding pocket. In contrast 
to RARa (see above), the antagonistic conformer I cannot 
be stabilised by hydrogen bonding in the LBP of RARP, 
thus favouring the binding of conformer II (green in 
Figure 6b), which does not interfere with H12 /io/o posi- 
tioning. Accordingly, BMS411 generates a weak agonistic 
RARP activity [19]. 

Modelling of BMS411 in the LBP of RARy required major 
adaptations of sidechains. Such adaptations are, however, 
unlikely to occur when considering our previous observa- 
tion that three RARr ligands, all-trans and 9-cis retinoic 
acid and the synthetic RARy-specific ligand BMS961, 
adopt a very similar three-dimensional structure in the 
RARy LBP, indicating a rigid pocket into which the ligand 
has to fit [29]. In the absence of H12, BMS411 can be 
accommodated without major sidechain adaptations in the 
RARy LBP. The ligand occupies a position that is very 

different from that in the RARa and RARP LBPs (pink 
ligand in Figure 6b). This is because of residue Met272 
(which in RARy replaces the isoleucine residue of RARcx 
and RARP; see Table 2) that sterically interferes with the 
dimethyl group and pushes the ligand away. Addition of 
H12 to the model reveals, however, that in this position a 
steric clash occurs between the ligand phenyl group and 
Ile412 in HlZ (Figure 6~). In addition, the amide carboxyl 
group of BMS411 gets close to AlaZ34, causing additional 
steric hindrance. Together with the inability of establish- 
ing a stabilising hydrogen bond as in RARa, these steric 
interferences most probably account for the loo-fold lower 
binding affinity of BMS411 for RARy relative to RARa 
(no attempt was made to structurally interpret the very 
weak RARy agonist activity of BMS411 that can only be 
seen in transient transfection experiments). 

Significance 
All-trans retinoic acid (MA) exerts highly pleiotypic 
activities during embryonic development and in the adult 
by regulating cell growth, death and differentiation. 
These activities are mediated by three retinoid receptors 
(RARa, RARP and RARy) and three rexinoid receptors 
(RXRcr, RXRj3 and RXRy). Despite its chemotherapeu- 
tic and chemopreventive potential [30], the pharmacolog- 
ical use of the natural ligand is severely restricted 
because of its diverse activities. The synthesis of ligands 
that induce only a subset of nuclear receptor (NR) activ- 
ities and/or interact only with some receptor isotypes 
might overcome these restrictions [19,31,32]. To this 
end, our results provide new insights into the molecular 
aspects of an NR-&and interaction leading to isotype- 
selective agonistic and antagonistic transcriptional 
effects that can be understood from a combination of 
functional and structural analyses. These principles 
provide for the first time structural guidelines for the 
design of ligands with predetermined characteristics. 
Because of the apparent conservation of their overall 
structure, the NR superfamily should be an excellent 
model system for rational drug design. Notably, our 
results show that the agonist/antagonist activities of syn- 
thetic retinoids differ between yeast and animal cells. 
This suggests that ligands with cell-type-specific activities 
can be found, possibly related to a divergent expression 
(pattern) of coregulators. 

Materials and methods 
Recombinants 
To generate the mutations a double PCR strategy was used. Briefly, 

the hRARcx sequence from nucleotide 370 to the 3’ end of the coding 

sequence, the entire coding sequence of hRARP and the hRARy 
sequence from nucleotide 343 to the stop codon were PCR-amplified 

using pSG5-based RARa, RARP and RARy vectors, respectively, as 
templates, Deep Vent Polymerase (Biolabs), and the appropriate 

oligonucleotides. The sequences of these primers are available on 
request. The mutated PCR fragments were digested by Sad and Xmal 
for hRARa, Xhol and BamHl for hRAR j3, Sad and BamHl for hRARy 

and inserted into the corresponding sites of the pSG5-based wild-type 
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RARa, RARP and RARy expression vectors. The yeast chimeric recep- 

tors were expressed from the multicopy expression plasmid YEp90, 
which contains an expression cassette under the control of PGK pro- 

moter. RARal-ER-CAS, in which the native DNA binding domain 
(DBD; region C) of RARal was replaced with the DBD cassette of the 

human ERa(ER-CAS; residues 165-250) and the cognate ERESX- 

URA3 reporter gene have been described previously 1331. 

RAR$DEF)-ER-CAS has been constructed from the RARa-ER-CAS, 
in which the DEF region of RARa was replaced by the DEF region of 
human RARy (residues 156-454). RARPP-ER-C contains the com- 

plete DBD of the human ERa receptor (ER-C; residues 176-262) sep 

arated by two amino acids glycine and threonine from the AJB region of 
human RAR52 (residues l-60) on the amino-terminal side and by 

three amino acids Ala-Arg-Glu from the DEF region (residues 

147-446) of the human RARj32 on the carboxy-terminal side. Details 
concerning each construction are available upon request. 

Transactivation assays 

Cos 1 and HeLa cells were plated in Dulbecco’s modified Eagle’s 

medium (DMEM, Gibco) supplemented with 5% charcoal-treated foetal 
calf serum (FCS) at a density of 1.5 x 1 O6 cells per dish, and transfected 
as described [34] with 200 ng of the respective RAR mutant expression 

vector, 200 ng of the RXRa expression vector, 2 pg of the reporter gene 

(TRES tk CAT or DR5 tk CAT [35-371), 500 ng of CMV-PGAL as an 
internal control to account for variations of transfection efficiency, and 

7 ug pBluescript as a carrier. After transfection (24 h), cells were treated 

for 16 h with various concentrations of ligands before washing with 
1 x phosphate buffered saline (PBS). The cells were collected in 1 ml 

TEN (10 mM Tris-HCI, pH 7.5; 1 mM EDTA; 150 mM NaCI) and pelleted 

for 2 min at 13,000 rpm at 4%. Cell pellets were resuspended in 200 ul 
lysis buffer (250 mM Tris-HCI, pH 7.5; 15% glycerol; 5 mM DTT), dis- 

rupted by three cycles of freezing and thawing and centrifuged for 5 min 
at 13,000 rpm at 4%. CAT was quantified by enzyme-linked immunosor- 

bent assay (ELISA) (Boehringer Mannheim). Yeast transactivation 

assays were performed as described [36]. 

Expression of mutants 
BL21 bacteria were transformed with pET15b-based vectors that 

express the mutated LBDs of RARs. Bacteria were grown overnight in 

LB supplemented with 100 @g/ml ampicillin. These precultures (15 ml) 
were grown in 500 ml LB to an optical densities at 600nm between 

0.45 and 0.5 and IPTG was added to a final concentration of 1 mM. 
After 2.5 h, cells were pelleted and resuspended in 6.5 ml ice-cold 

binding buffer (5 mM imidazol; 0.5 M NaCI; 20 mM Tris-HCI, pH 6). 

Bacteria were lysed with 100 ug/ml lysozyme during 30 min on ice and 
then for 5 min at 37%. The lysate was sonicated in ice for 1 min, diluted 

with 1 volume of ice-cold binding buffer and re-sonicated for 1 min. The 

homogenate was centrifuged for 30 min at 30,000 rpm. The bacterial 
extract was then adjusted to 1 Oo/, glycerol and stored at -60°C. 

Ligand-binding assays 

Synthetic retinoids, resuspended in ethanol, were mixed with tritiated 
all-trans retinoic acid (t-RA; 5 nM) with or without lOO-fold excess of 

non-radioactive t-RA (500 nM). Ethanol was evaporated in the dark. A 
sample of the bacterial extracts (200 ul) were added to these tubes in 

which the synthetic ligand concentration varied from 0.1 nM to 1 PM. 

The mixture was incubated for 4 h at 4% in the dark. Each assay was 
performed in duplicate. 150 ul of the extract were put onto glassfiber 

filters (Whatman GF/C) and filtered under vacuum. The filters were 
washed with 30 ml of buffer (10 mM Tris-HCI, pH 6; 150 mM NaCI; 

O.Olo/, Triton X100) and the remaining radioactivity was assayed by 
scintillation counting. IC,, and K, values were determined from the cor- 

responding competition curves [39]. 

Receptor modelling and ligand docking 
The models of the human RAR isotypes are based on the recently 
solved crystal structures of the ho/o-hRARy LBD in complexes with RAs 
-̂  ̂ ,̂,̂  +l.^,:r. ,ir,.-A r? nm TL- one :..-a .._  ̂ - A:Y^- :_ rL̂  !-:--I:-- -!_L- 

hRARy to obtain the pseudo hRARa (A234.S M272l and A397V) and 
pseudo hRAR5 (M2721 and A397V). Models of truncated receptors 

missing either helix Hl (residues 215-419 in hRARy) or helix H12 

(residues 162-406 in hRARy) of all three isotypes were also con- 

structed. The Quanta/Charmm (Molecular Simulations Inc.) and 0 [401 
packages were used throughout the work. Before docking the ligands 

BMS753, BMS614 and BMS411 in the binding niche of the different 

receptors we performed a conformational search analysis to identify the 
low energy conformers of BMS753. With the grid scan algorithm of the 

Quanta/Charmm package the two rotatable bonds of BMS753 (around 

the dihedral angles ‘abed’ and ‘defg’ in Table la) were changed by 
steps of 15” from 0 to 360” and the energy for each conformer calcu- 

lated. The energy was obtained by restraining the dihedrals and energy 
minimising the ligand with the Powell procedure for 200 steps. The 

contour map revealed that the ‘defg’ dihedral angle can range from 150 

to 210” (less than 1 kcallmol from the global minimum) bringing the CO 
group of the linker away from the bulky substituent of BMS614 or 

BMS41 1 and either below or above the aromatic cycle. The ‘abed’ dihe- 

dral angle adopts preferentially four values: +40° + 20°, +l 50°+ 20°, 

-150’ f 20’ and -40’ + 20’. The conformers I and II discussed in the 
text are located close to the -150’ and 40” minima. The cavity volume 

of the binding niche of the entire receptor isotypes have been calculated 

in the program 0 with Voidoo [41] and used as a guide during the 
docking process. One of the cavities calculated by Voidoo gives the 

volume accessible to the center of the probe-sphere (1.4A radius) that 
is in contact with the protein’s van der Waals surface. In this representa- 

tion of the cavity most of the apolar heavy atoms should lie inside the 

calculated volume. The three ligands were then fitted manually taking 
the two liganded hRARy crystal structures, the cavity volumes and the 

preferred conformations as landmarks. From this analysis only two con- 

formers can be fitted in the LBP were the ‘abed’ dihedral adopts either 
the -150” f 20” or +40° f 20” values. The all-atom force field as gener- 

ated by Quanta/Charmm, has been used for the protein and the ligands. 

The C, backbone atoms of the receptors have been fixed during energy 

minimisations. The complexes were energy-minimised for 2000 steps 
with a dielectric constant of 4 using the Powell procedure. 
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