Prostaglandin E2 in exhaled breath condensate in cystic fibrosis

L. Fila1, J. Musil1, M. Prucha2, 1Pulmonary Department, Charles University 2nd School of Medicine and University Hospital Motol, Prague, Czech Republic; 2Department of Clinical Biochemistry, Haematology, Immunology and Molecular Diagnostics, Na Homolce Hospital, Prague, Czech Republic

Prostaglandin (PG) E2 is an important inflammatory mediator. We examined pH value and PGE2 concentration in exhaled breath condensate (EBC) in 22 stable CF adults (11 M) aged 25.6±4.1 years (mean ± SD) with FEV1 60.7±21.6% pred. and in 12 (4 M) healthy controls aged 27.6±4.2 years by using ECoScreen condenser. pH was measured without deaeration immediately after collection (Titan pH-meter with CupFET probe). Samples for PGE2 evaluation were stored frozen at -80ºC until they were examined with Luminex technology (lower detection limit 35 pg/ml). PGE2 was detectable in all CF patients and healthy controls.

EBC pH was lower in stable CF than in healthy controls (5.50±0.57 vs. 6.09±0.37; p=0.0013) whereas EBC PGE2 was higher (6816±4119 vs. 4228±1613 pg/ml; p=0.027). In stable CF patients, EBC concentration of PGE2 tended to negative correlation with EBC pH (r=−0.344; p=0.122) and was negatively correlated to FEV1 (r=−0.492; p=0.02) in contrast to EBC pH, where positive correlation with FEV1 (r=0.444; p=0.038) was found.

We conclude that EBC PGE2 concentration is higher in stable CF patients than in healthy controls and is negatively correlated to pulmonary function. Supported by: IGA MZCR NR/8304–3.

Comparison of Inflammatory responses to Pseudomonas aeruginosa Lipopolysaccharide isolates compared to Staphylococcus aureus Peptidoglycan

P.J. Buchanan1, R.K. Ernst2, J.S. Elborn1, B.C. Shock1, 1Centre for Infection and Immunity, Queen's University, Belfast, United Kingdom; 2Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA

Cystic Fibrosis(CF) infection by gram-neg and -pos bacteria such as Pseudomonas aeruginosa(PA) and Staphylococcus aureus(SA) causes increase Interleukin(IL)-8 release and chronic inflammation. During infection PA undergoes genetic changes that cPLA2 may be involved in PA-LPS-induced inflammation.

We aimed to compare the inflammatory response of PA LPS isolates from CF patients differing in disease severity and SA peptidoglycan(PGN) in NON-CF(HTE) and CF(CFTE) tracheal epithelial cells.

CFTE and HTE cells were stimulated with LPS(Sigma: PA, PAO1), PGN (SA) or PA clinical isolates with different Lipid A structure: SE4(Infant CF), PAK8(Mild CF), SE22(Severe CF), Bronch5(non-CF, bronchiectasis). IL-8 was measured (ELISA).

Sigma LPS and PA isolates SE22 and PAK8 showed significant dose dependent IL-8 release in CFTE (all p<0.002, ANOVA). SE4 and Bronch5 showed no significant response.

IL-8 release differed significantly between both cell lines (100ng/ml): SE22 (p<0.001) and PAK8 (p<0.0001) induced a higher response in CFTE compared to HTE.

Comparisons between PA (PAk8, Se22) and SA (all 100ng/ml) showed that PA LPS produced a higher inflammatory response than SA PGN in CFTE (all p<0.02).

The inflammatory response to PA is dependent on strain, cell type and Lipid A modification. To study (patho)physiologically relevant mechanisms of infection an LPS isolate is preferable to commercial LPS. The association between increased response to PA over time, genetic modification and low inflammatory response to SA may explain the PA dominance over SA in CF airways.

Supported by: Department of Education and Learning N. Ireland.

Role of cytosolic phospholipase A2 in Pseudomonas aeruginosa-induced inflammation

Y. Wu1, D. Leduc1, V. Balloy1, I. Garcia-Verdugo1, M. Chignard1, L. Touqai1, 1Unité de défense innée et inflammation, Institut Pasteur, Paris, France; 2INSERM U874, Paris, France; 3Department of Medicine, University of Florida, Gainesville, FL, USA

cPLA2 belonging to a superfamily of enzymes, selectively release arachidonic acid (AA) from membrane PL. AA metabolites play a role in inflammation. P. aeruginosa is an opportunistic G+ bacteria that infects immuno-compromised and cystic fibroblast patients. This results in high mortality due to its notorious resistance to antibiotics. We postulated that cPLA2 may play a key role in P. aeruginosa-induced lung inflammation.

Our results showed that in A549 epithelial cells, a WT-strain of P. aeruginosa induced inflammation. Both PAK and another P. aeruginosa strain, PAO1, induced a time-dependent AA release from A549 cells. Production of prostanaglandin E2 (PGE2), a metabolite of AA, was increased markedly by PAK which also induced IL8 synthesis. Meanwhile, PAK induced p38MAPK phosphorylation in a time- and dose-dependent manner.

SB203580, a specific inhibitor of p38MAPK, abolished the effect of PAK on both PGE2 and IL8 synthesis. The expression of cyclooxygenase (COX), which converts AA into PGE2, was increased after PAK stimulation. Finally, the effects of different virulence factors isolated from P. aeruginosa were investigated. LPS had no effect on PGE2 release and IL8 synthesis. Flagellin increased IL8 expression but had no effect on PGE2 release. The Lefc strain, in which the flagellin gene was deleted, had less effect on IL8 synthesis but had similar effect on PGE2, as compared to the PAK strain.

Collectively, our results show that cPLA2 is involved in P. aeruginosa-induced inflammation through a process of p38MAPK. However, the virulence factors involved in cPLA2 activation remains to be identified.