# On the Computation of the Values of Zeta Functions of Totally Real Cubic Fields 

U. Halbritter<br>Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-5000 Köln 41, Federal Republic of Germany, AND<br>M. Pohst<br>Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-4000 Düsseldorf I, Federal Republic of Germany<br>Communicated by Hans Zassenhaus

Received November 30, 1988; revised October 20, 1989


#### Abstract

Based on earlier papers of the first author we give a concise formula for the values of class zeta functions of totally real cubic fields at even positive integers which is the exact analogue of the Barn-Siegel formula for real quadratic fields. For this purpose we use a rather complicated series representation for the aforementioned values depending on a parameter $x$ which is analyzed for $x \rightarrow 0$. The final formula is well suited for actual computations; two tables of values of class zeta functions are given at the end of the paper. © 1990 Academic Press, Inc.


This paper is concerned with the computation of the values of zeta functions of ideal classes of totally real cubic fields $K$ at integral arguments. Given a basis of the integers in $K$ and a system of fundamental units we develop an algorithm which is well suited for the calculation of the aforementioned values. Our starting point is a revised version of the results in $[5,6]$ (cited as I and II in the sequel). We check our values by comparing them with the results in [9] if $K$ is not normal; if $K$ is normal and $h_{K}=1$, we have the well-known factorization of the zeta function into $L$-functions
which again enables us to control our results. (Of course, for $h_{K}=1$ the Euler product of the zeta function can be used for numerical purposes in both cases.) In principle Shintani's method [10] can be used constructively in either case; however, to our knowledge that has not yet been worked out.

Our method uses a complicated series representation for the zeta values considered. It does not yet work in the case of totally real fields of degree $n \geqslant 4$, because the series representation of the zeta values developed in I and II becomes even more complicated, and there remains also much work to be done on the limiting process $x \rightarrow 0$ (compare the proof of Theorem 1).

For brevity's sake we shall use throughout this paper the definitions and proofs of I and II. All symbols not defined here will be found there. The main result (Theorem 1), however, can be understood without recourse to I or II.

Theorem 1. Let $K$ be a totally real cubic field with discriminant $\Delta$. The conjugates of $K$ will be denoted by $K^{\prime}$ and $K^{\prime \prime}$; for $\alpha \in K$ the conjugates are denoted by $\alpha^{\prime}$ and $\alpha^{\prime \prime}$, respectively. Furthermore, for $\alpha \in K$ let $\operatorname{Tr}(\alpha):=\alpha+\alpha^{\prime}+\alpha^{\prime \prime}, N(\alpha):=\alpha \cdot \alpha^{\prime} \cdot \alpha^{\prime \prime}$. Let $\hat{K}:=K(\sqrt{\Delta}), k \in \mathbb{N}, k \geqslant 2$, and $\varepsilon_{1}, \varepsilon_{2}$ be independent units of $K$ with $N\left(\varepsilon_{1}\right)^{k}=N\left(\varepsilon_{2}\right)^{k}=1$. Define $L$ by $L:=$ $\ln \left|\varepsilon_{1} / \varepsilon_{1}^{\prime \prime}\right| \ln \left|\varepsilon_{2}^{\prime} / \varepsilon_{2}^{\prime \prime}\right|-\ln \left|\varepsilon_{1}^{\prime} / \varepsilon_{1}^{\prime \prime}\right| \ln \left|\varepsilon_{2} / \varepsilon_{2}^{\prime \prime}\right|$. Let $\omega_{j} \in K, j=1,2,3$, be algebraic integers, and $W:=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2} \oplus \mathbb{Z} \omega_{3}$ a module of rank 3 of $K$ with the property $\varepsilon_{1} W=\varepsilon_{2} W=W$. $W$ splits into equivalence classes with respect to $M=\left\{\varepsilon_{1}^{m} \varepsilon_{2}^{n}:(m, n) \in \mathbb{Z}^{2}\right\}$ (note that $\left.-1 \notin M\right)$; let $W_{0}$ be a system of representatives of $(W \backslash\{0\}) / M: W \backslash\{0\}=\bigcup_{(m, n) \in \mathbb{Z}^{2}} \varepsilon_{1}^{m} \varepsilon_{2}^{n} W_{0}$. We choose $\rho \in K$, $\rho \neq 0$, with the property $\operatorname{Tr}\left(\rho \omega_{j}\right) \in \mathbb{Z}, j=1,2,3$. Set $\lambda:=\operatorname{gcd}\left(\operatorname{Tr}\left(\rho \omega_{1}\right)\right.$, $\left.\operatorname{Tr}\left(\rho \omega_{2}\right), \operatorname{Tr}\left(\rho \omega_{3}\right)\right)$ and

$$
E_{j}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\varepsilon_{j} & \varepsilon_{j}^{\prime} & \varepsilon_{j}^{\prime \prime} \\
\varepsilon_{1} \varepsilon_{2} & \varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} & \varepsilon_{1}^{\prime \prime} \varepsilon_{2}^{\prime \prime}
\end{array}\right), \quad j=1,2, \quad B_{\rho}=\left(\begin{array}{ccc}
\rho \omega_{1} & \rho \omega_{2} & \rho \omega_{3} \\
\rho^{\prime} \omega_{1}^{\prime} & \rho^{\prime} \omega_{2}^{\prime} & \rho^{\prime} \omega_{3}^{\prime} \\
\rho^{\prime \prime} \omega_{1}^{\prime \prime} & \rho^{\prime \prime} \omega_{2}^{\prime \prime} & \rho^{\prime \prime} \omega_{3}^{\prime \prime}
\end{array}\right) .
$$

Defining ${ }^{1}$

$$
\zeta\left(k, W, \varepsilon_{1}, \varepsilon_{2}\right):=\sum_{\omega \in W_{0}} N(\omega)^{-k}
$$

and setting for $\tau_{1}, \tau_{2} \in K, v=1,2, M\left(k, v, \tau_{1}, \tau_{2}\right):=0$ if $\operatorname{det} E_{v}=0$, otherwise

[^0]\[

$$
\begin{aligned}
& M\left(k, \nu, \tau_{1}, \tau_{2}\right) \\
& :=\operatorname{sign}(L)(-1)^{v}[\hat{K}: \mathbb{Q}]^{-1} \frac{(2 \pi i)^{3 k}}{(3 k)!} N(\rho)^{k} \\
& \cdot \sum_{m_{1}=0}^{3 k} \sum_{m_{2}=0}^{3 k}\binom{3 k}{m_{1}, m_{2}} \\
& \cdot\left\{\frac{\operatorname{det} E_{v}}{\left|\operatorname{det}\left(E_{v} B_{\rho}\right)\right|^{3}} B\left(3, m_{1}, m_{2}, 3 k-\left(m_{1}+m_{2}\right),\left(E_{v} B_{\rho}\right)^{*}, \mathbf{0}\right)\right. \\
& \cdot \sum_{\kappa_{1}=0}^{k-1} \sum_{\kappa_{2}=0}^{k-1} \sum_{\mu_{1}=0}^{k-1} \sum_{\mu_{2}=0}^{k-1}\binom{m_{1}-1}{k-1-\left(\kappa_{1}+\kappa_{2}\right), k-1-\left(\mu_{1}+\mu_{2}\right)} \\
& \cdot\binom{m_{2}-1}{\kappa_{1}, \mu_{1}}\binom{3 k-1-\left(m_{1}+m_{2}\right)}{\kappa_{2}, \mu_{2}} \\
& \text {, } \operatorname{Tr}_{\tilde{K} / Q}\left(\tau_{1}^{\kappa_{1}+\kappa_{2}} \tau_{1}^{\prime \mu_{1}+\mu_{2}} \tau_{1}^{\prime \prime 3 k-2-\left(m_{1}+\kappa_{1}+\kappa_{2}+\mu_{1}+\mu_{2}\right)}\right. \\
& \left.\left.\cdot \tau_{2}^{\kappa_{2}} \tau_{2}^{\prime \mu_{2}} \tau_{2}^{\prime \prime 3 k-1-\left(m_{1}+m_{2}+\kappa_{2}+\mu_{2}\right)}\right)\right\}
\end{aligned}
$$
\]

for $\operatorname{det} E_{v} \neq 0$,

$$
\begin{aligned}
C(k, v, & \left.\tau_{1}, \tau_{2}\right) \\
:= & \operatorname{sign}(L)(-1)^{v+1} \frac{(2 \pi i)^{3 k}}{12 \cdot(3 k-2)(k-1)!^{3}} \\
& \cdot N(\rho)^{k} \lambda^{-3 k+3} \widetilde{B}_{3 k-2}(0)\left|\operatorname{det} B_{\rho}\right|^{-1} \operatorname{sign}\left(\operatorname{det} E_{v}\right) \\
& \cdot\left\{\operatorname{sign}\left(\left(\tau_{1} \tau_{2}-\tau_{1}^{\prime} \tau_{2}^{\prime}\right)\left(\tau_{1}-\tau_{1}^{\prime}\right)\right)+\operatorname{sign}\left(\left(\tau_{1}^{\prime} \tau_{2}^{\prime}-\tau_{1}^{\prime \prime} \tau_{2}^{\prime \prime}\right)\left(\tau_{1}^{\prime}-\tau_{1}^{\prime \prime}\right)\right)\right. \\
& +\operatorname{sign}\left(\left(\tau_{1}^{\prime \prime} \tau_{2}^{\prime \prime}-\tau_{1} \tau_{2}\right)\left(\tau_{1}^{\prime \prime}-\tau_{1}\right)\right)+\operatorname{sign}\left(\tau_{1}^{\prime \prime}\left(\tau_{1}-\tau_{1}^{\prime}\right)\left(\tau_{2}^{\prime}-\tau_{2}\right)\right) \\
& +\operatorname{sign}\left(\tau_{1}\left(\tau_{1}^{\prime}-\tau_{1}^{\prime \prime}\right)\left(\tau_{2}^{\prime \prime}-\tau_{2}^{\prime}\right)\right)+\operatorname{sign}\left(\tau_{1}^{\prime}\left(\tau_{1}^{\prime \prime}-\tau_{1}\right)\left(\tau_{2}-\tau_{2}^{\prime \prime}\right)\right) \\
& +N\left(\tau_{2}\right)\left[\operatorname{sign}\left(\tau_{1}^{\prime \prime}\left(\tau_{2}-\tau_{2}^{\prime}\right)\left(\tau_{1} \tau_{2}-\tau_{1}^{\prime} \tau_{2}^{\prime}\right)\right)\right. \\
& +\operatorname{sign}\left(\tau_{1}\left(\tau_{2}^{\prime}-\tau_{2}^{\prime \prime}\right)\left(\tau_{1}^{\prime} \tau_{2}^{\prime}-\tau_{1}^{\prime \prime} \tau_{2}^{\prime \prime}\right)\right) \\
& \left.\left.+\operatorname{sign}\left(\tau_{1}^{\prime}\left(\tau_{2}^{\prime \prime}-\tau_{2}\right)\left(\tau_{1}^{\prime \prime} \tau_{2}^{\prime \prime}-\tau_{1} \tau_{2}\right)\right)\right]\right\}
\end{aligned}
$$

the following equation holds:

$$
\begin{align*}
\zeta\left(k, W, \varepsilon_{1}, \varepsilon_{2}\right)= & M\left(k, 1, \varepsilon_{1}, \varepsilon_{2}\right)+M\left(k, 2, \varepsilon_{2}, \varepsilon_{1}\right) \\
& +C\left(k, 1, \varepsilon_{1}, \varepsilon_{2}\right)+C\left(k, 2, \varepsilon_{2}, \varepsilon_{1}\right) . \tag{*}
\end{align*}
$$

Remark 2. (a) For the convenience of the reader we restate the definitions necessary for understanding the assertion of Theorem 1:
( $\alpha$ ) For $k, l, m \in \mathbb{Z},\binom{k}{l, m}:=k!/ l!m!(k-(l+m))!$, if $k, l, m, k-$ $(l+m) \in \mathbb{N} \cup\{0\}, \quad\binom{-1}{l, m}:=(-1)^{l+m}\left({ }^{l+m}, \quad\right.$ if $\quad l, m \in \mathbb{N} \cup\{0\}, \quad\binom{k}{l, m}=0$ otherwise.
( $\beta$ ) Let $A=\left(a_{i j}\right)_{n, n}$ a regular ( $n, n$ )-matrix with integral coefficients, $\operatorname{det} A \cdot A^{-1}=:\left(A_{i j}\right)_{n, n}$. Let

$$
\tilde{B}_{r}(x):= \begin{cases}B_{r}(x-[x]) & r=0 \text { or } r \geqslant 2 \text { or } r=1 \wedge x \notin \mathbb{Z} \\ 0 & r=1 \wedge x \in \mathbb{Z},\end{cases}
$$

where $B_{r}(y)$ is defined as usual by $z e^{v z}\left(e^{z}-1\right)^{-1}=\sum_{r=0}^{\infty} B_{r}(y) z^{r} / r!$. Then, for $\left.\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{N} \cup\{0\}\right)^{n}$,

$$
B(n, \mathbf{r}, A, \mathbf{0})=\sum_{\kappa_{1}=0}^{|\operatorname{det} A|-1} \cdots \sum_{\kappa_{n}=0}^{|\operatorname{det} A|--1} \prod_{i=1}^{n} \tilde{B}_{r_{i}}\left(\frac{1}{\operatorname{det} A} \sum_{i=1}^{n} A_{i j} \kappa_{j}\right) .
$$

( $\gamma$ ) For a matrix $A$ the transposed matrix is denoted by $A^{*}$.
(b) For the zeta function $\zeta\left(s, K_{0}\right)$ of an absolute ideal class $K_{0}$ of $K$ we get with $c \in K_{0}^{-1}, c$ integral, $\varepsilon_{1}, \varepsilon_{2}$ a system of fundamental units of $K$, and $k \in \mathbb{N}$,

$$
\zeta\left(2 k, K_{0}\right)=\frac{1}{2} \operatorname{Norm}(c)^{2 k} \cdot \zeta\left(2 k, c, \varepsilon_{1}, \varepsilon_{2}\right) .
$$

(c) In Theorem 1, $C\left(k, 1, \varepsilon_{1}, \varepsilon_{2}\right)+C\left(k, 2, \varepsilon_{2}, \varepsilon_{1}\right)=0$ for $\varepsilon_{j}$ totally positive, $j=1,2$, and $\operatorname{sign}\left(\operatorname{det}\left(E_{1} E_{2}\right)\right)=1$.

Contrary to Siegel's formula [11(22)], Theorem 1 is well suited for actual computations. The required input data of the field $K$ under consideration are

- the coefficients $a, b, c \in \mathbb{Z}$ of a generating equation $f(x)=$ $x^{3}+a x^{2}+b x+c=0, K=\mathbb{Q}(\alpha)$ for a zero $\alpha$ of $f$;
- an integral basis $\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\omega}_{3}$ of $K$ (respectively of $W$ ) which for $K$ we assume in the form $\tilde{\omega}_{1}=1, \tilde{\omega}_{2}=\alpha, \tilde{\omega}_{3}=\left(d+e \alpha+\alpha^{2}\right) / f(d, e, f \in \mathbb{Z})$;
- the coefficients $e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3} \in \mathbb{Z}$ of two fundamental units $\varepsilon_{1}=e_{1} \tilde{\omega}_{1}+e_{2} \tilde{\omega}_{2}+e_{3} \tilde{\omega}_{3}, \varepsilon_{2}=f_{1} \tilde{\omega}_{1}+f_{2} \tilde{\omega}_{2}+f_{3} \tilde{\omega}_{3}$ of $K$.

Also the argument $k$ and sufficiently many Bernoulli numbers (up to the index $3 k$ ) are input. We note that $k$ is always even since the result for odd $k$ is zero.

In the following we only compute $\frac{1}{2} N(W)^{k} \sqrt{\Delta^{2 k-1} \pi^{-3 k}}{ }_{\zeta}(k, W)$ for integral ideals $W$ (compare Remark 2(b)). This is not very difficult by the formula of Theorem 1. Essentially all it takes is arithmetic with rational numbers. Of course the numerators and denominators can become quite large and we need to do computations with multiprecision integers. We add a few comments on the calculation of the generalized 3 -fold Dedekind sums $B(\mathbf{3}, \mathbf{m}, A, \mathbf{0})$ and of the traces of power products of conjugates of the fundamental units (computed in the normal extension $K(\sqrt{\Delta})$ of $K$ ).

For the computation of the 3 -fold Dedekind sums $B(\mathbf{3}, \mathbf{m}, A, \mathbf{0})\left(\mathbf{m} \in \mathbb{Z}^{3}\right.$, $A \in G L(3, \mathbb{Z})$ ) we make use of Bemerkung 15 and Hilfssatz 16 of II. We
note that the matrix $A$ is of the form $\left(E_{j} B_{\rho}\right)^{*}(j=1,2)$ in our case (see Theorem 1). We have the freedom to choose $\rho \in K^{\times}$quite arbitrarily. We set $\rho=\hat{\omega}_{3}$ for a dual basis $\hat{\omega}_{1}, \hat{\omega}_{2}, \hat{\omega}_{3}$ of $K$ subject to

$$
\operatorname{Tr}\left(\tilde{\omega}_{i} \hat{\omega}_{j}\right)=\delta_{i j} \quad(1 \leqslant i, j \leqslant 3) .
$$

Hence, the first column of $A$ becomes $0,0,1$. The remaining entries of $A$ are also easily determined. We compute $\tilde{\varepsilon}_{j} \tilde{\omega}_{i}$ in terms of the basis $\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\omega}_{3}$ and the corresponding entry $a_{i j}$ of $A$ just becomes the coefficient of $\tilde{\omega}_{3}\left(j=2,3 ; i=1,2,3 ; \tilde{\varepsilon}_{2} \in\left\{\varepsilon_{1}, \varepsilon_{2}\right\}, \tilde{\varepsilon}_{3}=\varepsilon_{1} \varepsilon_{2}\right)$. We transform $A$ by elementary row operations into an upper triangular matrix of the form

$$
\left(\begin{array}{ccc}
1 & * & * \\
0 & \operatorname{gcd}\left(a_{22}, a_{13}\right) & * \\
0 & 0 & \operatorname{lcm}\left(a_{22}, a_{13}\right)
\end{array}\right)
$$

which we denote by $\tilde{A}$. The Dedekind sum $B(3, \mathbf{m}, \tilde{A}, \mathbf{0})=B(3, \mathbf{m}, A, \mathbf{0})$ can then be evaluated with formula (b) of II, Hilfssatz 16.

The computation of traces depends on whether the normal closure $\hat{K}=K(\sqrt{\Delta})$ of $K$ coincides with $K$ ( $K$ is cyclic) or is an extension of $K$ of degree 2 . We simplify the notation by replacing $\operatorname{Tr}_{\hat{K} / Q}$ by

$$
\widehat{\operatorname{Tr}}= \begin{cases}2 \operatorname{Tr}_{K / Q} & \text { for } K \text { cyclic } \\ \operatorname{Tr}_{\hat{R} / Q} & \text { for } K \neq \hat{K} .\end{cases}
$$

Clearly, $\tau^{\prime \prime}=N(\tau) /\left(\tau \tau^{\prime}\right)$ for $\tau \in K^{\times}$can be expressed in terms of $\tilde{\omega}_{i}, \tilde{\omega}_{i}^{\prime}$ $(1 \leqslant i \leqslant 3)$, too. Hence it suffices to know the values

$$
\begin{aligned}
\hat{\operatorname{Tr}}(\alpha) & =2 \operatorname{Tr}(\alpha)=-2 a=\hat{\operatorname{Tr}}\left(\alpha^{\prime}\right), \\
\operatorname{Tr}\left(\alpha^{2}\right) & =2 \operatorname{Tr}\left(\alpha^{2}\right)=2\left(a^{2}-2 b\right)=\operatorname{Tr}\left(\alpha^{\prime 2}\right), \\
\operatorname{Tr}\left(\alpha \alpha^{\prime}\right) & =2 b, \\
\hat{\operatorname{Tr}\left(\alpha^{2} \alpha^{\prime 2}\right)} & =2\left(b^{2}-2 a c\right), \\
\operatorname{Tr}\left(\alpha^{\prime 2}\right) & = \begin{cases}3 c-a b+\delta & \text { for } K \text { cyclic } \\
3 c-a b & \text { for } K \neq \hat{K},\end{cases} \\
\operatorname{Tr}\left(\alpha^{2} \alpha^{\prime}\right) & = \begin{cases}3 c-a b-\delta & \text { for } K \text { cyclic } \\
3 c-a b & \text { for } K \neq \hat{K},\end{cases}
\end{aligned}
$$

where $\delta=\left(\alpha-\alpha^{\prime}\right)\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\left(\alpha^{\prime \prime}-\alpha\right) \in \mathbb{Z}$ for $K$ cyclic, which are easily calculated from the coefficients of the generating equation of $K$. The remaining computations are straightforward. We remark that the trace
computations can also be done by approximating $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ and thus $\varepsilon_{j}, \varepsilon_{j}^{\prime}, \varepsilon_{j}^{\prime \prime}(j=1,2)$ sufficiently well by floating-point numbers since we know that the result will be a rational integer. However, the required precision strongly varies with the size of the coefficients of the fundamental units and it seems to be easier (and more adequate to the problem) to do all calculations with (multiple precision) integers.

Regarding the complexity of our method we have the following
Proposition 3. The number of arithmetic operations required for the computation of the zeta values according to Theorem 1 is $O\left(k^{8} E^{6} \cdot \Delta^{-1}\right)$, and the integers on which these operations are performed have a binary length $O(k(\log k+\log E))$. Here $E$ is an upper bound for the size of the input data.

Proof. We obtain this result by counting the arithmetic operations in evaluating the formula for $M\left(k, v, \tau_{1}, \tau_{2}\right)$ in Theorem 1. In addition we note that the special choice of $\rho$ yields

$$
\left|\operatorname{det}\left(E_{v} B_{\rho}\right)\right| \leqslant E^{3} \Delta^{-1}
$$

In two tables at the end of the paper we list some (ideal class) zeta function values of totally real cubic fields of moderate discriminant.

## Proof of Theorem 1

Our first task will be to simplify the assumptions of II, Satz 28, as the regularity conditions on the units are too complicated for practical purposes. This is possible by simplifying the assumptions of I, Satz 6, and by performing the limiting process $x \rightarrow 0$ in I (26) at a later stage of the proof. Thus we can substitute the absolute convergence of the double series in I (65) by the absolute convergence of the double series (46) in this paper. However, the limiting process $x \rightarrow 0$ must now be dealt with in a different manner; this is done in Theorem 7 which recalls the determination of boundary values of elliptic functions. Indeed there are natural connections between the two problems which will become more obvious when the Kronecker limit formula for the cubic case [8] is established.

First, we have to generalize I, Satz 6:
Theorem 4. Let $k \in \mathbb{N}, x \in \mathbb{R}, x \neq 0, \mathbf{a}:=(a, b, c)$ with $a=a_{1}+i x b_{1}$, $b=a_{2}+i x b_{2}, c=a_{3}+i x b_{3}, a_{1} \cdot a_{2} \cdot a_{3} \neq 0,\left(a_{j}, b_{j}\right) \in \mathbb{R}^{2}, j=1,2,3$, pairwise linearly independent. Let $\beta:=(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^{4}$ with $\operatorname{sign}(1-|\alpha|)=$ $\operatorname{sign}(1-|\gamma|) \neq 0, \quad \operatorname{sign}(1-|\beta|)=\operatorname{sign}(1-|\delta|) \neq 0$ and $R:=\ln |\alpha| \ln |\delta|-$ $\ln |\beta| \ln |\gamma| \neq 0$. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ have the property (see I , Definition 1 ): for all
$\mathbf{m} \in \mathbb{Z}^{2}$ with $a \alpha^{m} \beta^{n}+b \gamma^{m} \delta^{n}+c=0$ it follows that $\varphi(\mathbf{m})=0$. Then the following equation holds:

$$
\begin{aligned}
& (-1)^{k-1}(k-1)!^{3} \operatorname{sign}(R) \cdot(a b c)^{-k} \\
& =\sum_{\mathbf{m} \in \mathbb{Z}^{2}} \boldsymbol{\beta}^{\mathbf{m}}\left(h_{21}^{(k)}(\mathbf{a}, \mathbf{m})+h_{22}^{(k)}(\mathbf{a}, \mathbf{m})\right) \\
& \quad \\
& \quad+\sum_{\mathbf{m} \in \mathbb{Z}^{2}} \alpha^{m} \beta^{n}(1-\varphi(\mathbf{m})) H^{(k)}(\mathbf{a}, \mathbf{m})
\end{aligned}
$$

Proof. 1. Case. Let $(|\alpha|,|\beta|,|\gamma|,|\delta|) \in(1, \infty)^{4}$ and $R>0$. The proof then is similar to the proof of $I$, Satz 6 ; the only change occurs in establishing the equations $I$, (2)-(5). As in the proof of $I$ (2) it is easy to see that for demonstrating the analog of I (2) it suffices to show

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \sum_{n=-\infty}^{\infty}\left|\alpha^{-K} \beta^{n} h_{12}(\mathbf{a},-K, n)\right|=0 \tag{1}
\end{equation*}
$$

Using the notations of the proof of I, Satz 6, we have again

$$
\begin{equation*}
\tau-\rho \sigma>0 \tag{2}
\end{equation*}
$$

Now let $\mu>0$ with $-1+\left(\sigma \tau^{-1}+\mu\right) \rho<0, K_{1}:=\left[K\left(\sigma \tau^{-1}+\mu\right)\right]$. As in I (10) we deduce

$$
\begin{align*}
& \sum_{n=-\infty}^{\infty} \quad\left|\alpha^{-K} \beta^{n} h_{12}(\mathbf{a},-K, n)\right| \\
& \leqslant \\
& \leqslant  \tag{3}\\
& \quad|b|^{-1} D^{-2}\left\{|\alpha|^{-K+K_{1} \rho}\left(1-|\alpha|^{-\rho}\right)^{-1}\right. \\
& \left.\quad+|\alpha|^{K \sigma-\left(K_{1}+1\right) \tau}\left(1-|\alpha|^{-\tau}\right)^{-1}\right\} \rightarrow 0 \quad(K \rightarrow \infty)
\end{align*}
$$

In the same way we prove I (3)-(5). The rest of the proof of I, Satz 6, can be transfered literally.
2. Case. Let $(|\alpha|,|\beta|,|\gamma|,|\delta|) \in(1, \infty)^{4}$ and $R<0$. By interchanging $\alpha$ and $\beta, \gamma$ and $\delta$ in the first case we can reduce the second case to the first case.

All other cases can be dealt with by interchanging $K \leftrightarrow M$ resp. $L \leftrightarrow N$ resp. $K \leftrightarrow M$ and $L \leftrightarrow N$ in I (13). Thus the proof is concluded.

In the following lemma we consider the convergence of certain series whose summands consist essentially of the reciprocals of certain linear forms over $\mathbb{Z}[i]$.

Lemma 5. (a) Let $\mathbf{a}_{j} \in \mathbb{Z}^{3}, \quad \mathbf{b}_{j} \in \mathbb{Z}^{3}, \quad j=1,2,3, \quad \mathbf{a}_{j}, \mathbf{a}_{\mu}, \mathbf{b}_{v}, \quad j, \mu, v \in$ $\{1,2,3\}, j \neq \mu$, linearly independent. Let $\mathbf{u}:=(u, v, w) \in \mathbb{R}^{3}$. Let $\hat{A}$ be the matrix with the rows $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Let $T(x)$ be the $(3,3)$-matrix with the columns $\mathbf{a}_{j}^{*}+i \boldsymbol{x} \mathbf{b}_{j}^{*}, j=1,2,3$ (compare Remark 2(a) $(\gamma)$ ). Then we have that

$$
\sum_{\mathbf{m} \in \mathbb{Z}^{3}} f(\operatorname{det} \hat{A}) \prod_{j=1}^{3} f\left(\mathbf{a}_{j} \mathbf{m}^{*}\right) \cdot e^{2 \pi i \mathbf{u m}}{ }^{*} g_{\mathbf{r}}(\mathbf{m} T(x))
$$

is absolutely convergent for $x \in \mathbb{R}, x \neq 0$, and $\mathbf{r} \in \mathbb{N}^{3}, r_{1}+r_{2}+r_{3} \geqslant 6$.
(b) Let $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{Z}^{3}, \mathbf{a}_{1}, \mathbf{a}_{2}$ linearly independent, $\mathbf{b}_{j}, \mathbf{c}_{j} \in \mathbb{Z}^{3}, j=1,2,3$. Let $r_{j} \in \mathbb{N}, j=1,2,3, x \in \mathbb{R}$. Then

$$
\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \prod_{j=1}^{2}\left(1-f\left(\mathbf{a}_{j} \mathbf{m}^{*}\right)\right) \prod_{j=1}^{3} f\left(\mathbf{b}_{j} \mathbf{m}^{*}\right)\left(\left(\mathbf{b}_{j}+i x \mathbf{c}_{j}\right) \mathbf{m}^{*}\right)^{-r_{j}}
$$

converges absolutely and is a continuous function of $x$ on $\mathbb{P}$.
Proof. (a) Let $\operatorname{det} \hat{A} \neq 0$. The case $r_{j} \geqslant 2, j=1,2,3$, is clear. Thus it suffices to consider the case $r_{j}=3, r_{2}=r_{3}=1$, from which all other cases follow. Let $A$ be the matrix with the rows $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{a}_{2}$. Setting

$$
\begin{equation*}
\mathbf{a}_{3}:=\lambda_{1} \mathbf{a}_{1}+\lambda_{2} \mathbf{b}_{1}+\lambda_{3} \mathbf{a}_{2} \tag{4}
\end{equation*}
$$

we have $\lambda_{3} \neq 0$. Now II, Lemma 19, yields

$$
\begin{align*}
\sum_{\mathbf{m} \in \mathbb{Z}^{3}} & \left|g_{\mathbf{r}}(\mathbf{m} T(x))\right| \\
\leqslant & \sum_{\mathbf{m} \in \mathbb{Z}^{3}} f\left(m_{1} m_{3}\left(\lambda_{1} m_{1}+\lambda_{2} m_{2}+\lambda_{3} m_{3}\right)\right)\left(m_{1}^{2}+x^{2} m_{2}^{2}\right)^{-3 / 2} \\
& \cdot\left|m_{3}\left(\lambda_{1} m_{1}+\lambda_{2} m_{2}+\lambda_{3} m_{3}\right)\right|^{-1} \\
= & X \tag{5}
\end{align*}
$$

if we can show $X<\infty$. Application of the Hölder inequality for series yields

$$
\begin{align*}
X \leqslant & \sum_{\left(m_{1}, m_{3}\right) \in \mathbb{Z}^{2}} f\left(m_{1} m_{3}\left(\lambda_{1} m_{1}+\lambda_{3} m_{3}\right)\right)\left|m_{1}\right|^{-3}\left|m_{3}\left(\lambda_{1} m_{1}+\lambda_{3} m_{3}\right)\right|^{-1} \\
& +|x|^{-3 / 2}\left\{\left(\sum_{\mathbf{m} \in \mathbb{Z}^{3}} f\left(m_{1} m_{2} m_{3}\right)\left|m_{1}\right|^{-3 / 2}\left|m_{2}\right|^{-3 / 2}\left|m_{3}\right|^{-2}\right)^{1 / 2}\right. \\
& \left.\cdot\left(\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \frac{f\left(m_{1}\right) f\left(m_{2}\right) f\left(\lambda_{1} m_{1}+\lambda_{2} m_{2}+\lambda_{3} m_{3}\right)}{\left|m_{1}\right|^{3 / 2}\left|m_{2}\right|^{3 / 2}\left|\lambda_{1} m_{1}+\lambda_{2} m_{2}+\lambda_{3} m_{3}\right|^{2}}\right)^{1 / 2}\right\} \\
< & \infty \tag{6}
\end{align*}
$$

(compare [3, Hilfssatz 4a]). Thus (a) is demonstrated.
(b) As $\mathbf{a}_{1}, \mathbf{a}_{2}$ are linearly independent there exists $\mathbf{d} \in \mathbb{Z}^{3}$ such that $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{d}$ form a basis of $\mathbb{R}^{3}$. Setting $A$ the matrix with rows $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{d}$ in II, Lemma 19, and proceeding as in (a), we get the desired result.

We need the following lemma in the proof of Theorem 7:
Lemma 6. Let $A=\left(a_{i j}\right)_{n, n}$ be an integral regular $(n, n)$-matrix, $n \in \mathbb{N}$.
(a) Then there exist exactly $|\operatorname{det} A|^{n-1}$ elements $\mathbf{v} \in\{0, \ldots,|\operatorname{det} A|-1\}^{n}$ with $A^{-1} \mathbf{v}^{*} \in \mathbb{Z}^{n}$.
(b) Let $\tau:=\left(\tau_{1}, \ldots, \tau_{n}\right) \in(\mathbb{Z} \backslash\{0\})^{n}, A(\tau)=\left(\tau_{i} a_{i j}\right)_{n, n}$. Then it follows for $\mathbf{r} \in \mathbb{N}^{n}, \mathbf{u} \in \mathbb{R}^{n}$ that

$$
B(n, \mathbf{r}, A(\tau) *, \mathbf{u})=\prod_{i=1}^{n}\left(\left|\tau_{i}\right|^{n} \tau_{i}^{-r_{i}}\right) B\left(n, \mathbf{r}, A^{*}, \tau_{1} u_{1}, \ldots, \tau_{n} u_{n}\right)
$$

Proof. (a) The proof of Theorem 2.2 in [7] can be adopted almost literally.
(b) In the case $r_{j} \geqslant 2, j=1, \ldots, n$, we easily establish a series representation for $n$-fold Dedekind sums (see II, Satz 20(c)) from which the result follows; in all other cases the result follows from the case $r_{j} \geqslant 2, j=1, \ldots, n$, by differentiation with respect to $u_{j}, j=1, \ldots, n$. If $u_{j} \in \mathbb{Z}, j \in\{1, \ldots, n\}$, we get the result by a limiting process (substitute $u_{i}$ by $u_{i} \pm \varepsilon$, differentiate, add the results and let $\varepsilon \rightarrow 0$ ).
We can now prove the following theorem which together with Theorem 4 will be the main tool in the proof of Theorem 1:

Theorem 7. Let $A=\left(a_{i j}\right)_{3,3}$ and $B=\left(b_{i j}\right)_{3,3}$ be integral matrices, $\prod_{i, j=1}^{3} b_{i j} \neq 0, B A=:\left(c_{i j}\right)_{3,3}$. Let $E=\left(\delta_{i j}\right)_{3,3}, \delta_{i j}=1$ for $i=j, \delta_{i j}=0$ for $i \neq j$. Set $\lambda_{i}=\operatorname{gcd}\left(a_{i 1}, a_{i 2}, a_{i 3}\right), i=1,2,3$. Let $\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{N}^{3}, R:=r_{1}+r_{2}+$ $r_{3} \geqslant 6, x \in \mathbb{R}, x \neq 0$, and $\mathbf{u}:=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$. Let

$$
\begin{aligned}
F(\mathbf{r}, A, \mathbf{u}):= & -f(\operatorname{det} A) \frac{1}{2} \frac{(2 \pi i)^{R}}{r_{1}!r_{2}!r_{3}!}|\operatorname{det} A|^{-1} \sum_{j=1}^{3} \tilde{B}_{r_{j}}\left(u_{j}\right) \\
& \cdot \lambda_{j}^{-r_{j}+1} \prod_{\substack{v=1 \\
v \neq j}}^{3}\left[\left(1-f\left(1-r_{v}\right)\right) \operatorname{sign}\left(b_{j v}\right) \cdot \sum_{\mu \in \mathbb{Z}}\left(1-f\left(u_{v}-\mu\right)\right)\right], \\
S(A, B, \mathbf{u}, x):= & \sum_{\mathbf{m} \in \mathbb{Z}^{3}} f(\operatorname{det} A) e^{2 \pi i u m *} \prod_{v=1}^{3} \frac{f\left(\sum_{j=1}^{3} a_{v j} m_{j}\right)}{\left(\sum_{j=1}^{3}\left(a_{v j}+i x c_{v j}\right) m_{j}\right)^{r_{v}}} .
\end{aligned}
$$

Then the series defining $S(A, B, \mathbf{u}, x)$ converges absolutely for $x \neq 0$, and we have
(a) $\lim _{x \rightarrow 0}(S(E, B, \mathbf{u}, x)+S(E, B, \mathbf{u},-x))$

$$
=-2 \prod_{j=1}^{3} \frac{(2 \pi i)^{r_{j}}}{r_{j}!} \tilde{B}_{r_{j}}\left(u_{j}\right)+F(\mathbf{r}, E, \mathbf{u}),
$$

(b) $\lim _{x \rightarrow 0}(S(A, B, 0, x)+S(A, B, 0,-x))$

$$
=-2 f(\operatorname{det} A) \frac{(2 \pi i)^{R}}{r_{1}!r_{2}!r_{3}!}|\operatorname{det} A|^{-3} B\left(3, \mathbf{r}, A^{*}, \mathbf{0}\right)+F(\mathbf{r}, A, \mathbf{0}) .
$$

Proof. Let $\operatorname{det} A \neq 0$ (the case $\operatorname{det} A=0$ is trivial). The absolute convergence of the series follows from Lemma 5.
(a) For $r_{j} \geqslant 2, j=1,2,3$, the assertion is evident. Now let $r_{j}=1$ for some $j \in\{1,2,3\}$. We may assume $r_{1} \geqslant 3$ and will only consider the most difficult case $r_{2}=r_{3}=1$.

If $u_{2} \notin \mathbb{Z}$ and $u_{3} \notin \mathbb{Z}$ the assertion follows by twofold partial summation (see [1, p. 97]); if $u_{2} \notin \mathbb{Z}$ and $u_{3} \in \mathbb{Z}$ it is obtained by partial summation with respect to $m_{2}$ and application of the Euler summation formula and partial fraction decomposition (compare (8), (11) below), which will also be used in the following case, $u_{2} \in \mathbb{Z}$ and $u_{3} \in \mathbb{Z}$.

Denoting by $B_{0}$ the matrix resulting from $B$ by setting $b_{21}=b_{31}=0$ we easily deduce

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(S(E, B, \mathbf{u}, x)-S\left(E, B_{0}, \mathbf{u}, x\right)\right)=0 \tag{7}
\end{equation*}
$$

Thus it is sufficient to determine $\lim _{x \rightarrow 0}\left(S\left(E, B_{0}, \mathbf{u}, x\right)+S\left(E, B_{0}, \mathbf{u},-x\right)\right)$. From the equation

$$
\begin{align*}
\left(m_{1}+i x\right. & \left.\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-r_{1}}\left(m_{2}+i x\left(b_{22} m_{2}+b_{23} m_{3}\right)\right)^{-1} \\
& \cdot\left(m_{3}+i x\left(b_{32} m_{2}+b_{33} m_{3}\right)\right)^{-1} \\
= & \left(\left(1+i x b_{22}\right)\left(1+i x b_{33}\right)+x^{2} b_{33} b_{32}\right)^{-1} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-r_{1}} \\
& \cdot\left\{-i x b_{23}\left(m_{2}\left(m_{2}+i x\left(b_{22} m_{2}+b_{23} m_{3}\right)\right)\right)^{-1}\right. \\
& \left.-i x b_{32}\left(m_{3}\left(m_{3}+i x\left(b_{32} m_{2}+b_{33} m_{3}\right)\right)\right)^{-1}+\left(m_{2} m_{3}\right)^{-1}\right\} \tag{8}
\end{align*}
$$

we conclude that we have only to determine $\lim _{x \rightarrow 0} S_{j}(x), j=1,2,3$, where

$$
\begin{aligned}
& S_{1}(x):=\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \frac{e^{2 \pi i u_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)}{\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{r_{1}} m_{2} m_{3}}, \\
& S_{2}(x):=\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \frac{-i x b_{23} e^{2 \pi i u_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)}{\binom{\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{r}}{\times m_{2}\left(m_{2}+i x\left(b_{22} m_{2}+b_{23} m_{3}\right)\right)}} \\
& S_{3}(x):=\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \frac{-i x b_{32} e^{2 \pi i u_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)}{\binom{\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{r}}{\times m_{3}\left(m_{3}+i x\left(b_{32} m_{2}+b_{33} m_{3}\right)\right)}}
\end{aligned}
$$

the series defining $S_{j}(x), j=1,2,3$, are absolutely convergent for $x \neq 0$. By means of the Euler summation formula we show by some calculations

$$
\begin{equation*}
\lim _{x \rightarrow 0} S_{3}(x)=-i b_{32} \sum_{m_{1} \in \mathbb{Z}} \sum_{m_{3} \in \mathbb{Z}}\left(\frac{f\left(m_{1} m_{3}\right)}{m_{3}} \int_{-\propto}^{\infty} \frac{e^{2 \pi i u_{1} m_{1}} d t}{\left(m_{1}+i b_{12} t\right)^{r_{1}}\left(m_{3}+i b_{32} t\right)}\right), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} S_{2}(x)=-i b_{23} \sum_{m_{1} \in \mathbb{Z}} \sum_{m_{2} \in \mathbb{Z}}\left(\frac{f\left(m_{1} m_{2}\right)}{m_{2}} \int_{-\infty}^{\infty} \frac{e^{2 \pi i u_{1} m_{1}} d t}{\left(m_{1}+i b_{13} t\right)^{r_{1}}\left(m_{2}+i b_{23} t\right)}\right) \tag{10}
\end{equation*}
$$

The integrals can be evaluated elementarily; this however is without importance for the following. Determining the limiting value of $S_{1}(x)$ proves to be the most difficult part of our task. Applying (38) from [4, p. 36], three times (see also II (87)) we get

$$
\begin{align*}
&\left(m_{1}+\right.\left.i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-r_{1}}\left(m_{2} m_{3}\right)^{-1} \\
&=\left(m_{2} m_{3}\right)^{-1}\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-r_{1}} \\
& \quad \quad i x b_{12} \sum_{r=0}^{r_{1}-1}\left\{\left(\left(1+i x b_{11}\right) m_{1}\right)^{-(r+1)}\right. \\
& \quad \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-\left(r_{1}-r\right)} m_{3}^{-1} \\
&-i x b_{13} \sum_{i=0}^{r_{1}-1-r}\left(\left(1+i x b_{11}\right) m_{1}\right)^{-(r+1)}\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-(t+1)} \\
& \quad \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-\left(r_{1}-r-t\right)} \\
& \quad-i x b_{13} \sum_{s=0}^{r}\left(\left(1+i x b_{11}\right) m_{1}\right)^{-(s+1)}\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-(r+1-s)} \\
&\left.\quad \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-\left(r_{1}-r\right)}\right\} . \tag{11}
\end{align*}
$$

In the equation defining $S_{1}(x)$ we now substitute $\Sigma_{\mathbf{m} \in \mathbb{Z}^{3}}$ by $\sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*}$ (see II, Definition 13). This is possible because of the absolute convergence of the series in question. Taking into consideration (11) we get by using the Euler summation formula with respect to the summation over $m_{3}$ after performing several lengthy estimates

$$
\begin{aligned}
& \lim _{x \rightarrow 0} S_{1}(x) \\
&= \lim _{x \rightarrow 0} \sum_{m \in \pi^{3}}^{*}\left\{\sum_{r=0}^{r_{1}-1} \sum^{r_{1}-r-1}\left(-x^{2}\right) b_{12} b_{13} e^{2 \pi i u_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)\right. \\
& \cdot\left(\left(1+i x b_{11}\right) m_{1}\right)^{-(r+1)}\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-(t+1)} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-\left(r_{1}-r-t\right)} \\
&+\sum_{s=0}^{r}\left(-x^{2}\right) b_{12} b_{13} e^{2 \pi i u_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)\left(\left(1+i x b_{11}\right) m_{1}\right)^{-(s+1)} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-(r+1-s)} \\
&\left.\left.\cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-\left(r_{1}-r\right)}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
= & \lim _{x \rightarrow 0} \sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*}\left\{\left(-x^{2}\right) b_{12} b_{13} e^{-2 \pi i i_{1} m_{1}} f\left(m_{1} m_{2} m_{3}\right)\right. \\
& \cdot\left[m_{1}^{-r_{1}}\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1}\right. \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-1} \\
& +m_{1}^{-r_{1}}\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-1} \\
& \left.\left.\cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-1}\right]\right\} ; \tag{12}
\end{align*}
$$

when the necessary estimates are done it turns out to be useful to consider the summands for $t=0$ and $s=r$ together. Observing

$$
\begin{align*}
m_{1}^{-r}( & \left.m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-1}\left(\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1}\right. \\
& \left.+\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-1}\right) \\
= & m_{1}^{-\left(r_{1}-1\right)}\left(1+i x b_{11}\right)\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-1} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}+b_{13} m_{3}\right)\right)^{-1} \\
& +m_{1}^{-r_{1}}\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1}\left(m_{1}+i x\left(b_{11} m_{1}+b_{13} m_{3}\right)\right)^{-1}, \tag{13}
\end{align*}
$$

we get from (12) and (13) by using the Euler summation formula with respect to $m_{2}$ and $m_{3}$ after some calculations

$$
\begin{align*}
\lim _{x \rightarrow 0} S_{1}(x)= & \lim _{x \rightarrow 0} \sum_{m_{1} \in \mathbb{Z}} e^{2 \pi i u_{1} m_{1}} \frac{f\left(m_{1}\right)}{m_{1}^{r_{1}}}\left(-x^{2} b_{12} b_{13}\right) \\
& \cdot \int_{-\infty}^{\infty} \frac{d t}{m_{1}+i x\left(b_{11} m_{1}+b_{12} t\right)} \cdot \int_{-\infty}^{\infty} \frac{d t}{m_{1}+i x\left(b_{11} m_{1}+b_{13} t\right)}, \tag{14}
\end{align*}
$$

the integrals being infinite integrals in the Riemann sense.
From (9), (10), and (14) the assertion easily follows. From (a) we deduce (b) by applying II, Lemma 19, and Lemma 6.

In the following lemma we consider again limiting values of a certain type of functions defined by threefold infinite series:

Lemma 8. Let $A_{0}=\left(a_{i j}\right)_{3,3}$ be an integral matrix; $\left(A_{i j}\right)_{3.3}:=\operatorname{det} A_{0} \cdot A_{0}^{-1}$, if $A_{0}$ is regular. In this case let $\prod_{i, j=1}^{3} a_{i j} A_{i j} \neq 0$. Let $\mathbf{a}_{i}:=\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$, $i=1,2,3, B=\left(b_{i j}\right)_{3,3}$ an integral matrix, $\prod_{i, j=1}^{3} b_{i j} \neq 0$. Let $B A_{0}=:\left(c_{i j}\right)_{3,3}$. Let $s \in \mathbb{N} \cup\{0\}, \mathbf{c} \in \mathbb{Z}^{3}, \mathbf{c} \neq \mathbf{0}, \mathbf{p}_{j} \in \mathbb{Z}^{3}, j=1, \ldots, s$, and $\mathbf{r}:=\left(r_{1}, r_{2}, r_{3}\right) \in \mathbb{N}^{3}$, $r_{1}+r_{2}+r_{3} \geqslant 5$. Setting for $x \in \mathbb{R}$

$$
\begin{aligned}
d(\mathbf{m}, x):= & f\left(\operatorname{det} A_{0}\right) \prod_{v=1}^{3}\left(f\left(\mathbf{a}_{v} \mathbf{m}^{*}\right) \cdot\left(\sum_{j=1}^{3}\left(a_{v j}+i x c_{v j}\right) m_{j}\right)^{-r_{v}}\right) \\
& \cdot\left(1-f\left(\mathbf{c m}^{*}\right)\right) \prod_{j=1}^{s} f\left(\mathbf{p}_{j} \mathbf{m}^{*}\right), \\
S(x):= & \sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*} d(\mathbf{m}, x)
\end{aligned}
$$

it follows that the series is absolutely convergent for $x \neq 0$, convergent for $x=0$, and

$$
\frac{1}{2} \lim _{x \rightarrow 0}(S(x)+S(-x))=S(0)
$$

Proof. The assertion being trivial for $A_{0}$ singular we may assume $A_{0}$ to be regular. We first consider the case $s=0$ where $\prod_{j=1}^{0} f\left(\mathbf{p}_{j} \mathbf{m}^{*}\right)=1$. Lemma 5 asserts the absolute convergence of the series for $x \neq 0$, in case $x=0$ the convergence follows easily by partial fraction decomposition (see [2], p. 290).

Case 1. If $r_{j} \geqslant 2, j=1,2,3$, the assertion is evident.
Case 2. $\quad r_{1}=1 \vee r_{2}=1 \vee r_{3}=1$. We may assume without restriction $r_{1}=1$ and $r_{2}+r_{3} \geqslant 4$. Setting $\mathbf{c}=d_{1} \mathbf{a}_{1}+d_{2} \mathbf{a}_{2}+d_{3} \mathbf{a}_{3}, d_{j} \in \mathbb{Q}, j=1,2,3$, we easily see by II, Lemma 19, and [3, Hilfssatz 4], that only for $d_{1}=0 \wedge d_{2} \cdot d_{3} \neq 0$ the assertion is not self-evident. In that case there exist $t_{1} \in \mathbb{Q}, t_{1} \neq 0, t_{2}, t_{3} \in \mathbb{Z}, \operatorname{gcd}\left(t_{2}, t_{3}\right)=1, t_{2} \cdot t_{3} \neq 0$, such that

$$
\begin{equation*}
t_{1} \mathbf{c}=t_{2} \mathbf{a}_{2}+t_{3} \mathbf{a}_{3} \tag{15}
\end{equation*}
$$

Setting $\mathbf{c}_{j}:=\left(c_{j 1}, c_{j 2}, c_{j 3}\right)$ we conclude

$$
\begin{align*}
S(x)= & \sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*} \prod_{j=1}^{2} f\left(\mathbf{a}_{j} \mathbf{m}^{*}\right)\left(\left(\mathbf{a}_{j}+i x \mathbf{c}_{j}\right) \mathbf{m}^{*}\right)^{-r_{j}} \\
& \cdot f\left(\mathbf{a}_{2} \mathbf{m}^{*}\right)\left(\left(-t_{2} t_{3}^{-1} \mathbf{a}_{2}+i x \mathbf{c}_{3}\right) \mathbf{m}^{*}\right)^{-r_{3}}\left(1-f\left(\left(t_{2} \mathbf{a}_{2}+t_{3} \mathbf{a}_{3}\right) \mathbf{m}^{*}\right)\right) \tag{16}
\end{align*}
$$

We now apply II, Lemma 19, where $A$ is to be the matrix with the rows $\mathbf{a}_{1}, \mathbf{a}_{2}, t_{2} \mathbf{a}_{2}+t_{3} \mathbf{a}_{3}$ and $D:=\operatorname{det} A$.

Setting $\mathbf{b}_{j}:=\left(b_{j 1}, b_{j 2}, b_{j 3}\right), j=1,2, \mathbf{b}_{3}:=\left(b_{31}, b_{32}-t_{2} t_{3}^{-1} b_{33}, 0\right)$ we obtain

$$
\begin{align*}
S(x)= & |D|^{-3} \sum_{\mathbf{k}(D)} \sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*} f\left(m_{1} m_{2}\right)\left(1-f\left(m_{3}\right)\right) t_{2}^{-r_{3}}\left(-t_{3}\right)^{r_{3}} e^{2 \pi i \mathbf{k} A^{-1} \mathbf{m}^{*}} \\
& \cdot\left(m_{1}+i x \mathbf{b}_{1} \mathbf{m}^{*}\right)^{-1}\left(m_{2}+i x \mathbf{b}_{2} \mathbf{m}^{*}\right)^{-r_{2}}\left(m_{2}+i x \mathbf{b}_{3} \mathbf{m}^{*}\right)^{-r_{3}} \\
= & |D|^{-3} \sum_{\mathbf{k}(D)} \sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}}^{*} f\left(m_{1} m_{2}\right) t_{2}^{-r_{3}}\left(-t_{3}\right)^{r_{3}} \cdot e^{2 \pi i \mathbf{k} A^{-1}\left(m_{1}, m_{2}, 0\right)^{*}} \\
& \cdot\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1} \prod_{i=2}^{3}\left(m_{2}+i x \mathbf{b}_{j}\left(m_{1}, m_{2}, 0\right)^{*}\right)^{-r_{j}} \tag{17}
\end{align*}
$$

where the series again converges absolutely. Setting $\alpha_{1} m_{1}+\alpha_{2} m_{2}:=$ $\boldsymbol{\kappa} \boldsymbol{A}^{-1}\left(m_{1}, m_{2}, 0\right)^{*}$ we see for $\alpha_{1} \notin \mathbb{Z}$ by partial summation

$$
\begin{align*}
\lim _{x \rightarrow 0} & \sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}}^{*} f\left(m_{1} m_{2}\right) e^{2 \pi i\left(\alpha_{1} m_{1}+\alpha_{2} m_{2}\right)}\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)^{-1} \\
& \cdot \prod_{j=2}^{3}\left(m_{2}+i x \mathbf{b}_{j}\left(m_{1}, m_{2}, 0\right)^{*}\right)^{-r_{j}} \\
= & \sum_{m_{1} \in \mathbb{Z}}^{*} e^{2 \pi i \alpha_{1} m_{1}} \frac{f\left(m_{1}\right)}{m_{1}} \cdot \sum_{m_{2} \in \mathbb{Z}}^{*} e^{2 \pi i x_{2} m_{2}} \frac{f\left(m_{2}\right)}{m_{2}^{r_{2}+r_{3}}} . \tag{18}
\end{align*}
$$

If $\alpha_{1} \in \mathbb{Z}$ we define

$$
T(x):=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}}^{*} e^{2 \pi i x_{2} m_{2}} \frac{f\left(m_{1}\right)}{\left(1+i x b_{11}\right) m_{1}} \prod_{j=2}^{3} \frac{f\left(m_{2}\right)}{\left(m_{2}+i x b_{j 1} m_{1}\right)^{r}} ;
$$

an easy calculation yields

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left(\sum_{\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}}^{*} \frac{e^{2 \pi i i_{2} m_{2}} f\left(m_{1} m_{2}\right)}{\binom{\left(m_{1}+i x\left(b_{11} m_{1}+b_{12} m_{2}\right)\right)}{\cdot \prod_{j=2}^{3}\left(m_{2}+i x b_{j}\left(m_{1}, m_{2}, 0\right)^{*}\right)^{r_{i}}}}-T(x)}\right)=0 . \tag{19}
\end{equation*}
$$

Adding the summands for $m_{1}$ and $-m_{1}$ in the series for $T(x)$ we get

$$
\begin{align*}
T(x)+T(-x)= & \frac{-2 i b_{11}}{\left(1+i x b_{11}\right)\left(-1+i x b_{11}\right)} \sum_{m_{1}=1}^{\infty}\left(\sum_{m_{2} \in \mathbb{Z}}^{*} e^{2 \pi i x_{2} m_{2}} \frac{f\left(m_{1}\right)}{m_{1}} \cdot x\right. \\
& \left.\cdot\left\{\prod_{j=2}^{3} \frac{f\left(m_{2}\right)}{\left(m_{2}+i x b_{j 1} m_{1}\right)^{r_{i}}}-\prod_{j=2}^{3} \frac{f\left(m_{2}\right)}{\left(m_{2}-i x b_{j 1} m_{1}\right)^{r_{j}}}\right\}\right) . \tag{20}
\end{align*}
$$

Because of $b_{21} \neq 0$ we have

$$
\begin{equation*}
\left|x\left(m_{2}+i x b_{21} m_{1}\right)^{-1}\right| \leqslant \sqrt{|x|} \cdot\left(\left|m_{2}\right|\left|b_{21}\right|\left|m_{1}\right|\right)^{-1 / 2} ; \tag{21}
\end{equation*}
$$

thus (19) and (20) imply

$$
\begin{equation*}
\lim _{x \rightarrow 0}(T(x)+T(-x))=0 . \tag{22}
\end{equation*}
$$

Taking into consideration (17)-(22) and II, Satz 20, we deduce

$$
\begin{align*}
\lim _{x \rightarrow 0} & (S(x))+S(-x)) \\
& =|D|^{-3} \sum_{\kappa(D)} \sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}}^{*} t_{2}^{-r_{3}}\left(-t_{3}\right)^{r_{3}} e^{2 \pi i \mathbf{k} A^{-1}\left(m_{1}, m_{2}, 0\right)^{*}} \cdot \frac{f\left(m_{1} m_{2}\right)}{m_{1} m_{2}^{r_{2}+r_{3}}} \\
& =\sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*} \frac{f\left(\mathbf{a}_{1} \mathbf{m}^{*}\right) f\left(\mathbf{a}_{2} \mathbf{m}^{*}\right)\left(1-f\left(\left(t_{2} \mathbf{a}_{2}+t_{3} \mathbf{a}_{3}\right) \mathbf{m}^{*}\right)\right)}{\left(\mathbf{a}_{1} \mathbf{m}^{*}\right)\left(\mathbf{a}_{2} \mathbf{m}^{*}\right)^{r_{2}\left(-t_{2} t_{3}^{-1} \mathbf{a}_{2} \mathbf{m}^{*}\right)^{r_{3}^{3}}} .} \tag{23}
\end{align*}
$$

From the last equation the assertion easily follows. Now let $s>0$. We consider the case $s=1$ only because all other cases can be treated in a similar manner. We can assume without loss of generality $\mathbf{p}_{1} \neq \lambda \mathbf{c}$ for all $\lambda \in \mathbb{R}$. On account of

$$
\begin{equation*}
f\left(\mathbf{p}_{1} \mathbf{m}^{*}\right)=1-\left(1-f\left(\mathbf{p}_{1} \mathbf{m}^{*}\right)\right) \tag{24}
\end{equation*}
$$

and the absolute convergence of

$$
\begin{equation*}
\sum_{\mathbf{m} \in \mathbb{Z}^{3}} \prod_{j=1}^{3}\left(f\left(\mathbf{a}_{j} \mathbf{m}^{*}\right)\left(\mathbf{a}_{j} \mathbf{m}^{*}\right)^{-r_{j}}\right)\left(1-f\left(\mathbf{c m}^{*}\right)\right)\left(1-f\left(\mathbf{p}_{1} \mathbf{m}^{*}\right)\right) \tag{25}
\end{equation*}
$$

the assertion follows from the case $s=0$.
Proof of Theorem 1. First of all we have to introduce some notations. For $\omega, \xi \in K, \boldsymbol{p}, \boldsymbol{\sigma}, \tau \in \mathbb{Z}^{2}, x \in \mathbb{R}$ we set (see II, Hilfssatz 23)

$$
\begin{align*}
\tilde{U}_{k}(\omega+ & i x \xi, \mathbf{m}, \boldsymbol{\rho}, \boldsymbol{\sigma}) \\
:= & (-1)^{k-1}(k-1)!^{3} \sum_{\substack{(k-1, k-1, k-1) \\
\kappa_{1}=v_{1}=0}} \prod_{j=1}^{3}\binom{\kappa_{j}+\mu_{j}+v_{j}}{\kappa_{j}, \mu_{j}} \\
& \cdot \varepsilon_{1}^{\rho_{1} \kappa_{2}+\sigma_{1} \kappa_{3} \varepsilon_{1}^{\prime} \rho_{1} \mu_{2}+\sigma_{1} \mu_{3} \varepsilon_{1}^{\prime \prime \rho_{1}\left(v_{2}+1\right)+\sigma_{1}\left(v_{3}+1\right)}} \\
& \cdot \varepsilon_{2}^{\rho_{2} \kappa_{2}+\sigma_{2} \kappa_{3} \varepsilon_{2}^{\prime} \rho_{2} \mu_{2}+\sigma_{2} \mu_{3}} \varepsilon_{2}^{\prime \prime \rho_{2}\left(v_{2}+1\right)+\sigma_{2}\left(v_{3}+1\right)} \\
& \cdot f\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)\right) f\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)\right) \\
& \cdot\left(\left(\omega^{\prime}+i x \xi^{\prime}\right) \varepsilon_{1}^{\prime m} \varepsilon_{2}^{\prime n}\right)^{-\left(\mu_{1}+1\right)} \\
& \cdot\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)+i x \operatorname{Tr}\left(\xi \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)\right)^{-\left(\kappa_{2}+\mu_{2}+v_{2}+1\right)} \\
& \cdot\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)+i x \operatorname{Tr}\left(\xi \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)\right)^{-\left(\kappa_{3}+\mu_{3}+v_{3}+1\right)},  \tag{26}\\
& \boldsymbol{\beta}=(\alpha, \beta, \gamma, \delta):=\left(\frac{\varepsilon_{1}}{\varepsilon_{1}^{\prime \prime}}, \frac{\varepsilon_{2}}{\varepsilon_{2}^{\prime \prime}}, \frac{\varepsilon_{1}^{\prime}}{\varepsilon_{1}^{\prime \prime}}, \frac{\varepsilon_{2}^{\prime}}{\varepsilon_{2}^{\prime \prime}}\right), \tag{27}
\end{align*}
$$

$$
\begin{align*}
U_{k}(\omega+ & i x \xi, \mathbf{m}) \\
:= & \alpha^{-1} \beta^{-1}(1-\beta) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m},-1,-1,-1,0) \\
& -\alpha(1-\beta) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m}, 1,0,1,1) \\
& +\beta(1-\alpha) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m}, 0,1,1,1) \\
& -\alpha^{-1} \beta^{-1}(1-\alpha) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m},-1,-1,0,-1) \\
& +\alpha^{-1}(1-\alpha \beta) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m},-1,0,0,1) \\
& -\beta^{-1}(1-\alpha \beta) \tilde{U}_{k}(\omega+i x \xi, \mathbf{m}, 0,-1,1,0), \tag{28}
\end{align*}
$$

and (see I, (51))

$$
\begin{aligned}
& V_{k}(\omega+i x \xi, \mathbf{m}, \boldsymbol{\rho}, \boldsymbol{\sigma}, \tau) \\
& :=\operatorname{det} A^{\prime}(\varepsilon, \boldsymbol{\rho}, \boldsymbol{\sigma}, \tau) \cdot(-1)^{k-1}(k-1)!^{3} \\
& \cdot \sum_{(k-1, k-1, k-1)} \prod_{j=1}^{3}\binom{\kappa_{j}+\mu_{j}+v_{j}}{\kappa_{j}, \mu_{j}} \varepsilon^{\kappa_{1} \rho_{1}+\kappa_{2} \sigma_{1}+\kappa_{3} \tau_{1} \varepsilon_{1}^{\prime} \varepsilon_{1} \rho_{1}+\mu_{2} \sigma_{1}+\mu_{j} \tau_{1}}
\end{aligned}
$$

$$
\begin{align*}
& \cdot f\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)\right) f\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)\right) f\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\tau_{1}} \varepsilon_{2}^{n+\tau_{2}}\right)\right) \\
& \cdot\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)+i x \operatorname{Tr}\left(\xi \varepsilon_{1}^{m+\rho_{1}} \varepsilon_{2}^{n+\rho_{2}}\right)\right)^{-\left(\kappa_{1}+\mu_{1}+v_{1}+1\right)} \\
& \cdot\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)+i x \operatorname{Tr}\left(\xi \varepsilon_{1}^{m+\sigma_{1}} \varepsilon_{2}^{n+\sigma_{2}}\right)\right)^{-\left(\kappa_{2}+\mu_{2}+v_{2}+1\right)} \\
& \cdot\left(\operatorname{Tr}\left(\omega \varepsilon_{1}^{m+\tau_{1}} \varepsilon_{2}^{n+\tau_{2}}\right)+i x \operatorname{Tr}\left(\xi_{1}^{m+\tau_{1}} \varepsilon_{2}^{n+\tau_{2}}\right)\right)^{-\left(\kappa_{3}+\mu_{3}+v_{3}+1\right)} . \tag{29}
\end{align*}
$$

The assertion shows that it does not matter which of the three conjugate fields are denoted by $K, K^{\prime}$, and $K^{\prime \prime}$, respectively. A discussion of all possible cases then yields that we can assume without restriction

$$
\begin{equation*}
\operatorname{sign}\left(1-\left|\frac{\varepsilon_{j}}{\varepsilon_{j}^{\prime \prime}}\right|\right)=\operatorname{sign}\left(1-\left|\frac{\varepsilon_{j}^{\prime}}{\varepsilon_{j}^{\prime \prime}}\right|\right) \neq 0, \quad j=1,2 . \tag{30}
\end{equation*}
$$

It turns out to be convenient to choose a special basis for $W$. In the same way as in the proof of II, Hilfssatz 23, we put (see I, (51))

$$
\begin{aligned}
& \left(b_{i j}\left(\boldsymbol{\mu}_{\kappa}\right)\right)_{3,3}:=A^{\prime}\left(\boldsymbol{\varepsilon}, \boldsymbol{\mu}_{\kappa}\right) B_{\rho}, \\
& \left(c_{i j}\left(\boldsymbol{\mu}_{\kappa}\right)\right)_{3,3}:=\left\{\begin{array}{ll}
(0)_{3,3} & \text { if } \operatorname{det} A^{\prime}\left(\boldsymbol{\varepsilon}, \boldsymbol{\mu}_{\kappa}\right)=0 \\
\left(A^{\prime}\left(\boldsymbol{\varepsilon}, \boldsymbol{\mu}_{\kappa}\right) B_{\rho}\right)^{-1} & \text { if } \operatorname{det} A^{\prime}\left(\varepsilon, \boldsymbol{\mu}_{\kappa}\right) \neq 0
\end{array} \quad \kappa=1, \ldots, 6,\right.
\end{aligned}
$$

and deduce that there is a $\mathbb{Z}$-basis of $W$ with the property

$$
\begin{equation*}
\prod_{i, j=1}^{3} b_{i j}\left(\boldsymbol{\mu}_{\kappa}\right) c_{i j}\left(\boldsymbol{\mu}_{\kappa}\right) \neq 0 \quad \text { if } \quad \operatorname{det} A^{\prime}\left(\varepsilon, \boldsymbol{\mu}_{\kappa}\right) \neq 0, \quad \kappa=1, \ldots, 6 \tag{31}
\end{equation*}
$$

Proceeding as in the proof of II, Hilfssatz 20, we see that we only have to prove (*) for such a basis. We fix such a basis for the rest of the proof.

To be able to apply Theorem 7 we still have to prove the existence of elements of $K$ with suitable properties. Setting $A^{\prime}\left(\varepsilon, \mu_{\kappa}\right)=:\left(e_{i j}\left(\boldsymbol{\mu}_{\kappa}\right)\right)_{3,3}$ we denote the adjoint of $e_{i j}\left(\mu_{\kappa}\right)$ by $E_{i j}\left(\mu_{\kappa}\right), \kappa=1, \ldots, 6, i, j=1,2,3$. Let $B\left(\varepsilon, \mu_{\kappa}\right):=\left(E_{i j}\left(\mu_{\kappa}\right)\right)_{3,3}^{*}$ and for $\tau \in K$

$$
P\left(\tau, \mu_{\kappa}\right):=A^{\prime}\left(\varepsilon, \mu_{\kappa}\right)\left(\begin{array}{ccc}
\tau & 0 & 0  \tag{32}\\
0 & \tau^{\prime} & 0 \\
0 & 0 & \tau^{\prime \prime}
\end{array}\right) B\left(\varepsilon, \mu_{\kappa}\right) .
$$

We define for $\tau \in K$

$$
\begin{gathered}
t_{1}(\tau):=\tau^{\prime}-\tau, \quad t_{2}(\tau):=\tau^{\prime \prime}-\tau^{\prime}, \quad t_{3}(\tau):=\tau-\tau^{\prime \prime}, \\
s_{i j}:=t_{j}\left(\varepsilon_{i}\right), \quad i=1,2, j=1,2,3, \quad s_{3 j}:=t_{j}\left(\varepsilon_{1} \varepsilon_{2}\right), \quad j=1,2,3 .
\end{gathered}
$$

We now choose $\delta_{j} \in K, j=1,2,3$, with the property $\left|\delta_{1}\right|>\left|\delta_{1}^{\prime}\right|,\left|\delta_{1}\right|>\left|\delta_{1}^{\prime \prime}\right|$, $\left|\delta_{2}^{\prime}\right|>\left|\delta_{2}\right|,\left|\delta_{2}^{\prime}\right|>\left|\delta_{2}^{\prime \prime}\right|,\left|\delta_{3}^{\prime \prime}\right|>\left|\delta_{3}\right|,\left|\delta_{3}^{\prime \prime}\right|>\left|\delta_{3}^{\prime}\right|$. Setting for $n \in \mathbb{N}, r=1,2,3$, $\kappa=1, \ldots, 6$,

$$
\begin{equation*}
P\left(\delta_{r}^{n}, \mu_{\kappa}\right)=:\left(p_{i j}(n, r, \kappa)\right)_{3,3} \tag{33}
\end{equation*}
$$

an easy calculation yields that there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\prod_{r=1}^{3} \prod_{\kappa=1}^{6} \prod_{i, j=1}^{3} p_{i j}(n, r, \kappa) \neq 0 \quad \text { for } \quad n \geqslant N \tag{34}
\end{equation*}
$$

and for $\kappa=1,2$ and $n \geqslant N$ the following equations hold:
$\operatorname{sign}\left(p_{12}(n, 1, \kappa) p_{13}(n, 1, \kappa)\right)=-\operatorname{sign}\left(s_{32} s_{\kappa 2}\right)$
$\operatorname{sign}\left(p_{21}(n, 1, \kappa) p_{23}(n, 1, \kappa)\right)=N\left(\varepsilon_{k}\right) \operatorname{sign}\left(\varepsilon_{k} s_{12} s_{22}\right)$
$\operatorname{sign}\left(p_{31}(n, 1, \kappa) p_{32}(n, 1, \kappa)\right)=-N\left(\varepsilon_{\kappa}\right) \cdot \begin{cases}\operatorname{sign}\left(\varepsilon_{1} s_{22} s_{32}\right) & \kappa=1 \\ \operatorname{sign}\left(\varepsilon_{2} s_{12} s_{32}\right) & \kappa=2\end{cases}$
$\operatorname{sign}\left(p_{12}(n, 2, \kappa) p_{13}(n, 2, \kappa)\right)=-\operatorname{sign}\left(s_{33} s_{\kappa 3}\right)$
$\operatorname{sign}\left(p_{21}(n, 2, \kappa) p_{23}(n, 2, \kappa)\right)=N\left(\varepsilon_{\kappa}\right) \operatorname{sign}\left(\varepsilon_{\kappa}^{\prime} s_{13} s_{23}\right)$
$\operatorname{sign}\left(p_{31}(n, 2, \kappa) p_{32}(n, 2, \kappa)\right)=-N\left(\varepsilon_{\kappa}\right) \cdot \begin{cases}\operatorname{sign}\left(\varepsilon_{1}^{\prime} s_{23} s_{33}\right) & \kappa=1 \\ \operatorname{sign}\left(\varepsilon_{2}^{\prime} s_{13} s_{33}\right) & \kappa=2\end{cases}$
$\operatorname{sign}\left(p_{12}(n, 3, \kappa) p_{13}(n, 3, \kappa)\right)=-\operatorname{sign}\left(s_{31} s_{11}\right)$
$\operatorname{sign}\left(p_{21}(n, 3, \kappa) p_{23}(n, 3, \kappa)\right)=N\left(\varepsilon_{\kappa}\right) \operatorname{sign}\left(\varepsilon_{\kappa}^{\prime \prime} s_{11} s_{21}\right)$
$\operatorname{sign}\left(p_{31}(n, 3, \kappa) p_{32}(n, 3, \kappa)\right)=-N\left(\varepsilon_{\kappa}\right) \cdot \begin{cases}\operatorname{sign}\left(\varepsilon_{1}^{\prime \prime} s_{21} s_{31}\right) & \kappa=1 \\ \operatorname{sign}\left(\varepsilon_{2}^{\prime \prime} s_{11} s_{31}\right) & \kappa=2 .\end{cases}$
Now we fix $M \in \mathbb{N}$ such that $M \cdot \delta_{r}^{N} \rho \omega_{j}$ is an algebraic integer for $r, j=1,2,3$. This implies

$$
\operatorname{Tr}\left(M \delta_{r}^{N} \rho \omega_{j}\right) \in \mathbb{Z}, \quad r, j=1,2,3
$$

and we set in the following: $\lambda_{r}:=M \cdot \delta_{r}^{N}, r=1,2,3$. We can now proceed to the main part of the proof. Let $\omega \in W, x \in \mathbb{R}, x \neq 0$, and $a_{j}(\omega, x):=\left(\rho \omega\left(1+i x \lambda_{j}\right), \quad \rho^{\prime} \omega^{\prime}\left(1+i x \lambda_{j}^{\prime}\right), \quad \rho^{\prime \prime} \omega^{\prime \prime}\left(1+i x \lambda_{j}^{\prime \prime}\right)\right), \quad j=1,2,3$. We
apply Theorem 4 with $\boldsymbol{\alpha}=a_{j}(\omega, x), \boldsymbol{\beta}=\left(\varepsilon_{1} / \varepsilon_{1}^{\prime \prime}, \varepsilon_{2} / \varepsilon_{2}^{\prime \prime}, \varepsilon_{1}^{\prime} / \varepsilon_{1}^{\prime \prime}, \varepsilon_{2}^{\prime} / \varepsilon_{2}^{\prime \prime}\right)$. Using the equation (see I, Hilfssatz 3(e))

$$
\begin{align*}
& \sum_{\mathbf{m} \in \mathbb{Z}^{2}} \alpha^{m} \beta^{n}\left(1-\varphi_{\omega}(\mathbf{m})\right) \bar{\varphi}_{\omega}(\mathbf{m}) H^{(k)}(\boldsymbol{\alpha}, \mathbf{m}) \\
&=-\sum_{\mathbf{m} \in \mathbb{Z}^{2}} \boldsymbol{\beta}^{\mathbf{m}}\left(1-\varphi_{\omega}(\mathbf{m})\right) \bar{\varphi}_{\omega}(\mathbf{m}) \sum_{v=3}^{6} g_{2 v}^{(k)}(\boldsymbol{\alpha}, \mathbf{m}) \tag{44}
\end{align*}
$$

we get for $j=1,2,3$

$$
\begin{align*}
&(-1)^{k-1}(k-1)!^{3} \operatorname{sign}(L)\left[N(\rho) N(\omega)\left(1+i x \lambda_{j}\right)\left(1+i x \lambda_{j}^{\prime}\right)\left(1+i x \lambda_{j}^{\prime \prime}\right)\right]^{-k} \\
&= \sum_{\mathbf{m} \in \mathbb{Z}^{2}} \boldsymbol{\beta}^{\mathbf{m}}\left(h_{21}^{(k)}\left(a_{j}(\omega, x), \mathbf{m}\right)+h_{22}^{(k)}\left(a_{j}(\omega, x), \mathbf{m}\right)\right) \\
&+\sum_{\mathbf{m} \in \mathbb{Z}^{2}} \alpha^{m} \beta^{n}\left(1-\varphi_{\omega}(\mathbf{m})\right) H^{(k)}\left(a_{j}(\omega, x), \mathbf{m}\right) \\
&= \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left\{V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{1}\right)-V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{2}\right)\right\} \\
&-\sum_{\mathbf{m} \in \mathbb{\mathbb { Z }}^{2}}\left\{\left(1-\varphi_{\omega}(\mathbf{m})\right) \bar{\varphi}_{\omega}(\mathbf{m}) \sum_{v=3}^{6} V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{v}\right)\right\} \\
&+\sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right) U_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}\right) \tag{45}
\end{align*}
$$

Observing (34), Theorem 7 yields

$$
\begin{align*}
& \sum_{\omega \in W_{0}} \quad \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left|V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{v}\right)\right| \\
& \quad=\sum_{\omega \in W}\left|V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{0}, \boldsymbol{\mu}_{v}\right)\right|<\infty, \quad j=1,2,3, v=1, \ldots, 6 \tag{46}
\end{align*}
$$

Lemma 5(b) implies

$$
\sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right) \cdot\left|U_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}\right)\right|<\infty
$$

$$
\begin{equation*}
j=1,2,3 . \tag{47}
\end{equation*}
$$

Thus both series can be rearranged arbitrarily for $x \neq 0$. Then Theorem 7 yields in connection with (35)-(43)

$$
\begin{align*}
\frac{1}{6} \cdot \sum_{j=1}^{3} & \lim _{x \rightarrow 0} \sum_{\omega \in W}\left(\sum _ { v = 1 } ^ { 2 } ( - 1 ) ^ { v + 1 } \left(V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{0}, \boldsymbol{\mu}_{v}\right)\right.\right. \\
& \left.\left.+V_{k}\left(\rho \omega\left(1-i x \lambda_{j}\right), \mathbf{0}, \boldsymbol{\mu}_{v}\right)\right)\right) \\
= & -T_{1}+(-1)^{k-1}(k-1)!^{3} \operatorname{sign}(L)\left(C\left(k, 1, \varepsilon_{1}, \varepsilon_{2}\right)+C\left(k, 2, \varepsilon_{2}, \varepsilon_{1}\right)\right) \tag{48}
\end{align*}
$$

where $T_{1}$ is defined in II, Hilfssatz 23.

From Lemma 8 we deduce by setting $\omega(\mathbf{m}):=\sum_{j=1}^{3} m_{j} \omega_{j}$

$$
\begin{align*}
\frac{1}{6} \cdot \sum_{j=1}^{3} & \lim _{x \rightarrow 0}\left\{\sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right) \bar{\varphi}_{\omega}(\mathbf{m})\right. \\
& \left.\cdot\left(\sum_{\nu=3}^{6}\left(V_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{v}\right)+V_{k}\left(\rho \omega\left(1-i x \lambda_{j}\right), \mathbf{m}, \boldsymbol{\mu}_{v}\right)\right)\right)\right\} \\
= & \frac{1}{6} \cdot \sum_{j-1}^{3} \lim _{x \rightarrow 0}\left\{\sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*}(1-f(\operatorname{Tr}(\rho \omega(\mathbf{m})))) \prod_{\boldsymbol{\mu} \in I} f\left(\operatorname{Tr}\left(\rho \omega(\mathbf{m}) \varepsilon^{\mu}\right)\right)\right. \\
& \cdot\left(\sum _ { \nu = 3 } ^ { 6 } \left(V_{k}\left(\rho \omega(\mathbf{m})\left(1+i x \lambda_{j}\right), 0,0, \boldsymbol{\mu}_{v}\right)\right.\right. \\
& \left.\left.+V_{k}\left(\rho \omega(\mathbf{m})\left(1-i x \lambda_{j}\right), 0,0, \boldsymbol{\mu}_{v}\right)\right)\right\} \\
= & \sum_{\mathbf{m} \in \mathbb{Z}^{3}}^{*}\{(1-f(\operatorname{Tr}(\rho \omega(\mathbf{m})))) \\
& \left.\cdot \prod_{\boldsymbol{\mu} \in I} f\left(\operatorname{Tr}\left(\rho \omega(\mathbf{m}) \varepsilon^{\mu}\right)\right) \sum_{j=3}^{6} V_{k}\left(\rho \omega(\mathbf{m}), 0,0, \boldsymbol{\mu}_{j}\right)\right\} \\
= & T_{3} . \tag{49}
\end{align*}
$$

From Lemma 5(b) in connection with II, Hilfssatz 26, and I, Hilfssatz 3(e) we conclude using the notations of II, Hilfssatz 26

$$
\begin{align*}
\frac{1}{6} \cdot & \sum_{j=1}^{3} \lim _{x \rightarrow 0} \sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right)\left(U_{k}\left(\rho \omega\left(1+i x \lambda_{j}\right), \mathbf{m}\right)\right. \\
& \left.+U_{k}\left(\rho \omega\left(1-i x \lambda_{j}\right), \mathbf{m}\right)\right) \\
= & \sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right) U_{k}(\rho \omega, \mathbf{m}) \\
= & \sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}} \alpha^{m} \beta^{n}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right) H^{(k)}\left(\mathbf{a}^{\prime}(\omega), \mathbf{m}\right) \\
= & \sum_{\omega \in W_{0}}\left\{\sum _ { \mathbf { m } \in \mathbb { Z } ^ { 2 } } \left\{\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right)\right.\right. \\
& \left.\cdot \sum_{\mu=1}^{3 k-1} \sum_{r=1}^{2}\left[(-1)^{r+1} \operatorname{det} A_{r} \sum_{j-1}^{3} \boldsymbol{\beta}^{-\boldsymbol{\mu}_{j r}} Q_{k-1}\left(\mathbf{a}^{\prime}(\omega), \mu, \boldsymbol{\rho}_{j r}, \mathbf{m}\right)\right]\right\} \\
& +\sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left\{\sum _ { r = 1 } ^ { 2 } ( - 1 ) ^ { r + 1 } \operatorname { d e t } A _ { r } \left(Q_{k-1}\left(\mathbf{a}^{\prime}(\omega), 0, \boldsymbol{\mu}_{r}, \mathbf{m}\right)\right.\right. \\
& \left.\left.+Q_{k-1}\left(\mathbf{a}^{\prime}(\omega), 0, \boldsymbol{\mu}_{1 r}, \boldsymbol{\mu}_{3 r}, \boldsymbol{\mu}_{2 r}, \mathbf{m}\right)+Q_{k-1}\left(\mathbf{a}^{\prime}(\omega), 0, \boldsymbol{\mu}_{2 r}, \boldsymbol{\mu}_{3 r}, \boldsymbol{\mu}_{1 r}, \mathbf{m}\right)\right\}\right\} \\
= & T_{4} . \tag{50}
\end{align*}
$$

It is easy to show

$$
\begin{equation*}
\sum_{\omega \in W_{0}} \sum_{\mathbf{m} \in \mathbb{Z}^{2}}\left(1-\varphi_{\omega}(\mathbf{m})\right)\left(1-\bar{\varphi}_{\omega}(\mathbf{m})\right)\left|Q_{k-1}\left(\mathbf{a}^{\prime}(\omega), \mu, \mathbf{v}, \mathbf{m}\right)\right|<\infty \tag{51}
\end{equation*}
$$

for $\mu \in \mathbb{N} \cup\{0\}, v \in \mathbb{Z}^{6}$. Applying II, Hilfssatz 26 (b) to every single summand of $T_{3}$ and adding up $-T_{3}$ and $T_{4}$ while observing (51) we get

$$
\begin{equation*}
-T_{3}+T_{4}=T_{2} \tag{52}
\end{equation*}
$$

where $T_{2}$ was defined in II, Hilfssatz 27(b). From (45) and (48)-(52) we conclude

$$
\begin{align*}
& (-1)^{k-1}(k-1)!^{3} \operatorname{sign}(L) N(\rho)^{-k} \zeta\left(k, W, \varepsilon_{1}, \varepsilon_{2}\right) \\
& \quad \frac{1}{6} \lim _{x \rightarrow 0} \sum_{j=1}^{3} \sum_{v=1}^{2}\left(1+(-1)^{v i} i x \lambda_{j}\right)\left(1+(-1)^{v i} i x \lambda_{j}^{\prime}\right)\left(1+(-1)^{v} i x \lambda_{j}^{\prime \prime}\right) \\
& =-T_{1}+T_{2} . \tag{5}
\end{align*}
$$

As in the proof of II, Satz 28, the assertion follows.
Remark 9. Of course $\zeta\left(2 k+1, W, \varepsilon_{1}, \varepsilon_{2}\right)=0$ for $k \in \mathbb{N}$; however, if $\chi \not \equiv 1$ (see I, p. 108) or in the still more general case of "Nebenklassenzetafunktionen" (see, e.g., [2, p.307], where these are defined for real quadratic fields) the methods developed here can be extended to the values at odd positive integers which then are no longer zero in general.

## Numerical Results

In the following two tables column 1 contains the discriminant of $K$. In column 2 we list the coefficients $a, b, c$ of a generating equation $x^{3}+a x^{2}+b x+c=0$. Column 3 contains an integral basis of $K$ in case it is not a power integral basis (see remarks on input data). Table I contains only fields of class number one. Hence, the other columns of that table list the values of the Dedekind zeta function of $K$ for the argument $k=2$ and-for small discriminants-also for $k=4$ and $k=6$ (up to the factor $\sqrt{4}^{2 k-1} \pi^{-3 k}$; see Remark 2(b)).
In Table II the class number $h_{K}$ of the considered fields is always greater than 1 ; it is therefore listed in column 4 . Column 5 contains generators of an ideal representing the inverse of the ideal class whose zeta value is given in column 7 for $k=2$ (up to the factor given above). The values of the class zeta functions are added up to obtain the value of $\zeta_{K}(2)$; this is marked by an asterisk in column 5. Finally, column 6 lists the norm of the ideal in column 5 .

We note that the values of the zeta functions listed in both tables distinguish fields of the same discriminant but not necessarily of different ideal classes of a fixed field (compare $\Delta=21212$ ).

## TABLE I

Zeta Values $\xi_{\kappa}(k) \sqrt{\Delta^{2 k-1}} \pi^{-3 k}$ of Fields with Class Number 1

| Disc. | Gen. eq. | Int. bas. | $k=2$ | $k=4$ | $k=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | $-1,-2,1$ | $8 / 21$ | $2528 / 2835$ | $473152 / 212625$ |  |
| 81 | $0,-3,-1$ | $8 / 9$ | $6368 / 1215$ | $3222592 / 91125$ |  |
| 148 | $3,-1,-1$ | $8 / 3$ | $18464 / 405$ | $210001984 / 212625$ |  |
| 169 | $1,-4,1$ | $8 / 3$ | $359264 / 5265$ | $428922304 / 212625$ |  |
| 229 | $0,-4,1$ | $16 / 3$ | $85312 / 405$ | $231718688 / 212625$ |  |
| 257 | $3,-2,-1$ | $16 / 3$ | $121024 / 405$ | $4307040128 / 212625$ |  |
| 316 | $-1,-4,2$ | $32 / 3$ | $55936 / 81$ | $13831672576 / 212625$ |  |
| 321 | $1,-4,-1$ | 8 | $5920 / 9$ | $4883946944 / 70875$ |  |
| 361 | $-2,-5,-1$ | 8 | $130784 / 135$ | $176543630656 / 1346625$ |  |
| 404 | $1,-5,1$ | $40 / 3$ | $627616 / 405$ | $10531359808 / 42525$ |  |
| 469 | $4,-2,-1$ | 16 | $69952 / 27$ | $13276324736 / 23625$ |  |
| 473 | $0,-5,1$ | $40 / 3$ | $1023328 / 405$ | $24677996992 / 42525$ |  |
| 564 | $-1,-5,3$ | 24 | $75616 / 15$ |  |  |
| 568 | $-1,-6,-2$ | $80 / 3$ | $2181056 / 405$ |  |  |
| 621 | $0,-6,3$ | $80 / 3$ | $2836544 / 405$ |  |  |
| 697 | $0,-7,5$ | $64 / 3$ | $3925504 / 405$ |  |  |
| 733 | $-1,-7,8$ | 32 | $1671296 / 135$ |  |  |
| 756 | $0,-6,2$ | $104 / 3$ | $5627552 / 405$ |  |  |
| 761 | $-1,-6,-1$ | $80 / 3$ | $5398976 / 405$ |  |  |
| 785 | $-1,-6,5$ | $88 / 3$ | $6035104 / 405$ |  |  |
| 788 | $-1,-7,-3$ |  | $112 / 3$ | $1302464 / 81$ |  |
| 837 | $0,-6,1$ | $128 / 3$ | $1614592 / 81$ |  |  |
| 892 | $-1,-8,10$ |  | $160 / 3$ | $10589824 / 405$ |  |
| 940 | $0,-7,4$ | $176 / 3$ | $12736832 / 405$ |  |  |
| 961 | $-1,-10,8$ | $\left(\alpha+\alpha^{2}\right) / 2$ | $224 / 3$ | $14631296 / 405$ |  |
| 985 | $-1,-6,1$ |  | $112 / 3$ | $13195072 / 405$ |  |
| 993 | $-1,-6,3$ |  | $136 / 3$ | $2778464 / 81$ |  |
| 22356 | $0,-36,60$ | $\alpha^{2} / 2$ | 6120 |  |  |
| 22356 | $0,-18,6$ |  | 5592 |  |  |
| 22356 | $0,-36,78$ |  | 5504 |  |  |
|  |  |  |  |  |  |

## TABLE II

Values $\xi\left(k, K_{0}\right) \sqrt{4}^{2 k-1} \pi^{-3 k}$ of Class Zeta Functions


## References

1. T. J. Bromwich, "An Introduction to the Theory of Infinite Series," Macmillan \& Co., London, 1955.
2. U. Halbritter, Berechnung der Werte von verallgemeinerten Zetafunktionen reellquadratischer Zahlkörper mittels Dedekindscher Summen, J. Number Theory 17 (1983), 285-322.
3. U. Halbritter, Eine elementare Methode zur Berechnung von Zetafunktionen reellquadratischer Zahlkörper, Math. Ann. 271 (1985), 359-379.
4. U. Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Result Math. 8 (1985), 21-46.
5. U. Halbritter, Berechnung der Werte von Zetafunktionen totalreeller kubischer Zahlkörper an ganzzahligen Stellen mittels verallgemeinerter Dedekindscher Summen, I, J. Reine Angew. Math. 361 (1985), 95-117.
6. U. Halbritter, Berechnung der Werte von Zetafunktionen totalreeller kubischer Zahlkörper an ganzzahligen Stellen mittels verallgemeinerter Dedekindscher Summen, II, Result. Math. 13 (1988), 99-134.
7. U. Halbritter, "Theorie mehrfacher bedingt konvergenter Integrale mit Anwendungen auf mehrfache Gauss'sche Summen," Thesis, Universität zu Köln, 1973.
8. U. Halbritter, Die Kroneckersche Grenzformel für totalrelle kubische Zahlkörper, in preparation.
9. M. Pohst, Uber die Werte der Zetafunktionen an geraden Argumenten in reellquadratischen und total reellen kubischen Zahlkörpern, Diplomarbeit, Universität zu Köln, 1970.
10. T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo (1976), 393-417.
11. C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II 10 (1969), 87-102.

[^0]:    ${ }^{1}$ For $\varepsilon_{1}, \varepsilon_{2}$ a system of fundamental units we simply write $\zeta(k, W)$.

