On deletions of largest bonds in graphs

Nolan McMurray ${ }^{\text {a }}$, Talmage James Reid ${ }^{\text {b, }, ~}$, Laura Sheppardson ${ }^{\text {b }}$, Bing Wei ${ }^{\text {b, }}$, Haidong Wu ${ }^{\text {b, }}$
${ }^{\text {a }}$ Department of Mathematics, Texas State University - San Marcos, TX 78666, USA
${ }^{\mathrm{b}}$ Department of Mathematics, The University of Mississippi, University, MS 38677, USA

Received 19 May 2005; received in revised form 27 March 2007; accepted 30 March 2007
Available online 6 April 2007

Abstract

A well-known conjecture of Scott Smith is that any two distinct longest cycles of a k-connected graph must meet in at least k vertices when $k \geq 2$. We provide a dual version of this conjecture for two distinct largest bonds in a graph. This dual conjecture is established for $k \leqslant 6$.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Bond; Cocircuit; Cycle intersection

1. Introduction

Scott Smith in 1979 gave the following fundamental assertion about cycle intersections in k-connected graphs.
Conjecture 1.1. If C and D are longest cycles of a k-connected graph G for $k \geqslant 2$, then C and D meet in at least k vertices.

The generalization of Smith's Conjecture for matroids [3] can be stated as follows. The rank of a set S in a matroid is denoted by $r(S)$ (see [4] for matroid terminology).

Conjecture 1.2. If C and D are largest circuits of a k-connected matroid M with at least $2(k-1)$ elements, then $r(C \cup D) \leqslant r(C)+r(D)-k+1$.

This leads to a dual version of Smith's Conjecture for graphs. When two distinct bonds are removed from a graph, the remaining graph might have only three components. If the two bonds are large and have few edges in common, we may expect their removal to leave many components. The number of components of a graph G is denoted by $\omega(G)$, and all graphs considered here are simple.

Conjecture 1.3. If C and D are the edge sets of distinct largest bonds of a k-connected graph G, then $\omega(G-(C \cup D))$ $\geqslant k+2-|C \cap D|$.

[^0]The bound of Conjecture 1.3 is tight when $k=2$. To see this, consider the example of a cycle on n vertices. Every largest bond consists of exactly two edges. If C and D are largest bonds and $|C \cap D|=1$, then $\omega(G-(C \cup D))=3$. If $|C \cap D|=0$, then $\omega(G-(C \cup D))=4$. Checking the tightness of this bound is more complex when $k>2$.

Conjecture 1.1 has been verified in the literature for $k \leqslant 6$ by Grötschel [1] and Grötschel and Nemhauser [2]. The main result of the paper strengthens Conjecture 1.3 for $k \leqslant 6$. Thus we provide a dual result to those of Grötschel and Nemhauser.

Theorem 1.4. If C and D are the edge sets of distinct bonds of a k-connected graph G with C a largest bond and $|D| \geqslant|C|-1$ for $k \leqslant 6$, then $\omega(G-(C \cup D)) \geqslant k+2-|C \cap D|$.

2. Proof of the Theorem

In this section some notation, technical lemmas, and the proof of Theorem 1.4 are given. Let X and Y be disjoint non-empty sets of vertices in a graph G. Then $[X, Y]$ denotes the set of all edges with an end-vertex in each of X and Y. The subgraph of G induced by X is denoted by $G[X]$. We say that $[X, Y]$ is a bond when (X, Y) partitions $V(G)$ and both $G[X]$ and $G[Y]$ are connected. A path with an end-vertex in each of X and Y and no internal vertices in $X \cup Y$ is called a path from X to Y. If all internal vertices of the path are contained in some vertex set V, we say it is a path through V.

Lemma 2.1. Let $G=(V, E)$ be a connected graph with V partitioned into sets V_{1}, V_{2} and V_{3} so that V_{3} induces a connected subgraph. Suppose that there are two internally disjoint paths from V_{1} to V_{2} through V_{3}. Then V_{3} can be partitioned into sets T_{1} and T_{2} that both have neighbors in V_{1} and V_{2}, induce connected subgraphs of G, and are joined by at least one edge.

Proof. Let $P_{1}=P\left(x_{1}, x_{2}\right)$ and $P_{2}=P\left(y_{1}, y_{2}\right)$ be the parts of these two paths in V_{3} so that vertices x_{1} and y_{1} have a neighbor in V_{1} while x_{2} and y_{2} have a neighbor in V_{2} (see Fig. 1). The connected graph $G\left[V_{3}\right]$ contains a spanning tree T that contains P_{1} and P_{2} as subgraphs. Delete an edge e on the path from P_{1} to P_{2} in T. $\operatorname{Let} T_{1}$ and T_{2} be the vertex sets of the two resulting subtrees of T with $V\left(P_{i}\right) \subseteq T_{i}$ for $i=1,2$. Then T_{1} and T_{2} satisfy the conditions of the lemma.

Proof of Theorem 1.4. Assume $\hat{\omega}:=\omega(G-(C \cup D)) \leqslant k+1-|C \cap D|$. Note that $\hat{\omega} \geqslant 3$ since C and D are distinct bonds. Let C_{1} and C_{2} denote the vertex sets of the two components of $G-C$ and D_{1} and D_{2} denote the vertex sets of the two components of $G-D$. Fig. 2 illustrates this with $X=C_{1} \cap D_{1}, Y=C_{2} \cap D_{1}, W=C_{1} \cap D_{2}$ and $U=C_{2} \cap D_{2}$. Here the edges of C are those from the left vertex sets X and W to the right vertex sets Y and U. The edges of D are those in this figure from the upper vertex sets X and Y to the lower vertex sets W and U. The edges of $C \cap D$ are the diagonal edges in this figure.

Claim 1. For each $i, j \in\{1,2\}$, the set $C_{i} \cap D_{j}$ is nonempty.

Fig. 1. Split paths in Lemma 2.1.

Fig. 2. The bonds C and D.

Proof of Claim 1. Suppose otherwise and assume without loss of generality that $C_{2} \cap D_{1}=\emptyset$. Then $X=D_{1}$ and $U=C_{2}$ so that $G[X]$ and $G[U]$ are connected. Note that $C \cap D=[X, U]$. Since $\hat{\omega} \geqslant 3, W=C_{1} \cap D_{2} \neq \emptyset$. Let W_{1}, W_{2}, \ldots, W_{s} denote the vertex sets of the components of $G[W]$.

It follows from $s+2=\hat{\omega} \leqslant k+1-|C \cap D|$ that $s<k$. Since G is k-connected, there exist two internally disjoint paths from X to U through some component of W, say W_{1}. It follows by Lemma 2.1 that there exists a partition of W_{1} into sets T_{1} and T_{2} so that both sets have neighbors in X and U, induce connected subgraphs, and are joined by at least one edge.

Let $S_{1}=[X, U] \cup\left[X,\left(W-T_{2}\right)\right] \cup\left[T_{2}, U\right] \cup\left[T_{1}, T_{2}\right]$ and $S_{2}=[U, X] \cup\left[U,\left(W-T_{2}\right)\right] \cup\left[T_{2}, X\right] \cup\left[T_{1}, T_{2}\right]$. Then $\left|S_{1}\right|+\left|S_{2}\right| \geqslant|[X, W]|+|[U, W]|+2|[X, U]|+2=|C|+|D|+2$. So one of S_{1} or S_{2} is a bond of G that is larger than C, a contradiction.

Claim 2. Let $i, j \in\{1,2\}$. If $\omega\left(G\left[C_{i} \cap D_{j}\right] \cup G\left[C_{3-i} \cap D_{3-j}\right]\right)=2$, then $\left|\left[\left(C_{i} \cap D_{3-j}\right),\left(C_{3-i} \cap D_{j}\right)\right]\right| \geqslant 2$.
Proof of Claim 2. Let $W=C_{i} \cap D_{j}, Y=C_{3-i} \cap D_{3-j}, X=C_{i} \cap D_{3-j}$, and $U=C_{3-i} \cap D_{j}$. (Fig. 2 corresponds to $i=1, j=2$.) Then $\omega(G[W] \cup G[Y])=2$, so each of $G[W]$ and $G[Y]$ is connected. Since $G[X]$ and $G[U]$ together contain at most $k-1-|C \cap D|$ components and $G-(C \cap D)$ is $(k-|C \cap D|)$-connected, there exist two internally disjoint paths from W to Y through some component of either $G[X]$ or $G[U]$. Assume this component is induced by vertex set $X_{1} \subseteq X$. It follows from Lemma 2.1 that there exists a partition of X_{1} into sets T_{1} and T_{2} so that both sets have neighbors in W and Y, induce connected subgraphs, and are joined by at least one edge.

Note that each of $G[W \cup X]=C_{1}, G[Y \cup U]=C_{2}, G[X \cup Y]=D_{1}$, and $G[W \cup U]=D_{2}$ is connected, and that there are edges from each of T_{1} and T_{2} to each of W and Y. When $l \in\{1,2\}$, each of $G\left[\left(X-T_{l}\right) \cup W\right], G\left[\left(X-T_{l}\right) \cup Y\right]$, $G\left[T_{l} \cup W \cup U\right]$ and $G\left[T_{l} \cup Y \cup U\right]$ is connected. So $S_{1}:=\left[\left(X-T_{l}\right) \cup W, T_{l} \cup Y \cup U\right]$ and $S_{2}:=\left[\left(X-T_{l}\right) \cup Y, T_{l} \cup W \cup U\right]$ are bonds.

If $\left[T_{l}, U\right]=\emptyset$, then

$$
\begin{aligned}
\left|S_{1}\right|+\left|S_{2}\right|= & \left(|C|-\left|\left[T_{l}, Y\right]\right|+\left|\left[T_{l}, W\right]\right|+\left|\left[T_{1}, T_{2}\right]\right|\right) \\
& +\left(|D|-\left|\left[T_{l}, W\right]\right|+\left|\left[T_{l}, Y\right]\right|+\left|\left[T_{1}, T_{2}\right]\right|\right) \\
= & |C|+|D|+2\left|\left[T_{1}, T_{2}\right]\right| \\
\geqslant & |C|+|D|+2 \\
\geqslant & 2|C|+1 .
\end{aligned}
$$

This contradicts that C is a largest bond of G. Hence $\left[T_{l}, U\right] \neq \emptyset$ for each $l \in\{1,2\}$, and $|[X, U]| \geqslant 2$.
Our next claim is a generalized form of the following idea. Suppose $G[W] \cup G[Y]$ has exactly three components, and there are two internally disjoint paths from W to Y through a single component of $G[X] \cup G[U]$. Then $|[X, U]| \geqslant 1$.

Claim 3. Let $i, j \in\{1,2\}$. Suppose $\omega\left(G\left[C_{i} \cap D_{j}\right] \cup G\left[C_{3-i} \cap D_{3-j}\right]\right)=3$, and sets V_{1}, V_{2}, and V_{3} induce components of $G\left[C_{i} \cap D_{j}\right], G\left[C_{3-i} \cap D_{3-j}\right]$, and $G\left[\left(C_{i} \cap D_{3-j}\right)\right] \cup G\left[\left(C_{3-i} \cap D_{j}\right)\right]$, respectively. If there are two internally disjoint paths from V_{1} to V_{2} through V_{3}, then $\left|\left[V_{3},\left(C_{i} \cap D_{3-j}\right) \cup\left(C_{3-i} \cap D_{j}\right)-V_{3}\right]\right| \geqslant 1$.

Fig. 3. Paths from W to Y when $\hat{\omega} \geqslant 6$.
Proof of Claim 3. Again let $W=C_{i} \cap D_{j}, Y=C_{3-i} \cap D_{3-j}, X=C_{i} \cap D_{3-j}$, and $U=C_{3-i} \cap D_{j}$. (Fig. 2 corresponds to $i=1, j=2$.) Assume by symmetry that $G[W]$ is connected, and that $G[Y]$ has exactly two components induced by vertex sets Y_{1} and Y_{2}. Assume further that $V_{1}=W, V_{2}=Y_{2}$, and $V_{3} \subseteq X$, so there are two internally disjoint paths from W to Y_{2} through some component of $G[X]$. Then we have X_{1}, T_{1} and T_{2} as in the proof of Claim 2 above. Again each of $G\left[\left(X-T_{l}\right) \cup W\right], G\left[T_{l} \cup W \cup U\right]$ and $G\left[T_{l} \cup Y \cup U\right]$ is connected for $l \in\{1,2\}$. But $G\left[\left(X-T_{l}\right) \cup Y\right]$ may not be connected, as there may be no edge from $X-T_{l}$ to Y_{1}. However, at least one of $G\left[\left(X-T_{1}\right) \cup Y\right]$ or $G\left[\left(X-T_{2}\right) \cup Y\right]$ is connected. So for at least one $l \in\{1,2\}$, the sets S_{1}, S_{2} as defined above are bonds. Hence $\left[T_{l}, U\right] \neq \emptyset$, and $\left|\left[V_{3},\left(C_{3-i} \cap D_{j}\right)-V_{3}\right]\right| \geqslant 1$.

It follows from Claim 1 and $k \leqslant 6$ that $4 \leqslant \hat{\omega} \leqslant k+1-|C \cap D| \leqslant 7-|C \cap D|$. We consider the cases $4 \leqslant \hat{\omega} \leqslant 7$ below. The sets X, Y, U, W are again defined as in Fig. 2.

If $\hat{\omega}=4$, then each of X, Y, U, and W induces a connected subgraph. By Claim $2,|[X, U]| \geqslant 2$ and $|[W, Y]| \geqslant 2$, so $|C \cap D| \geqslant 4$. Hence $4=\hat{\omega} \leqslant k-3 \leqslant 3$, a contradiction. Thus $\hat{\omega}>4$.

Suppose that $\hat{\omega}=5$. We may assume by symmetry that each of X, U, W induces a connected subgraph, and $G[Y]$ has exactly two components. It follows from Claim 2 that $|[W, Y]| \geqslant 2$. Hence $5=\hat{\omega} \leqslant k-1$, so $k=6,|C \cap D|=2$, and $[X, U]=\emptyset$. Since $G-(C \cap D)$ is 4-connected, there are at least four internally disjoint paths from W to Y_{i} for each $i \in\{1,2\}$. If two of these paths are both through one of X or U then by Claim 3 we find $|[X, U]| \geqslant 1$, a contradiction. So we must have one path from W to each of Y_{1} and Y_{2} through X, one path from W to each of Y_{1} and Y_{2} through U, and two paths from Y_{1} to Y_{2} each through one of X or U. Suppose by symmetry that there are paths P_{1} from W to Y_{1}, and P_{2} from W to Y_{2}, and P_{3} from Y_{1} to Y_{2}, each through X. Since $G[X]$ is connected, there is some path Q from $V\left(P_{3}\right)$ to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$ in $G[X]$. If Q has an end-vertex in P_{1}, then $P_{1} \cup Q \cup P_{3}$ contains a path from W to Y_{2} which is internally disjoint from P_{2}. Likewise, if Q has an end in P_{2}, we have internally disjoint paths from W to Y_{1}. Each of these produces a contradiction.

Finally, suppose $\hat{\omega} \geqslant 6$. The following argument will encompass three distinct subcases: $\hat{\omega}=6, k=5$, and $C \cap D=\emptyset$; or $\hat{\omega}=6, k=6$, and $|C \cap D| \leqslant 1$; or $\hat{\omega}=7, k=6$, and $C \cap D=\emptyset$.

In any of these cases, we may assume by symmetry that $\omega(G[W] \cup G[Y]) \leqslant 3$. Assume further that $G[W]$ is connected. If $G[Y]$ is connected, then by Claim $2,|[X, U]| \geqslant 2$, contradicting $|C \cap D| \leqslant 1$. We have a similar contradiction if $G[X]$ and $G[U]$ are both connected. So we assume by symmetry that $G[Y]$ has exactly two components, induced by vertex sets Y_{1} and Y_{2}, and $G[U]$ has at least two components, with two being induced by vertex sets U_{1} and U_{2} respectively (Fig. 3). We may further assume $[X, U]=\emptyset$; otherwise, $|C \cap D|=1$, so we are in the case $k=6$ and $\hat{\omega}=6$, and we may symmetrically exchange the set pair X, U for the set pair W, Y.

By Claim 3, we may assume that for $i \in\{1,2\}$, there is no pair of internally disjoint paths from W to Y_{i} through some component of $G[X] \cup G[U]$. Otherwise, we contradict the assumption that $[X, U]=\emptyset$.

The graph $G[X] \cup G[U]$ has exactly $\hat{\omega}-3$ components. $G-(C \cup D))$ is $k-|C \cap D|$-connected, and $k-\mid C \cap$ $D \mid \geqslant(\hat{\omega}-3)+2$. So we may assume that there are two components of $G[X] \cup G[U]$ which each contain the internal vertices of two internally disjoint paths from W to Y. Suppose without loss of generality that there are internally disjoint paths from W to Y_{1} and from W to Y_{2} through U_{1}. By Lemma 2.1 there exists a partition of U_{1} into sets T_{1} and T_{2} so that both sets have neighbors in W and Y, induce connected subgraphs, and are joined by at least one edge. Set T_{1} has some neighbor in Y_{1} and T_{2} has some neighbor in Y_{2}.

We claim that one of $\left[Y_{1}, U-U_{1}\right]$ and $\left[Y_{2}, U-U_{1}\right]$ is empty. To see this, suppose both Y_{1} and Y_{2} have neighbors in $U-U_{1}$. Let $l \in\{1,2\}$. Since $G[W \cup U]$ is connected and W has a neighbor in $T_{3-k}, G\left[W \cup\left(U-T_{l}\right)\right]$ is connected. Since $G[X \cup W]$ is connected and W has a neighbor in $T_{l}, G\left[X \cup W \cup T_{l}\right]$ is connected. Since $G[Y \cup U]$ is connected and both Y_{1} and Y_{2} have neighbors in $U_{2}, G\left[Y \cup\left(U-T_{l}\right)\right]$ is connected. Finally, since $G[X \cup Y]$ is connected and T_{l} has a neighbor in $Y, G\left[X \cup Y \cup T_{l}\right]$ is connected. So $S_{1}:=\left[X \cup W \cup T_{l}, Y \cup\left(U-T_{l}\right)\right]$ and $S_{2}:=\left[X \cup Y \cup T_{l}, W \cup\left(U-T_{l}\right)\right]$ are each bonds.

If $\left[T_{l}, X\right]=\emptyset$, then

$$
\begin{aligned}
\left|S_{1}\right|+\left|S_{2}\right|= & \left(|C|-\left|\left[T_{l}, W\right]\right|+\left|\left[T_{l}, Y\right]\right|+\left|\left[T_{1}, T_{2}\right]\right|\right) \\
& +\left(|D|-\left|\left[T_{l}, Y\right]\right|+\left|\left[T_{l}, W\right]\right|+\left|\left[T_{1}, T_{2}\right]\right|\right) \\
= & |C|+|D|+2\left|\left[T_{1}, T_{2}\right]\right| \\
\geqslant & 2|C|+1 .
\end{aligned}
$$

This is a contradiction as C is the largest bond of G. Hence $\left[T_{l}, X\right] \neq \emptyset$ for each $l \in\{1,2\}$, and $|[X, U]| \geqslant 2$, contradicting $|C \cap D| \leqslant 1$. So either Y_{1} or Y_{2} has no neighbors in $U-U_{1}$.

Assume by symmetry that $\left[Y_{1}, U-U_{1}\right]=\emptyset$. There is some vertex $u \in U_{1}$ which separates Y_{1} from W in $G[W \cup$ $\left.U_{1} \cup Y\right]-(C \cap D)$; otherwise there would be two internally disjoint paths from W to Y_{1} through U_{1}. So u separates Y_{1} from W in $G[W \cup U \cup Y]-(C \cap D)$. Similarly, for each $X_{i} \subset X$ which induces a component of $G[X]$, there is a vertex set $\left\{x_{i}, v_{i}\right\} \subset X_{i}$ separating W from Y in $G\left[W \cup X_{i} \cup Y\right]-(C \cap D)$. If $\hat{\omega}=6$, then $k-|C \cap D| \geqslant \hat{\omega}-1 \geqslant 5$ so $G-(C \cap D)$ is 5 -connected. But $G[X]$ has only one component, so we have a cutset $\left\{x_{1}, v_{1}, u\right\}$ in $G-(C \cap D)$, a contradiction. If $\hat{\omega}=7$, then $G-(C \cap D)$ is 6 -connected. But $G[X]$ has at most two components, so we have a cutset $\left\{x_{1}, v_{1}, x_{2}, v_{2}, u\right\}$ in $G-(C \cap D)$, a contradiction.

This completes the proof of Theorem 1.4.

References

[1] M. Grötschel, On intersections of longest cycles, Graph Theory and Combinatorics, Cambridge, 1983, Academic Press, London, 1984, pp. 171-189. MR777174 (86d:05073).
[2] M. Grötschel, G.L. Nemhauser, A polynomial algorithm for the max-cut problem on graphs without long odd cycles, Math. Programming 29 (1) (1984) 28-40 MR740503 (85i:05147).
[3] N. McMurray, T.J. Reid, B. Wei, H. Wu, Largest circuits in matroids, Adv. Appl. Math. 34 (1) (2005) 213-216 MR2102283.
[4] J.G. Oxley, Matroid theory, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1992 MR1207587 (94d:05033).

[^0]: E-mail address: sheppard@olemiss.edu (L. Sheppardson).
 ${ }^{1}$ Research partially supported by ONR Grant N00014-03-0621.

