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Abstract

Starting with vectorλ = (λ(k))k∈Z ∈ �p(Z), the subdivision scheme generates a seque
{Sn

a λ}∞
n=1 of vectors by the subdivision operator

Saλ(k) =
∑
j∈Z

λ(j)a(k − 2j), k ∈ Z.

Subdivision schemes play an important role in computer graphics and wavelet analysis. It
interesting to understand under what conditions the sequence{Sn

a λ}∞
n=1 converges to aLp-function

in an appropriate sense. This problem has been studied extensively.
In this paper, we consider the convergence of subdivision scheme in Sobolev spaces with

of joint spectral radius. Firstly, the conditions under which the sequence{Sn
a λ}∞

n=1 converges to a
Wk

p-function in an appropriate sense are given. Then, we show that the subdivision scheme co
for any initial vector inWk

p(R) provided that it does for one nonzero vector in that space. More
if the shifts of the refinable function are stable, the smoothness of the limit function correspond
the vectorλ is also independent ofλ, where the smoothness of a given function is measured b
generalized Lipschitz space.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Subdivision schemes play an important role in computer graphics (see [10]
wavelet analysis (see [2]). There has been an intensive study on convergence of
vision schemes. The purpose of this paper is to investigate the convergence of subd
schemes in Sobolev space and, when the scheme converges, the smoothness of t
sponding limit functions.

Let a = (a(m))m∈Z. We assume throughout this paper that∑
m∈Z

a(m) = 2

and that there is a positive integerN such that, form /∈ {0,1, . . . ,N}, a(m) = 0. The
subdivision operatorSa , associated with maska, on�p(Z) is defined by

Saλ(k) =
∑
j∈Z

λ(j)a(k − 2j), k ∈ Z. (1.1)

Starting with an initial vectorλ = (λ(k)) ∈ �p(Z), thesubdivision schemewith mask
a generates control pointsλn = (λ(j))j∈Z at dyadic pointsj/2n, j ∈ Z, recursively by
λ0 = λ, and

λn = Saλ
n−1 = · · · = Sn

aλ, n = 1,2, . . . . (1.2)

Let Wk
p(R) be thekth Sobolev space, that is

Wk
p(R) = {

f (j) ∈ Lp(R): 0� j � k
}
. (1.3)

The norm onWk
p(R) is defined by

‖f ‖Wk
p

:=
k∑

j=0

∥∥f (j)
∥∥

p
, 1� p � ∞.

Let

B1 = χ[0,1](x), Bk+1 = B1 ∗ · · · ∗ B1︸ ︷︷ ︸
k+1

,

i.e., thek times of convolution ofB1. They are theB splines. It is easily seen thatBk+1 ∈
Wk

p(R) for 1� p < ∞.
With Bk+1, we give the notions concerning the convergence of subdivision schem

Sobolev spaces as follows.

Definition 1.1. Let 1� p < ∞ andλ ∈ �p(Z). The sequence{Sn
aλ}∞n=1 is said to be con

vergent inWk
p(R) if there is a functionfλ ∈ Wk

p(R) such that

lim
n→∞

∥∥∥∥∑
Sn

aλ(j)Bk+1
(
2n · −j

) − fλ

∥∥∥∥
k

= 0.
j∈Z
Wp



742 H.-Y. Liu, D.-R. Chen / J. Math. Anal. Appl. 306 (2005) 740–751

e algo-

d sub-
at all.
itions
. The
3] and
k,

e de-
nitial
oved

s-
n

the

f the
l
n 3,

able

] the
ce
Definition 1.2. We say that subdivision scheme{Sn
a }, associated with maska, converges

in Wk
p(R) if for eachλ ∈ �p(Z) the sequence{Sn

aλ}∞n=1 is convergent andfλ �= 0 for some
λ ∈ �p(Z).

The convergence of subdivision schemes is essentially close to that of cascad
rithms. Thecascade algorithm, staring with an appropriately initial functionφ0, generates
a sequence{Qn

aφ0}∞n=1 by thecascade operatorQa defined by

Qaf =
∑
j∈Z

a(j)f (2 · −j). (1.4)

There is a lot of papers considering the convergence of cascade algorithms an
division schemes. We mention here some works with no attempt of completeness
Dyn et al. [9] and Cavaretta et al. [2] already found necessary and sufficient cond
ensuring that subdivision scheme converges uniformly to a continuous limit function
Lp-convergence of vector cascade algorithms was characterized by Jia et al. [12,1
Han et al. [11], in terms of thep-norm joint spectral radius. By factorization of mas
Micchelli et al. [14] discussed the convergence of subdivision schemes inLp. For the
characterization of vector cascade algorithms inWk

p (1 � p � ∞), in terms of thep-norm
joint spectral radius, we refer to [4].

In [5], an interesting problem of how the convergence of the subdivision schem
pends on the initial vectorλ was proposed. We established an independence of the i
vectorλ ∈ �p(Z) in the convergence of subdivision scheme. More precisely, it was pr
that the subdivision scheme{Sn

a }∞n=1 converges inLp(R) provided that, foronenonzero
vectorλ ∈ �p(Z), the sequence{Sn

aλ}∞n=1 converges inLp(R). One of our purposes is to e
tablish such an independence of initial vectorsλ ∈ �p(Z) in the convergence of subdivisio
schemes in Sobolev space.

Once the subdivision scheme converges for an initial vectorλ ∈ �p(Z), it is desired
to obtain the smoothness of the limit functionfλ. Our second purpose is to discuss
independence ofλ in the critical exponent offλ.

The paper is organized as follows. In Section 2, we first recall the definition o
p-norm joint spectral radius. Then we establish a formula for thep-norm joint spectra
radius, which is independent of the initial vector of subdivision operator. In Sectio
we prove that the subdivision scheme{Sn

a }∞n=1 converges inWk
p(R) provided that, forone

nonzero vectorλ ∈ �p(Z), the sequence{Sn
aλ}∞n=1 converges inWk

p(R). In Section 4, we
will investigate the smoothness of the limit functions. Under a condition for the refin
function, it is shown that all the limit functions have the same critical exponent.

2. A formula for joint spectral radii

Thep-norm joint spectral radius was introduced by Jia [12]. Let us recall from [12
definition of thep-norm joint spectral radius. LetV be a finite-dimensional vector spa
equipped with a vector norm‖ · ‖. For a linear operatorA onV , define
‖A‖ := max
‖v‖=1

‖Av‖.
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b-
n

Let A be a finite multiset of linear operators onV . For a positive integern we denote
by An the Cartesian power ofA:

An = {
(A1, . . . ,An): A1, . . . ,An ∈A

}
.

For 1� p < ∞, let

∥∥An
∥∥

p
:=

( ∑
(A1,...,An)∈An

‖A1 · · ·An‖p

)1/p

,

and forp = ∞, define∥∥An
∥∥∞ := max

{‖A1 · · ·An‖: (A1, . . . ,An) ∈ An
}
.

For 1� p � ∞, thep-norm joint spectral radiusof A is defined to be

ρp(A) := lim
n→∞

∥∥An
∥∥1/n

p
. (2.1)

It is easily seen that this limit indeed exists, and

lim
n→∞

∥∥An
∥∥1/n

p
= inf

n�1

∥∥An
∥∥1/n

p
. (2.2)

Clearly,ρp(A) is independent of the choice of the vector norm onV .
Furthermore, forX = {xi}si=1 ⊆ V , let U(X) be the minimal common invariant su

space ofA ∈ A containingX. ThenA|U(X) = {A|U(X): A ∈ A} is a set of operators o
subspaceU(X). We define for 1� p < ∞,

∥∥AnX
∥∥

p
:=

(
s∑

i=1

∑
(A1,...,An)∈An

‖A1 · · ·Anxi‖p

)1/p

,

and forp = ∞, define∥∥AnX
∥∥∞ := max

{‖A1 · · ·Anxi‖: (A1, . . . ,An) ∈An, i = 1, . . . , s
}
,

where the norms in the right-hand sides are any fixed norms onV . Then [12] there is a
positive constantκ , independent of the norm onV , such that

κ−1
∥∥A∣∣n

U(X)

∥∥
p

�
∥∥AnX

∥∥
p

� κ
∥∥A∣∣n

U(X)

∥∥
p
, n = 1,2, . . . . (2.3)

Consequently we obtain by (2.1)–(2.3),

ρp{A|U(X)} � κ1/n
∥∥AnX

∥∥1/n

p
, n = 1,2, . . . . (2.4)

Using (2.1) and (2.3) we get that

lim
n→∞

∥∥AnX
∥∥1/n

p
= lim

n→∞
∥∥A∣∣n

U(X)

∥∥1/n

p
= ρp(A|U(X)). (2.5)

The difference operator∇ on �p(Z) is given by

∇λ(j) := λ(j) − λ(j − 1), λ ∈ �p(Z).

For any integerk � 2, let∇k = ∇∇k−1.

Now, we quote a result in [3].
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Lemma 2.1. Let 1� p < ∞ andλ ∈ �p(Z)\{0}, then

‖x‖ =
( ∑

γ∈Z

∣∣γ λT x
∣∣p)1/p

, x ∈ C
N,

defines a norm onCN, where, for anyγ ∈ Z, the vectorγ λ ∈ C
N is defined by

γ λ = (
λ(γ − 1), λ(γ − 2), . . . , λ(γ − N)

)T ∈ C
N. (2.6)

Associated to the maska, there are two matricesA0,A1 as follows:

A0 := (
a(2i − j − 1)

)
1�i,j�N

, A1 := (
a(2i − j)

)
1�i,j�N

.

With the help of Lemma 2.1, we can prove the following result.

Theorem 2.2. Let ‖ · ‖ be the norm ofCN given in Lemma2.1. For ε = 0,1, let Aε be the
matrix onRN×N given as above, whereN � k + 2. Let

X =
{

k+1∑
i=0

(−1)iCi
k+1em+i

}N−(k+1)

m=1

,

A = {A0,A1} andU(X) be the minimal common invariant subspace ofA0 andA1 con-
tainingX. For 1� p < ∞, andλ ∈ �p(Z)\{0}, we have a positive constantC such that

ρp

({A|U(X)}
)
� C1/n

∥∥∇k+1Sn
aλ

∥∥1/n

p
, n = 1,2, . . . . (2.7)

Moreover,

lim
n→∞

∥∥∇k+1Sn
aλ

∥∥1/n

p
= ρp

({A|U(X)}
)
. (2.8)

Proof. Let j ∈ Z. For any nonnegative integern, there are uniquelyεi ∈ {0,1},1� i � n,
andγ ∈ Z such thatj = 2nγ +2n−1εn +· · ·+ε1. For anyλ ∈ �p(Z), it is known (see [12])
that

Sn
a (j + 1− m) = AT

ε1
· · ·AT γ

εn
λ(m), 1� m � N, j ∈ Z.

Therefore, form = 1,2, . . . ,N − 1,

∇Sn
a (j + 1− m) = Sn

aλ(j + 1− m) − Sn
a (j − m)

= AT
ε1

· · ·AT γ
εn

λ(m) − AT
ε1

· · ·AT γ
εn

λ(m + 1)

= (
γ λ

)T
Aεn · · ·Aε1(em − em+1).

Form = 1,2, . . . ,N − 2,

∇2Sn
a (j + 1− m) = ∇Sn

aλ(j + 1− m) − ∇Sn
a (j − m)

= (
γ λ

)T
Aεn · · ·Aε1(em − em+1 − em+1 + em+2)( )
= γ λ

T
Aεn · · ·Aε1(em − 2em+1 + em+2).
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By the induction argument, form = 1,2, . . . ,N − (k + 1),

∇k+1Sn
a (j + 1− m) = (

γ λ
)T

Aεn · · ·Aε1

(
k+1∑
i=0

(−1)iCi
k+1em+i

)
.

It follows that form = 1,2, . . . ,N − (k + 1),∑
j∈Z

∣∣∇k+1Sn
aλ(j + 1− m)

∣∣p

=
∑

ε1,...,εn∈{0,1}

∑
γ∈Z

∣∣∣∣∣(γ λ
)T

Aεn · · ·Aε1

(
k+1∑
i=0

(−1)iCi
k+1em+i

)∣∣∣∣∣
p

.

Summing overm = 1,2, . . . ,N − (k + 1) gives

(N − k − 1)
∥∥∇k+1Sn

aλ
∥∥p

p

=
∑

ε1,...,εn∈{0,1}

∑
γ∈Z

N−k−1∑
m=1

∣∣∣∣∣(γ λ
)T

Aεn · · ·Aε1

(
k+1∑
i=0

(−1)iCi
k+1em+i

)∣∣∣∣∣
p

.

Choosing the norm inCN given as in Lemma 2.1 yields that

(N − k − 1)
∥∥∇k+1Sn

aλ
∥∥p

p
= ∥∥AnX

∥∥p

p
.

The proof is completed by (2.4) and (2.5).�
It is interesting that the limit in above theorem is independent ofλ ∈ �p(Z) \ {0}.

3. Convergence of subdivision scheme in Wk
p

In this section, we discuss the convergence of the subdivision scheme inWk
p . First, we

gave a characterization for the convergence of{Sn
aλ}∞n=1 in Wk

p .
Let y ∈ R andf be a function defined onR. The difference operator∇y is defined by

∇yf = f − f (· − y).

The modulus of continuity of a functionf is given by

ω(f,h)p := sup
|y|�h

‖∇yf ‖p, h � 0.

Lemma 3.1. Assume that, for someλ ∈ �p(Z) \ {0}, {Sn
aλ}∞n=1 converges inWk

p(R). Then
we have

lim 2−n/p2nk
∥∥∇k+1Snλ

∥∥ = 0. (3.1)

n→∞ a p
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Proof. We first recall thatφ0 = Bk+1 satisfies a stability condition. This means that th
exist two positive constantsC1 andC2 such that, for anyb ∈ �p(Z),

C1‖b‖p �
∥∥∥∥∑

j∈Z

b(j)φ0(· − j)

∥∥∥∥
p

� C2‖b‖p.

Supposef ∈ Wk
p(R), by the equation

∇k+1
2−n f =

2−n∫
0

· · ·
2−n∫
0

∇2−nf (k)
(
x + 2−n + t1 + · · · + tk

)
dt1 · · ·dtk

and Minkowski’s inequality, it is obtained that∥∥∇k+1
2−n f

∥∥
p

� 2−nkω
(
f (k),2−n

)
p
.

Therefore, asn → ∞, we have

2nk
∥∥∇k+1

2−n f
∥∥

p
� ω

(
f (k),2−n

)
p

→ 0. (3.2)

We now let

gn =
∑
j∈Z

Sn
aλ(j)φ0

(
2n · −j

)
. (3.3)

By Eq. (3.2), asn → ∞, we have

2nk
∥∥∇k+1

2−n (gn − fλ)
∥∥

p
� ω

(
(gn − fλ)

(k),2−n
)
p

→ 0.

So,

2nk
∥∥∇k+1

2−n gn

∥∥
p

� 2nk
∥∥∇k+1

2−n (gn − fλ)
∥∥

p
+ 2nk

∥∥∇k+1
2−n fλ

∥∥
p

→ 0. (3.4)

On the other hand, applying the difference operator∇2−n to both sides of (3.3), we
obtain

∇2−ngn =
∑
j∈Z

Sn
aλ(j)

[
φ0

(
2n · −j

) − φ0
(
2n · −j − 1

)]
=

∑
j∈Z

∇Sn
aλ(j)φ0

(
2n · −j

)
.

An induction argument tells us that

∇k+1
2−n gn =

∑
j∈Z

∇k+1Sn
aλ(j)φ0

(
2n · −j

)
. (3.5)

Consequently,∥∥∇k+1
2−n gn

∥∥p

p
= 2−n

∥∥∥∥∑
j∈Z

∇k+1Sn
aλ(j)φ0(· − j)

∥∥∥∥p

p

.

Therefore, (3.1) follows from the stability condition onφ0, and (3.4). The proof is com

plete. �
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.3)
Corollary 3.2. Assume that1� p < ∞. Under the condition of Lemma3.1, we have

ρp{A|U(X)} < 2−k+1/p,

whereA andX defined as in Theorem2.2.

Proof. Write ρ = ρp{A|U(X)}. If ρ � 2−k+1/p, by (2.7), we have∥∥∇k+1Sn
aλ

∥∥
p

� C−1ρn � C−12−nk+n/p, n = 1,2, . . . ,

whereC is a positive constant independent ofn as in Theorem 2.2. So

2nk−n/p
∥∥∇k+1Sn

aλ
∥∥

p
� C−1 > 0, n = 1,2, . . . .

It contradicts with (3.1). �
Corollary 3.3. Assume that1 � p < ∞ and that the condition of Lemma3.1 holds, then
for any eigenvalueσ of Sa on �p(Z), we have

|σ | < 2−k+1/p.

Proof. By assumption, there is anη ∈ �p(Z) \ {0} such thatSn
aη = ση. Thus

∇k+1Sn
a η = σn∇k+1η, ∀n ∈ N.

By Theorem 2.2,|σ | = ρp{A|U(X)}. The proof is complete by Corollary 3.2.�
We are in a position to present the main result of this section.

Theorem 3.4. Assume that1� p < ∞. The following statements are equivalent:

(i) Subdivision scheme{Sn
a } converges inWk

p(R) for oneλ ∈ �p(Z)\{0}.
(ii) ρp{A|U(X)} < 2−k+1/p, whereA andX defined as in Theorem2.2.

(iii) Subdivision scheme{Sn
aλ} converges inWk

p(R) for anyλ ∈ �p(Z).

Proof. Since (i)⇒ (ii) is just Corollary 3.2, we only need to establish (ii)⇒ (iii). Suppose
now that (ii) is true. Letφn = Qn

aφ0, whereQa is the cascade operator defined as in (1
andφ0 = Bk+1. Sinceφ0 is a compactly supported function, there is a compact setE ⊂ R

such thatφn is supported onE for anyn.
Moreover, it follows fromρp{A|U(X)} < 2−k+1/p and [4, Theorem 4.1] thatφn con-

verges toφa in Wk
p , i.e.,

lim
n→∞‖φn − φa‖Wk

p
= 0. (3.6)

Consequently, for anyλ ∈ �p(Z), the functionfλ := ∑
j∈Z

λ(j)φa(· − j) ∈ Wk
p(R).

Furthermore, it is not difficult by an induction argument to obtain∑
Sn

aλ(j)φ0
(
2n · −j

) =
∑

λ(j)φn(· − j). (3.7)

j∈Z j∈Z
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Therefore, for anyλ ∈ �p(Z),

lim
n→∞

∥∥∥∥∑
j∈Z

Sn
aλ(j)φ0

(
2nx − j

) − fλ

∥∥∥∥
Wk

p

= lim
n→∞

∥∥∥∥∑
j∈Z

λ(j)
(
φn(· − j) − φa(· − j)

)∥∥∥∥
Wk

p

= 0.

The last equality holds by (3.6),λ ∈ �p(Z) and the fact that suppφn, suppφa ⊂ E.
Let δ = (δ(α))α ∈ �p(Z) is given byδ(0) = 1 andδ(α) = 0 for anyα �= 0. To conclude

φa �= 0, let us recall that
∑

j∈Z
a(j) = 2. It is true by induction onn that∑

j∈Z

Sn
a δ(j) = 2n, n = 1,2, . . . . (3.8)

It yields by the stability ofφ0 that

C � C2−n
∥∥Sn

a δ
∥∥

1 � ‖φn‖1, (3.9)

whereC is a positive constant.
Again, sinceφn is supported onE for any n, there exists a constantM , independen

of n, satisfying

‖φn‖1 � M‖φn‖p, ∀n = 1,2, . . . . (3.10)

It follows from (3.9) and (3.10) thatφa �= 0. The proof is complete. �

4. Smoothness of limit functions

In this section, we consider the smoothness of the limit functions of a subdiv
scheme. We prove that, under a stability condition, all the limit functions have the
smoothness.

Let us recall from [7] the definition of the generalized Lipschitz space. Fory ∈ R, recall
that the difference operator∇y is defined in Section 3. Moreover, for any integerk � 2, let
∇k

y = ∇k−1
y ∇y . Thekth modulus of smoothnessof f ∈ Lp(R) is defined by

ωk(f,h)p := sup
|y|�h

∥∥∇k
yf

∥∥
p
, h � 0.

For ν > 0, let k be an integer greater thanν. The generalized Lipschitz spac
Lip∗(ν,Lp(R)) consists of those functionsf ∈ Lp(R) for which

ωk(f,h)p � Chν, ∀h > 0,

whereC is a positive constant independent ofh.
For a constantν > 0 which is not an integer, we have a positive integerk such that

ν ∈ [k −1, k). Thenf ∈ Lip∗(ν,Lp(R)) if and only if there exists a functiong ∈ Wk−1
p (R)
such thatg = f a.e. andg(k−1) ∈ Lip∗(k − ν,Lp(R)). See [7] for the details.
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4,

ing
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The optimal smoothness of a functionf ∈ Lp(R) is described by itscritical exponent
νp(f ) defined by

νp(f ) := sup
{
ν: f ∈ Lip∗(ν,Lp(R)

)}
.

Suppose that the subdivision scheme{Sn
a }∞n=1 converges inWk

p(R). We denote byVp

the set of all limit functionsfλ, λ ∈ �p(Z). As is known from the proof of Theorem 3.
fλ has a representation as follows:

fλ =
∑
j∈Z

λ(j)φ(· − j), (4.1)

whereφ is the limit function corresponding toλ = δ. It is referred to as therefinement
functionassociated with maska.

Applying the difference operator∇k+1
2−n to both sides of (4.1), we obtain as (3.5),

∇k+1
2−n fλ =

∑
j∈Z

∇k+1Sn
aλ(j)φ

(
2n · −j

)
. (4.2)

It follows that

2n/p
∥∥∇k+1

2−n fλ

∥∥
p

� C1
∥∥∇k+1Sn

aλ
∥∥

p
, ∀n ∈ N,

whereC1 is a constant independent ofn. Let

νp = 1

p
− log2 ρp

({A|U(X)}
)
.

Therefore, for anyν < νp, there exists a constantC such that∥∥∇k+1
2−n fλ

∥∥
p

� C2−nν, ∀n ∈ N.

This impliesfλ ∈ Lip∗(ν,Lp(R)) (see, e.g., [1,8]). Thus we have established the follow
result.

Lemma 4.1. Let 1 � p < ∞. Suppose that the subdivision scheme{Sn
a }∞n=1 converges in

Wk
p(R). Then for anyλ ∈ �p(Z) andν < νp,fλ ∈ Lip∗(ν,Lp). Consequently,νp � νp(f )

for anyf ∈ Vp.

We now can prove the main result of this section.

Theorem 4.2. Assume that1� p < ∞. Letνp given as above satisfyνp < k + 1. Suppose
that the shifts of the refinement functionφ are stable, i.e., there exist two positive consta
C1 andC2 such that, for anyλ ∈ �p(Z),

C1‖λ‖p �
∥∥∥∥∑

j∈Z

λ(j)φ(· − j)

∥∥∥∥
p

� C2‖λ‖p.

Then the subdivision scheme{Sn
a }∞n=1 converges inWk

p(R). Moreover, for anyfλ ∈ Vp, its

critical exponentνp(fλ) satisfiesνp(fλ) = νp.



750 H.-Y. Liu, D.-R. Chen / J. Math. Anal. Appl. 306 (2005) 740–751

eme

vol. I,

1).
(2003)

v space,

r. A 45

. Math.

onstr.

umer-

. Math.
Proof. It is known [6] that the stability implies convergence of the subdivision sch
{Sn

a }∞n=1 in Wk
p(R). Therefore, Lemma 4.1 applies. For anyfλ ∈ Vp(φ) \ {0}, by

Lemma 4.1, we only need to prove

νp(fλ) � νp. (4.3)

If this is not true, then there existsµ such that 1/p − log2 ρ < µ < k + 1 andfλ ∈
Lip∗(µ,Lp(R)). Therefore, there exists a constantC such that∥∥∇k+1

2−n fλ

∥∥
p

� C2−nµ, ∀n ∈ N.

On the other hand, the stability condition ofφ yields that

2n/p
∥∥∇k+1

2−n fλ

∥∥
p

� C2
∥∥∇k+1Sn

aλ
∥∥

p
, ∀n ∈ N.

Consequently,∥∥∇k+1Sn
aλ

∥∥
p

� CC22−n(µ−1/p), ∀n ∈ N.

By Theorem 2.2, we get

ρp

({A|U(X)}
) = lim

n→∞
∥∥∇k+1Sn

aλ
∥∥1/n

p
� 2−µ+1/p.

It follows that

µ � 1

p
− log2 ρp

({A|U(X)}
)
,

which contradicts with the assumptionµ > 1/p − log2 ρp({A|U(X)}). The contradiction
gives (4.3). The proof is complete.�
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