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Abstract

The effectiveness of utility-maximization techniques for portfolio management relies on our ability
to estimate correctly the parameters of the dynamics of the underlying financial assets. In the setting
of complete or incomplete financial markets, we investigate whether small perturbations of the market
coefficient processes lead to small changes in the agent’s optimal behavior, as derived from the solution of
the related utility-maximization problems. Specifically, we identify the topologies on the parameter process
space and the solution space under which utility-maximization is a continuous operation, and we provide
a counterexample showing that our results are best possible, in a certain sense. A novel result about the
structure of the solution of the utility-maximization problem, where prices are modeled by continuous
semimartingales, is established as an offshoot of the proof of our central theorem.
Published by Elsevier B.V.
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1. Introduction

The central problem. Financial theory in general, and mathematical finance in particular, aim
to describe and understand the behavior of rational agents faced with an uncertain evolution of
asset prices. In the simplest, yet most widespread models of such behavior, the agent has a fixed
and immutable assessment of various probabilities related to the future evolution of the prices
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0304-4149/$ - see front matter Published by Elsevier B.V.
doi:10.1016/j.spa.2006.10.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81955895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/spa
mailto:kasperl@andrew.cmu.edu
mailto:gordanz@math.utexas.edu
http://dx.doi.org/10.1016/j.spa.2006.10.012
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in the financial market. Taking her views as correct, the agent proceeds to implement a dynamic
trading strategy which is chosen so as to maximize a certain nonlinear functional of the terminal
wealth — the utility functional. Often, the utility functional is of the “expected-utility” type,
i.e., the agent’s objective is to maximize U(XT ) = E[U (XT )] over all possible random variables
XT she can generate through various investment strategies on a trading horizon [0, T ], starting
from a given initial wealth x . U (·) is generally a concave and strictly increasing real-valued
function defined on the positive semi-axis (0, ∞), and is used as a model of the agent’s risk
preferences. In order to implement this program in practice, the agent chooses a particular model
of the evolution of asset prices, estimates its parameters using the available market data, and
combines the obtained market specification with the particular idiosyncratic form of the utility
functional U. Having seen how the choice of the market model requires imperfect measurement
and estimation, the natural question to ask is then the following:

“How are the agent’s behavior and its optimality affected by (small) misspecifications of
the underlying market model?”

Unless we can answer this question by a decisive “Not much!”, the utility-maximization
framework as described above loses its practical applicability.

In the classical setting of the theory of partial differential equations, and applied mathematics
in general, similar questions have been posed early in the literature. It is by now a classical
methodological requirement to study the following three aspects of every new problem one
encounters:

1. existence,
2. uniqueness,
3. sensitivity of the solution with respect to changes of the problem’s input parameters.

These criteria are generally known as Hadamard’s well-posedness requirements (see [11]). The
present paper adopts the view that the market model’s specification is one of the most important
input data in the utility-maximization problem, and focuses on the third requirement with that in
mind.
Existing research. In the general setting of the semimartingale stock-price model, the first two
of the Hadamard’s requirements (existence and uniqueness) have been settled completely by a
long line of research reaching at least back to Robert Merton, and continuing with the work of
Chuang, Cox, He, Karatzas, Kramkov, Lehoczky, Pearson, Pliska, Schachermayer, Shreve, Xu,
etc. (see [20,21,3,12,16,17], merely to scratch the surface). Tight conditions are now known
on practically all aspects of the problem which guarantee existence and uniqueness of the
optimal investment strategy. The question of sensitivity has been studied to a much lesser degree
and, compared to the model-specification issues, much more effort has been devoted to the
perturbations of the shape of the utility function or the initial wealth (see, e.g., [14,4]). Related
questions of stability of option pricing (under market perturbations) have been studied by El
Karoui et al. [8], for the case of the Samuelson (also know as Black–Scholes–Merton) market,
and several authors have studied the phase transition “from discrete- to continuous-time models”,
see e.g., [13] and the monograph [22].

The concept of robust portfolio optimization, which has been studied extensively in the
financial and mathematical literature, is related to our notion of stability. The main goal of robust
portfolio optimization is to create decision rules that work well – at least up to some degree –
under each of several model specifications, or under several probability measures (sets of beliefs)
Q ∈ P , where P is a family of financial models. A popular way of approaching this problem
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consists of allowing for multiple model specifications, and considering investors who care about
expected utility, but in a different way in each of the possible models. The starting point for this
approach is the celebrated paper [10], where the authors show how to relax the classical von
Neumann–Morgenstern preference axioms by introducing X 7→ infQ∈P

(
EQ[U (X)] + %(Q)

)
as the numerical representation for the robust utility functional (see also [19]). Here X typically
represents the terminal value of some admissible trading strategy, and % assigns penalization
weights to the different possible model specifications Q ∈ P . We cannot give a complete
overview of this theory and its many aspects (one interesting property is how model ambiguity
interacts with the coefficient of risk aversion, see e.g., [27]), but refer the reader to the textbook
[9] and the references therein. We emphasize, though, that while superficially similar to the
robust optimization approach, our analysis is based on the assumption that our investor firmly
believes that the original probability measure P is correctly specified, and does not incorporate
any model ambiguity into her optimal decision. If we view the perturbations of the model as
the perturbations of the underlying probability measure P (via Girsanov’s theorem), one of the
facets of our question of stability can be reformulated as follows: Is the P-optimal strategy
approximately optimal for all elements in some small-enough set of “nearby” models Q ∈ P?
In other words, our problem deals with the evaluation of the optimality properties of one
prespecified strategy in various market models, while the robust optimization seeks a strategy
with good properties under different market models.

Our results. In the present paper, we investigate the stability properties of utility-maximization in
a wide class of complete or incomplete financial models. Specifically, we develop a methodology
which can deal with any financial market with continuous asset prices, without restrictions on
the underlying filtration. In the setting of such models (described in detail below, and including
Samuelson’s model as well as stochastic volatility models), the concept of the market-price-of-
risk can be defined in an unambiguous way. Moreover, one of our main technical results states
that in these models, the maximal dual elements (in the sense of [17]) are local martingales
and admit a multiplicative decomposition into a “minimal local martingale density”, and an
“orthogonal part”. As a consequence, we show that in the setting of the dual approach to utility-
maximization, the dual optimizer is always a local martingale when the stock price is continuous.
This extends a similar result from [18] stated in the more restrictive milieu of Itô-process models.

When the model under scrutiny allows for a notion of volatility, the market-price-of-risk
can be interpreted as the drift, weighted by a negative power of the volatility. In particular,
misspecifications of the market-price-of-risk translate into homothetic misspecifications in the
drift process. [25] discusses the practical difficulties related to estimating the drift, and points
out that the magnitude of the error attached to the drift estimate is significant. The continuity
of the value function, as well as the optimal terminal wealth of a utility-maximizing agent –
seen as functions of the market-price-of-risk – constitute the center of our attention. Therefore,
our analysis is to be seen as stability with respect to small drift misspecifications, and hopefully
provides some insight also into the more complicated problem of large misspecifications that [25]
points at.

The value function of our utility-maximization problem takes values in the Euclidean space
R, and there is little discussion about the proper notion of continuity there. However, the market-
price-of-risk (in the domain), and the optimal terminal wealths (in the co-domain), are more
complicated objects (a stochastic process and a random variable), and present us with a variety
of choices for the topology under which the notion of “perturbation” can be interpreted. One of
the contributions of this paper is to identify a class of topologies on the domain, and a particular
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topology (of convergence in probability) on the co-domain, under which utility-maximization
becomes a continuous operation when a simple condition of V -relative compactness is satisfied.
Under the additional assumption that all the markets under consideration are complete, we show
that V -relative compactness is, in fact, both necessary and sufficient. Moreover, we provide an
example, set in a complete Itô-process financial market, in which a very strong convergence
requirement imposed on the market-price-of-risk processes still fails to lead to any kind of
convergence of the corresponding optimal terminal wealths.

On the technical side, the proof of our main stability result requires an analysis of the structure
of the solution of the utility-maximization problem. Specifically, a recourse to convex-duality
techniques is of great importance; most of the intermediate steps leading to the final result deal
with the dual optimization problem and its properties, and for every continuity result in the
primal problem, there is a corresponding continuity result in the dual. It is in the heart of the
duality approach in convex optimization that one can choose whether to work on the primal or
the dual problem – depending on which one is more amenable to analyze in a particular situation
– and easily translate the obtained results to the other one. In our case, the advantage of the dual
problem is that certain close substitutes for compactness (such as the use of Komlos’ lemma)
bring a number of topological techniques into play. One of the mathematical messages of this
paper is that the use of duality theory is not restricted to the existence results only, but can be put
to a more versatile use.

The structure of the paper follows a simple template: The next section describes the modeling
framework, poses the problem and states the main results. Section 3 invokes some important facts
about the convex-duality treatment of utility-maximization problems and provides a proof of the
main result through a sequence of lemmas. Appendix A contains an auxiliary result exemplifying
the notion of appropriate topologies.

2. The problem formulation and the main results

2.1. The model framework

Let (Ω ,F, P) be a complete probability space, and let F = (Ft )t∈[0,T ], be a filtration
satisfying the usual conditions. For a continuous F-local martingale M = (Mt )t∈[0,T ], let Λ
denote the set of all predictable processes λ = (λt )t∈[0,T ] with the property that∫ T

0
λ2

ud〈M〉u < ∞, a.s.,

where, as usual, 〈M〉 = (〈M〉t )t∈[0,T ] denotes the quadratic variation of the local martingale M .
Each λ ∈ Λ defines a continuous semimartingale Sλ, where

Sλ
t = 1 + Mt +

∫ t

0
λud〈M〉u, t ∈ [0, T ]. (2.1)

Together with the trivial bond-price process Bt ≡ 1, Sλ constitutes a financial market. In the
sequel, we will simply write the market Sλ.

Example 2.1. The proto-example for the family {Sλ
: λ ∈ Λ} is the class of Itô-process markets

of the form

dSλ
t = Sλ

t
(
µλ

t dt + σt dBt
)
, Sλ

0 = 1, where µλ
t = λtσ

2
t ,
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defined on the filtration F = (Ft )t∈[0,T ], generated either by a Brownian motion B, or by a
pair (B, W ) of independent Brownian motions. In the first case the market is complete, but in the
second case the market is incomplete. The important continuous models of financial markets such
as the Samuelson’s model, or the class of stochastic volatility models, fall within this framework.

Remark 2.2. The choice of the special form for the model class in (2.1) is not arbitrary. In
fact, it is a consequence of the main result of [6], that any continuous arbitrage-free (numéraire-
denominated) model of a stochastic market admits the representation (2.1).

2.2. Absence of arbitrage and its consequences

For λ ∈ Λ, the stochastic exponential process Zλ
= (Zλ

t )t∈[0,T ], given by

Zλ
t = E(−λ · M)t = exp

(
−

∫ t

0
λu dMu −

1
2

∫ t

0
λ2

ud〈M〉u

)
, t ∈ [0, T ]

is a strictly positive local martingale and acts as a state-price-deflator for Sλ. More precisely,
Itô’s formula implies that the process Zλ X is a local martingale for each semimartingale X of
the form X = H · Sλ, whenever H is a predictable and Sλ-integrable (i.e., H ∈ L(Sλ)). When
Zλ is a genuine martingale, the measure Qλ

∼ P defined by

dQλ

dP
= Zλ

T

is a probability measure under which the stock-price process Sλ is a local martingale. In that
case, the market Sλ satisfies the condition of No Free Lunch with Vanishing Risk (NFLVR). It is
customary to call Qλ the minimal local martingale measure. In general, the setMλ of equivalent
local martingale measures (i.e., all probability measures Q, equivalent to P, under which the
process Sλ is a local martingale) is larger than just a singleton. The following result is a direct
consequence of Theorem 1 in [26], which, in turn, is a generalization of the results in [1,2].

Proposition 2.3 (Schweizer, Ansel, Stricker). When Mλ
6= ∅, every probability measure

Q ∈ Mλ has the form

dQ
dP

= Zλ
T E(L)T ,

for some local martingale L strongly orthogonal to M, meaning 〈L , M〉 ≡ 0.

It is an unexpected result of [7] that the market Sλ can satisfy NFLVR without the density
process Zλ having the martingale property. In that case, the minimal martingale measure does
not exist.

We do not postulate that the process Zλ is a (uniformly integrable) martingale. Instead, we
restrict our attention to the set ΛM ⊆ Λ, containing all λ ∈ Λ such that the financial market
Sλ admits NFLVR. The existence of an equivalent martingale measure for the process Sλ,
λ ∈ ΛM , now follows from the celebrated Fundamental Theorem of Asset Pricing of Delbaen
and Schachermayer [5].

Remark 2.4. Even though we will only consider λ ∈ ΛM , all the results in the sequel can be
extended to the most general case λ ∈ Λ. Admittedly, in this general case, the markets under
consideration will not be arbitrage free in the sense of NFLVR, but the existence of a strictly
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positive state-price-deflator Zλ turns out to be enough. This (mild) generalization would add to
the technicalities of the proofs without adding much to the content, so we have chosen not to
pursue it.

2.3. The utility-maximization problem

Definition 2.5. A strictly concave, strictly increasing C1-function U : (0, ∞) → R satisfying
the Inada conditions:

lim
x→0

U ′(x) = +∞, lim
x→∞

U ′(x) = 0,

as well as the reasonable asymptotic elasticity condition AE[U ] < 1, where

AE[U ] =

lim sup
x→∞

xU ′(x)

U (x)
, if lim

x→∞
U (x) = +∞,

0, otherwise

is called a reasonably elastic utility function.

Remark 2.6. As usual, we extend the utility function U to the negative semi-axis by defining
U (x) = −∞ for negative x-values.

Given a financial market Sλ with λ ∈ Λ, the utility-maximization problem for a financial agent
with initial wealth x > 0 (and the risk attitude described by the utility function U ) is to maximize
the expected utility E[U (XT )] over all terminal values of the wealth processes obtainable by
trading in the stock Sλ and investing in the risk-free security in a self-financing manner. More
precisely, the utility-maximization problem is posed through its value function uλ

: R+ → R,
where

uλ(x) = sup
X∈X λ(x)

E[U (XT )] (2.2)

and X λ(x) is the usual class of wealth processes constrained by an admissibility requirement in
order to rule out the doubling strategies

X λ(x) = {x + H · Sλ
: H ∈ L(Sλ), x + H · Sλ is a non-negative process}.

A number of authors have studied the problem (2.2) on various levels of generality. Culminating
with [17], this line of research has established a natural set of regularity assumptions on the
market and on the utility function, under which (2.2) admits a unique solution (X̂ x,λ

t )t∈[0,T ] ∈

X λ(x), and the value function x 7→ uλ(x) = E[U (X̂ x,λ
T )] is finite-valued and continuously

differentiable.

2.4. The central problem

Now that we have introduced all the needed elements, we can pose our stability problem for
the utility-maximization problem

Problem 2.1. Given an initial wealth x > 0, let the sequence {λn
}n∈N in ΛM converge to

λ0
∈ ΛM in some topology. Under which conditions on the sequence {λn

}n∈N and the topology
in which it converges to λ0, will
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1. the value functions uλn
(x),

2. the optimal terminal wealths X̂ x,λn

T ,

converge to the corresponding value function uλ0
(x) and the corresponding optimal terminal

wealth X̂ x,λ0

T ?

2.5. Appropriate topologies

Before we give a precise statement of our main result, we introduce and comment on a class
of topologies in the present subsection, as well as the concept of V -relative compactness, in the
following subsection. Standardly, L0 denotes the set of all (equivalence classes) ofF-measurable
finite-valued random variables, and L0

+ denotes its positive cone.

Definition 2.7. A metrizable topology τ on Λ is said to be appropriate if the mapping λ 7→ Zλ
T

of Λ into L0
+ is continuous when Λ is endowed with τ , and L0 with the topology of convergence

in probability.

Remark 2.8. The requirement of metrizability in the Definition 2.7 is imposed only to simplify
the analysis below as it allows us to circumvent the use of nets. Any topology for which λ 7→ Zλ

T
is continuous can be weakened to a metrizable topology with the same property.

The following example describes two natural appropriate topologies.

Example 2.9. 1. Let the positive measure µM , defined on the predictable σ -algebra on the
product space [0, T ] × Ω , be given by

µM (A) = E
∫ T

0
1A(t) d〈M〉t . (2.3)

Proposition A.1 in Appendix A states that the restriction of the L2(µM )-norm

‖λ‖
2
L2(µM )

= E
∫ T

0
λ2

u d〈M〉u,

onto {λ ∈ Λ : ‖λ‖L2(µM ) < ∞} induces an appropriate topology.
2. Another example of an appropriate topology is the so-called ucp-topology (uniform

convergence on compact sets in probability), when restricted to left-continuous processes in
ΛM . In other words, a sequence {λn

}n∈N converges to λ in ucp if the sequence

sup
t∈[0,T ]

∣∣λn
t − λt

∣∣
of random variables converges to 0 in probability. For more information about the ucp-
topology, see Section II.4 in [23].

2.6. The log-example

In order to acquire a better understanding of our main result, we provide a simple example that
illustrates the use of appropriate topologies in the form of the L2(µM )-class, i.e., the sequence
of models with square integrable market-price-of-risk processes, λn

∈ L2(µM ) for n ∈ N. We
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consider an investor with U (x) = log(x) (the so-called log-investor). It is well known that her
behavior is myopic, and that the optimal terminal wealth is given by

X̂ x,λn

T =
x

Zλn

T
. (2.4)

Thanks to Proposition A.1, if λn
→ λ0 in L2(µM ), then Zλn

T → Zλ0

T . Consequently, for the

optimal wealths, given by (2.4), we have X̂ x,λn

T → X̂ x,λ0

T in probability. Furthermore, inserting
(2.4) into (2.2) yields the following expression for the value function

un(x) = E
[
log

(
X̂ x,λn

T

)]
= log(x) + E

[∫ T

0
λn

udMu +
1
2

∫ T

0

(
λn

u
)2 d〈M〉u

]
.

Since λn
∈ L2(µM ) for all n ∈ N, the stochastic integral in the expression above is a genuine

martingale, and the following representation holds

un(x) = log(x) +
1
2
‖λn

‖
2
L2(µM )

.

This relation shows that the requirement λn
∈ L2(µM ) grants the finiteness of the value function

un . It also implies that the convergence λn
→ λ0 in L2(µM ) implies pointwise convergence of

the value functions un(·) to u0(·).
For an investor with a general utility function U (·), the corresponding optimizer X̂ x,λ

T can be
a lot more complicated than (2.4), and, as we illustrate, more regularity needs to be imposed in
order to obtain positive results. This is the content of the next subsection.

2.7. V -relative compactness

A reasonably elastic utility function U (as in Definition 2.5) is linked via conjugacy to its
Legendre–Fenchel transform V : (0, ∞) → R, given by

V (y) = sup
x>0

(U (x) − xy).

Definition 2.10. A subset Λ′ of Λ is said to be V -relatively compact if the following family of
random variables

{V (Zλ
T ) : λ ∈ Λ′

} (2.5)

is uniformly integrable.

Remark 2.11. It is enough to replace V (Zλ
T ) by V +(Zλ

T ) = max(V (Zλ
T ), 0) in (2.5). Indeed,

the family {Zλ
T : λ ∈ Λ} is contained in the unit ball of L1, and concavity properties of the

function V −(·) = max(0, −V (·)) can be used to conclude that {V −(Zλ
T ) : λ ∈ Λ} is uniformly

integrable (see the first part of the proof of Lemma 3.2, p. 914 in [17] for more details).

2.8. The main result

Theorem 2.12. Let Λ′ be a V -relatively compact subset of ΛM , and let τ be an appropriate
topology. Then for any λ ∈ Λ′, the function uλ

: (0, ∞) → R is finite-valued, and for each
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x > 0, there exists an a.s.-unique optimal terminal wealth X̂ x,λ
T (the last element of the wealth

process X̂ x,λ
∈ X λ(x)) for the utility maximization problem (2.2). Moreover, the mappings

Λ′
× (0, ∞) 3 (λ, x) 7→ uλ(x) ∈ R, and

Λ′
× (0, ∞) 3 (λ, x) 7→ X̂ x,λ

T ∈ L0
+

are jointly continuous when Λ′ is equipped with τ , and L0 with the topology of convergence in
probability.

In the special case of complete markets, we have the following converse of Theorem 2.12.

Proposition 2.13. Let {λn
}n∈N0 be a sequence in ΛM such that each λn defines a complete

market, i.e., Mλn
= {Qλn

}. Suppose that uλn
(x) → uλ0

(x) and X̂ x,λn

T → X̂ x,λ0

T in probability,
for all x > 0. Then the sequence {λn

}n∈N is V -relatively compact, and λn
→ λ0 in an

appropriate topology.

2.9. On the conditions in the main Theorem 2.12

The purpose of this subsection is provide some intuition about the requirement of V -relative
compactness in connection with Theorem 2.12 and Proposition 2.13. We consider an investor
whose preferences are of the “power” type, i.e.,

U (x) =
1
γ

xγ , V (y) =
1
γ ′

y−γ ′

where γ ′
=

γ

1 − γ

for some γ ∈ (−∞, 1) \ {0}. For γ < 0, V +
≡ 0, so the V -relative compactness property holds

automatically. For γ ∈ (0, 1), however, this is not always the case.
Specializing further, let us assume that all the markets λ ∈ Λ′

⊆ Λ under consideration are
complete, and that the value functions in (2.2) are finite. Convex duality theory (also known as
the martingale method in the financial literature) relates the optimal terminal wealth X̂ x,λ

T = X̂λ
T

to the state-price-deflator Zλ
T via

(X̂λ
T )γ−1

= y Zλ
T , (2.6)

where the Lagrange multiplier y = y(x, λ) corresponding to the agent’s budget constraint is
uniquely determined by the equation x = E[Zλ

T X̂λ
T ], with X̂λ

T as given by (2.6). Indeed, solving
for X̂λ

T allows us to compute y explicitly:

y =

(
1
x

E
[
(Zλ

T )
γ

γ−1
])γ−1

. (2.7)

Eq. (2.6) implies that X̂λ
T varies continuously with λ, essentially if and only if the Lagrange

multiplier y = y(x, λ) does. This observation leads naturally to the concept of V -relative
compactness. More precisely, let {Zλn

T }n∈N0 , be a sequence of state-price-deflators with Zλn

T →

Zλ0

T in probability. The uniform integrability of the sequence {(Zλn

T )
γ

γ−1 }n∈N (which is, up to a

constant, equal to {V (Zλn

T )}n∈N) implies the convergence of E[(Zn)
γ

γ−1 ] to E[(Z0)
γ

γ−1 ]. Hence,
the Lagrange multipliers yn = y(x, λn) converge to y0 = y(x, λ0).

The following example illustrates that even when both the state-price-deflators Zλn

T and the
market-price-of-risk processes converge in L2, the lack of the V -relative compactness leads to a



K. Larsen, G. Žitković / Stochastic Processes and their Applications 117 (2007) 1642–1662 1651

serious breakdown in continuity. Even more important for applications is that fact that both the
value functions and the optimal terminal wealths do converge, but not to the value function or to
the optimal terminal wealth in the limiting market.

Example 2.14. Let F = Ft∈[0,1] be the augmented filtration generated by a single Brownian
motion B, and let { f n

}n∈N be the sequence of positive, F1-measurable random variables, given
by

f n(ω) ,


n if B1(ω) ≥ αn
1 if B1(ω) ∈ (βn, αn)

n−1 if B1(ω) ≤ βn

where the increasing sequence {αn}n∈N and the decreasing sequence {βn}n∈N are given implicitly
by Φ(αn) = 1 −

1
2 n−5 and Φ(βn) =

1
2 n−3, where Φ(·) denotes the distribution function of the

standard normal random variable. It follows by a direct computation that f n
→ 1 almost surely

and E[ f n
] → 1. By the Martingale Representation Theorem and since f n(ω) ∈ [n−1, n], it also

follows that there exist a sequence {λn
}n∈N of predictable processes in L2(P×Leb) (Leb denotes

the Lebesgue measure on [0, 1]), such that

dZλn

t = −Zλn

t λn
t dBt , t ∈ [0, 1], and Zλn

1 = cn f n, a.s.,

where cn = 1/E[ f n
], so that Zλn

0 = 1, for all n ∈ N. The financial market with the risky asset
Sλn

, where

dSλn

t = Sλn

t (λn
t dt + dBt ), t ∈ (0, 1], Sλn

0 = 1,

admits an equivalent martingale measure Qn with dQn

dP = Zλn

1 . By the Itô-isometry, we have

‖λn
‖

2
L2(P×Leb)

= E

[∫ 1

0

(
λn

u
)2 du

]
≤ E

[∫ 1

0

(
λn

u
)2 n2

(
Zλn

u

)2
du

]

= n2E

(∫ 1

0
λn

u Zλn

u dBu

)2
 = n2E

[(
Zλn

1 − 1
)2
]

= n2E[(cn f n
− 1)2

] = n2
{(ncn − 1)2(1 − Φ(αn))

+ (cn − 1)2(Φ(αn) − Φ(βn)) + (n−1cn − 1)2Φ(βn)} → 0,

by the construction of αn and βn , and thanks to the fact that cn → 1. Thus, λn
→ 0 in L2(P×Leb)

and Zλn

1 → 1 in L2(P) and in probability, showing that λn
→ λ0

≡ 0 appropriately (see
Definition 2.7 and Example 2.9).

The optimal terminal wealth X̂λn

1 , in the market with the risky asset Sλn
, and for an investor

with unit initial wealth and the power utility U3/4(x) =
4
3 x3/4, is given by the first order condition

U ′(X̂λn

1 ) = yn Zλn

1 , or equivalently

X̂λn

1 = y−4
n (Zλn

1 )−4,

where yn > 0 is the Lagrange multiplier determined by the budget-constraint

1 = EQ
n
[X̂λn

1 ] = y−4
n E[(cn f n)−3

].
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An explicit computation yields

y4
n = c−3

n {n−3(1 − Φ(αn)) + (Φ(αn) − Φ(βn)) + n3Φ(βn)} →
3
2
.

Since Zλn

1 → 1 in probability, the sequence X̂λn

1 converges in probability towards the constant
random variable with value 2

3 . On the other hand, the optimal strategy in the limiting market
(where the risky security evolves as dSt = St dBt ), is not to invest in the risky asset at all, making
X̂1 = 1 the optimal terminal wealth. It is clear now that no convergence of the optimal terminal
wealths can take place, even though the convergence λn

→ λ0
= 0 is appropriate, and even

in L2(P × Leb). One could obtain a number of similar counterexamples (oscillatory behavior,
convergence of the Lagrange multipliers to +∞ or to 0) by a different choice of parameters.

3. Proofs

The strategy behind the proof of our main Theorem 2.12 is to place the utility-maximization
problem (2.2) in an appropriate functional-analytic framework and to exploit the dual
representation of the value function uλ and the optimal terminal wealth X̂ x,λ

T . The steps of this
program are the content of this section and some of the techniques we apply are inspired by the
proof of Berge’s Maximum Theorem.

3.1. The dual approach to utility maximization

The results of [17] guarantee the existence and uniqueness of the optimal terminal wealth
in each market Sλ, λ ∈ ΛM , under mild regularity conditions. Moreover, building on the work
of [16] and others, the authors of [17] have established a strong duality relationship between
the primal utility-maximization problem (2.2) and a suitable dual problem posed over the set of
martingale measures Mλ, or its enlargement Yλ. It is this last formulation that is most suited to
our purposes. More precisely, with the dual value function vλ being defined by

vλ(y) = inf
Q∈Mλ

E
[

V
(

y
dQ
dP

)]
, (3.1)

the main result of [17] is the content in Theorem 3.1 below. We state it for the reader’s
convenience, since its content will be used extensively in the sequel.

Theorem 3.1 (Kramkov, Schachermayer, . . . ). Let λ ∈ ΛM be arbitrary, but fixed, and let uλ(·)

and vλ(·) be the value functions of the primal and the dual problems defined above in (2.2) and
(3.1). Then, if uλ(·) does not identically equal +∞, the following statements hold:

(a) Both uλ
: (0, ∞) → R and vλ

: (0, ∞) → R are finite-valued and continuously
differentiable. Furthermore, uλ is strictly concave and increasing, vλ is strictly convex and
decreasing, and the following conjugacy relation holds between them

vλ(y) = sup
x>0

(
uλ(x) − xy

)
, ∀y > 0.

(b) Alternatively, the dual value function is given as

vλ(y) = inf
Y∈Yλ

E[V (yYT )], (3.2)
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where the enlarged domain Yλ is the set of all non-negative càdlàg supermartingales Y with
Y0 = 1 such that XY is a supermartingale for each X ∈ X λ(1). The infimum in (3.2) is
uniquely attained in Yλ (with the minimizer denoted by Ŷ y,λ).

(c) For x > 0 and y = (uλ)′(x), the random variable X̂ x,λ
T = −V ′(yŶ y,λ

T ), belongs to X λ(x),
and is the a.s.-unique optimal terminal wealth for an agent with initial wealth x and utility
function U.

3.2. Structure of the dual domain

Some of the central arguments in the proof of our main result 2.12 depend on a precise
characterization of the set Yλ introduced in (b) above. Thanks to the continuity of the paths
of our price process Sλ, this can be achieved in a quite explicit manner, as described in the
following proposition.

Proposition 3.2. For λ ∈ ΛM , let Y be in Yλ, i.e., Y is a non-negative càdlàg supermartingale
such that Y0 = 1, and Y X is a supermartingale for each X ∈ X λ(1). When YT > 0 a.s., we have
the following multiplicative decomposition:

Y = ZλE(L)D,

where Zλ
= E(−λ · M), L is a càdlàg local martingale, strongly orthogonal to M, meaning

〈M, L〉 ≡ 0, and D is a predictable, non-increasing, càdlàg process with D0 = 1, DT > 0, a.s.

Proof. For the sake of notational clarity, we omit the superscript λ from all expressions in the
present proof. Since Y is strictly positive, Y has a multiplicative Doob–Meyer decomposition:

Yt = E(−α · M + L)t Dt

for some α ∈ L(M), a local martingale L satisfying 〈L , M〉 ≡ 0, and a predictable, cádlág,
non-increasing process D (see Theorem 8.21, p. 138 in [15]). Thanks to the strong orthogonality
of L and M , the relationship E(−α · M + L) = E(−α · M)E(L) holds. Therefore, it remains to
show that α = λ almost everywhere with respect to the measure µM defined in (2.3).

By the strict positivity of the process D, we can write dDt = Dt−dFt for a non-increasing
predictable process F . Using Theorem 2.1 in [6], F can be split into an integral with respect to
d〈M〉 (the absolute continuous part) and a singular part F ′. More precisely, there exists a µM -null
set A with F ′

=
∫

·

0 1A(u)dF ′
u , and a non-negative predictable process β such that

Ft = −

∫ t

0
βu d〈M〉u + F ′

t , t ∈ [0, T ].

With this notation, we have dDt = −Dt−βt d〈M〉t + Dt−dF ′
t , and by Itô’s Lemma and the

predictability of F we get

dYt = Yt−(−αt dMt + dL t − βt d〈M〉t + dF ′
t ), t ∈ (0, T ], Y0 = 1.

Therefore for any admissible portfolio wealth process X ∈ X λ(1) generated by a portfolio H ,
we have

d(Yt X t ) = Yt− Ht (λt d〈M〉t + dMt ) + X t Yt−(−αt dMt + dL t − βt d〈M〉t + dF ′
t )

− Yt−αt Ht d〈M〉t
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and given the supermartingale property, the drift in the above has to be non-positive, meaning
that for any H we have the inequality

(Ht (λt − αt ) − βt X t )d〈M〉t + X t dF ′
t ≤ 0,

in the sense that the measure the left-hand-side generates on the predictable sets is non-positive.
Moreover, by the singularity between µM and dF ′, the following must hold µM -a.e.

Ht (λt − αt ) ≤ βt X t

for all admissible H . Suppose now, contrary to the claim we are trying to prove, that µM (λ 6=

α) > 0. Without loss of generality, we assume that this implies that there exists a predictable set
A1 ⊆ [0, T ] × Ω with the property that
1. λ − α ≥ ε on A1 for some ε > 0, and
2. µM (A1) > 0.

Since β and λ are finite-valued predictable process and β is non-negative, we can find a
constant Σ > 0 and a predictable set A2 such that β, |λ| ∈ [0,Σ ] on A2 and µM (A) > 0, where
A = A1 ∩ A2.

For n ∈ N, let H̃n be the predictable process given by H̃ = n1A, and let τn be the first
exit time of the process 1 + H̃n

· S from the semi-axis (0, ∞). Define the adjusted predictable
process Hn by Hn

= H̃n1[0,τn ], so that µM ({Hn > 0}) > 0. For each n, Hn is predictable and
Xn , 1 + (Hn

· S) is in X (1), and so by the above we have

ε/Σ ≤ Xnβt/Σ ≤ Xn
= (1 + n1A · S)τn , µM -a.e. on A. (3.3)

Observe that one of the conclusions of (3.3) is that the stopping time τn will not be realized on
A (because the process 1 + n1A · S is continuous). Also, as the process 1A · S is constant off A,
we have the following strengthening of (3.3):

ε/Σ ≤ 1 + n1A · S, µM -a.e. (3.4)

Define the non-decreasing continuous process C by Ct =
∫ t

0 1A(u)d〈M〉u , and note that
µM (A) > 0 implies that P[CT > 0] > 0. Therefore, the right inverse G of C , given by
Gs = inf{t ≥ 0 : Ct > s}, where inf ∅ = +∞, is a right-continuous, non-decreasing [0, ∞]-
valued stochastic process, such that Gs < ∞ on the (non-trivial) stochastic interval [0, CT ).
Define the process V by

Vs =

{
SGs − S0, when Gs < ∞, and
ST − S0 + B̃s−CT otherwise,

where B̃ is a Brownian motion, defined on an extension of the probability space (Ω ,F, P) and
independent of FT . An application of Lévy’s criterion shows that V is a Brownian motion with
drift λGs 1{Gs<∞}. Letting n → ∞ in (3.4) yields that Vs ≥ 0 for s ∈ [0, CT ). On the other hand,
as λ ≤ Σ on A, V is bounded from above by a Brownian motion with a constant drift C . This is,
however, a contradiction, as almost every trajectory of a Brownian motion with a constant drift
enters the negative semi-axis (−∞, 0), in every neighborhood of 0. �

Corollary 3.3. For λ ∈ ΛM , vλ is the value function of the dual optimization problem defined
by (3.1). For each y > 0, such that vλ(y) < ∞, there exists a local martingale L y,λ, strongly
orthogonal to M, such that

vλ(y) = E
[
V
(
y Zλ

T E(L y,λ)
)]

.
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Proof. Theorem 3.1(c) implies that the infimum in the definition of the dual value function
vλ is attained at a terminal value YT of a supermartingale Y with the property that Y X is a
supermartingale for each X ∈ X λ(1). Proposition 3.2 states that each such supermartingale can
be written

Y = ZλE(L)D, with 〈L , M〉 ≡ 0.

Thanks to the strictly decreasing nature of the function V , we must have D ≡ 1. Indeed, ZλE(L)

dominates ZλE(L)D pointwise, and belongs to Yλ. �

LetB denote the set of all local martingales L , strongly orthogonal to M , such that the terminal
value E(L)T of the stochastic exponential E(L) is bounded from below by a positive constant.

Corollary 3.4. Let λ ∈ ΛM , and suppose that E[V +(Zλ
T )] < ∞. Then for each y > 0, we have

the representation

vλ(y) = inf
L∈B

E
[
V
(
y Zλ

T E(L)T
)]

. (3.5)

Proof. The fact that the infimum on the right-hand side of (3.5) is bounded from below by
the value function vλ(y) follows directly from Theorem 3.1 and Proposition 3.2. For the other
inequality, let L y,λ be the local martingale from the statement of Corollary 3.3. If E(L y,λ)T
happened to be bounded from below by a strictly positive constant, there would be nothing else
left to prove. However, E(L y,λ)T is, in general, not bounded away from zero, so we employ
a limiting argument via a suitably defined sequence Ln

∈ B. For n ∈ N, let Y n be the
supermartingale in Yλ given by

Y n
= Zλ

(
n − 1

n
E(L y,λ) +

1
n

)
.

The process Y n is a positive local martingale with the property that Y n X is a supermartingale
for each X ∈ X λ(1). Therefore, the proposition allows us to write Y n

= ZλE(Ln)Dn , and since
Dn

≤ 1 we have E(Ln) ≥
1
n and so E(Ln) ∈ B. Furthermore, since V is decreasing and convex,

we have

E
[
V
(
y Zλ

T E(Ln)T
)]

≤ E
[
V
(
yY n

T
)]

≤
n − 1

n
E
[
V
(
y Zλ

T E(L y,λ)T
)]

+
1
n

E
[
V
(
y Zλ

T
)]

≤
n − 1

n
vλ(y) +

1
n

E
[
V +

(
y Zλ

T
)]

≤
n − 1

n
vλ(y) +

1
n

(
C E

[
V +

(
Zλ

T
)]

+ D
)

for two constants C and D granted by the asymptotic elasticity of U (see Proposition 6.3(iii)
of [17]). Taking the lim inf with respect to n on both sides yields the desired inequality. �

3.3. Joint continuity of the value functions

The following lemmas establish a joint continuity property for the primal and dual value
functions and their derivatives. Before we proceed, let us agree that in the sequel Λ′

⊆ ΛM is
V -relatively compact, and that τ is an appropriate topology. By the inequality

U (XT ) ≤ V
(
Zλ

T
)
+ XT Zλ

T ,
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and the supermartingale property of the process X Zλ when X ∈ X λ(x), it follows that
uλ(x) ≤ E[V (Zλ

T )] + x < ∞, for all x > 0 and λ ∈ Λ′. Therefore, the assumptions of the
Theorem 3.1 are satisfied, and its conclusions hold.

Lemma 3.5. Let Y be a random variable, bounded from below by a strictly positive constant,
such that supλ∈Λ′ E[Zλ

T Y ] < ∞. Then the mapping (y, λ) 7→ V (y Zλ
T Y ) is continuous

from (0, ∞) × Λ′ (with the product topology) into L1. In particular, the mapping (y, λ) 7→

E[V (y Zλ
T Y )] is continuous.

Proof. Given that V is a continuous function, the mapping (y, λ) 7→ V (y Zλ
T Y ) is continuous

in probability because (y, λ) 7→ y Zλ
T is. It will, therefore, be enough to establish the uniform

integrability of the family{
V
(
yY Zλ

T
)

: y ∈ B, λ ∈ Λ′
}
,

when B is a compact segment of the form [ε, 1/ε], 0 < ε < 1. The boundedness in L1 of the
family {yY Zλ

T : y ∈ B, λ ∈ Λ′
} and the fact that limy→∞

V −(y)
y = 0, coupled with the De

la Vallée Poussin criterion, imply that the family {V −(yY Zλ
T ) : y ∈ B, λ ∈ Λ′

} is uniformly
integrable. As for the positive parts, it will be enough to note that V +(yY Zλ

T ) ≤ V +(y0 Zλ
T ),

where y0 = ε essinf Y > 0, and invoke the argument concluding the proof of Corollary 3.4 to
reach the conclusion that the positive parts{

V +
(
yY Zλ

T
)

: y ∈ B, λ ∈ Λ′
}

form a uniformly integrable family as well. �

Lemma 3.6. The function

(y, λ) 7→ vλ(y),

mapping (0, ∞) × Λ′ into R is upper semi-continuous (with respect to the product topology).

Proof. By Corollary 3.4, the dual value function vλ has the following representation

vλ(y) = inf
Y

E
[
V
(
yY Zλ

T
)]

,

where the infimum is taken over Y of the form Y = E(L), where L ∈ B, i.e., E(L) is
bounded away from zero. For a such a random variable Y , by Lemma 3.5, the mapping
(y, λ) 7→ E[V (yY Zλ

T )] is continuous. Therefore, (y, λ) 7→ vλ(y) is τ -upper semi-continuous as
an infimum of continuous mappings. �

Lemma 3.7. The mapping (y, λ) 7→ vλ(y) is continuous on (0, ∞) × Λ′ (with respect to the
product topology).

Proof. Thanks to the result of Lemma 3.6, it is enough to show that (y, λ) 7→ vλ(y) is lower
semi-continuous. Let {yn, λn

}n∈N in (0, ∞) × Λ′ converge to (y, λ) ∈ (0, ∞) × Λ′. We need to
prove that vλ(y) ≤ lim inf vλn

(yn). By passing to a subsequence that realizes the liminf, we can
assume that the sequence {vλn

(yn)}n∈N converges and, furthermore, by passing to yet another
subsequence, we may assume that Zλn

T → Zλ
T almost surely.

Corollary 3.3 states that vλn
(yn) = E[V (yn Ŷ yn ,λn

T )], where the optimizer Ŷ yn ,λn

T can be written
as Ŷ yn ,λn

T = Zλn

T E(Ln)T , for some local martingale Ln
= L yn ,λn

that is strongly orthogonal to M .
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Komlos’ lemma grants the existence of an almost surely convergent subsequence of the sequence
of the Cesàro sums of the sequence {yn Zλn

T E(Ln)T }n∈N. This, of course, implies that there exist a
double array {αn

k } with n ∈ N, k ∈ {n, . . . , K (n)} for some K (n) ∈ N, of non-negative weights,
and a random variable h ∈ L0

+ such that

K (n)∑
k=n

αn
k = 1, for all n, and hn =

K (n)∑
k=n

αn
k yk Zλk

T E(Lk)T → h, a.s.

Since also yn Zλn

T → y Zλ
T a.s., we have (see Lemma 3.8 below)

fn =

K (n)∑
k=n

αn
k E(Lk)T →

h
y Z

, a.s.

The random variables fn are all in Y0
= Yλ≡0, which is closed with respect to convergence

in probability, thanks to Lemma 4.1., p. 926 in [17]. Therefore, the limit of fn will also be in
Y0, and, consequently, h

y = Z h
y Z ∈ Yλ. By Fatou’s Lemma (and keeping in mind the uniform

integrability of the family of negative parts {V −(Y ) : Y ∈ L0
+, E[Y ] ≤ c} for any c > 0), we

have

vλ(y) ≤ E[V (h)] = E[V (lim inf
n

hn)] ≤ lim inf
n

E

[
V

(
K (n)∑
k=n

αn
k yk Zλk

T E(Lk)T

)]

≤ lim inf
n

K (n)∑
k=n

αn
k E
[
V
(

yk Ŷ yk ,λ
k

T

)]
= lim inf

n

K (n)∑
k=n

αn
k vλk

(yk) = lim
n

vλn
(yn). �

Lemma 3.8. Let {an}n∈N be a sequence of positive numbers converging to a > 0, and let {bn
k },

n ∈ N, k ≥ n be a double array of positive numbers.

If lim
n

∞∑
k=n

akbn
k = c > 0, then lim

n

∞∑
k=n

bn
k = c/a.

Proof. Let ε > 0 be arbitrary. We can find N (ε) ∈ N such that (1 + ε) ≥ ak/a ≥ (1 − ε) for all
k ≥ N (ε). Therefore, for n ≥ N (ε), we have

1
a(1 + ε)

∞∑
k=n

akbn
k ≤

∞∑
k=n

bn
k ≤

1
a(1 − ε)

∞∑
k=n

akbn
k

and hence, letting n → ∞ and ε → 0 yields the desired conclusion. �

Proposition 3.9. The following mappings are continuous on (0, ∞) × Λ′:

(y, λ) 7→ vλ(y), (y, λ) 7→ (vλ)′(y), (x, λ) 7→ uλ(x), (x, λ) 7→ (uλ)′(x).

Proof. Let {λn
}n∈N be a sequence in Λ′ converging appropriately to λ ∈ Λ′. Thanks to the result

of Lemma 3.7 and the convexity of the dual value functions, Theorem 25.7 in [24] states that the
derivatives (vλn

)′(·) converge towards (vλ)′(·), and uniformly on compact intervals in (0, ∞).
The uniform convergence on compact intervals also holds for the original sequence of functions
vλn

(·).
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To proceed, pick x > 0 and ε > 0, and define y(ε) , (uλ)′(x) + ε. The strict increase of
(vλ)′(·) implies that

lim
n

(vλn
)′(y(ε)) = (vλ)′(y(ε)) = (vλ)′((uλ)′(x) + ε) > (vλ)′((uλ)′(x)) = −x,

where the last inequality follows directly from continuous differentiability and conjugacy of
uλ and vλ. Consequently, for large n, we have −(vλn

)′(y(ε)) < x . Since (uλn
)′(·) is strictly

decreasing for each n ∈ N, we get

(uλ)′(x) + ε = y(ε) = (uλn
)′
(
−(vλn

)′(y(ε))
)

> (uλn
)′(x),

for large n, implying that lim supn(uλn
)′(x) ≤ (uλ)′(x). The other inequality, namely

lim infn(uλn
)′(x) ≥ (uλ)′(x), can be proved similarly. By the results obtained so far, we have

uλn
(x) = vλn

(
(uλn

)′(x)
)

+ x (uλn
)′(x) → vλ

(
(uλ)′(x)

)
+ x (uλ)′(x) = uλ(x).

Finally, the joint continuity of value functions and their derivatives on Λ′
× (0, ∞) is a

consequence of the already mentioned uniform convergence from Theorem 25.7 in [24]. �

3.4. Continuity of the optimal terminal wealths

Lemma 3.10. Let Λ′
⊆ ΛM be V -relatively compact, and let τ be an appropriate topology on

Λ′. The function

(x, λ) 7→ X̂ x,λ
T ,

where X̂ x,λ
T is the unique optimal terminal wealth in the market Sλ, is continuous from

(0, ∞) × Λ′ to L0 (equipped with the topology of convergence in probability).

Proof. By Theorem 3.1, the optimal terminal wealth admits a representation with y = (uλ)′(x),

U ′

(
X̂ x,λ

T

)
= yŶ y,λ

T

where Ŷ y,λ
T attains the minimum in the dual problem (3.2). Thanks to the continuity of the

mappings (x, λ) 7→ (uλ)′(x) and x → U (x), it suffices to show that (y, λ) 7→ yŶ y,λ
T is

continuous in probability. Since the topology τ is assumed to be metrizable, it is enough to
show that convergence of any sequence (yn, λn) ∈ (0, ∞) × Λ′ to (y, λ) ∈ (0, ∞) × Λ′ implies
the convergence of yn Ŷ yn ,λn

T → yŶ y,λ
T in probability. By Proposition 3.2, each Ŷ yn ,λn

T can be
expressed as the product

Ŷ yn ,λn

T = Zn Hn, where Zn
= Zλn

T and Hn
= E(L yn ,λn

)T ,

for some local martingale L yn ,λn
, strongly orthogonal to M . In the same way, we will write

Ŷ y,λ
T = Z H , with analogous definitions for Z and H .

We start our analysis by noting that for any δ > 0, with H δ
= (1 − δ)H + δ, we have by

Markov’s inequality

P[yn Zn
|Hn

− H | > 2ε] ≤ P[yn Zn
|Hn

− H δ
| > ε] + P[yn Znδ|1 − H | > ε]

≤ P[yn Zn
|Hn

− H δ
| > ε] +

δ

ε
E[yn Zn

|1 − H |]

≤ P[yn Zn
|Hn

− H δ
| > ε] +

2ynδ

ε
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since E[Zn
|1 − H |] ≤ E[Zn

] + E[Zn H ] ≤ 2. We then pick a constant N > 0, and by the strict
concavity of V we can find a positive constant β = β(ε, N ) with the property that

V
(

a + b
2

)
<

V (a) + V (b)

2
− β

if a and b are positive numbers with |a − b| > ε and (a + b) ≤ N . This property, combined with
the convexity of V , leads to the following estimate

E
[

V
(

yn Zn Hn
+ H δ

2

)]
−

1
2

(
E[V (yn Zn Hn)] + E[V (yn Zn H δ)]

)
≤ −βP[yn Zn

|Hn
− H δ

| > ε, yn Zn(Hn
+ H δ) < N ]. (3.6)

The convex combination 1
2 Zn(Hn

+ H δ) belongs to the dual domain Yλn
, and so the following

inequality for the first term on the left-hand side of (3.6) holds:

E
[
V
(
yn Zn Hn)]

= vλn
(yn) ≤ E

[
V
(

yn Zn Hn
+ H δ

2

)]
.

Combining this estimate with (3.6) gives

βP[yn Zn
|Hn

− H δ
| > ε, yn Zn(Hn

+ H δ) < N ] ≤
1
2

(
E[V (yn Zn H δ)] − vλn

(yn)
)

which combined with Markov’s inequality grants the inequality

βP[yn Zn
|Hn

− H δ
| > ε] ≤

1
N

βE[yn Zn
|Hn

+ H δ
|] +

1
2

(
E[V (yn Zn H δ)] − vλn

(yn)
)

≤ 2β
yn

N
+

1
2

(
E[V (yn Zn H δ)] − vλn

(yn)
)

.

We therefore have the overall estimate

P[yn Zn
|Hn

− H | > 2ε] ≤
2ynδ

ε
+ 2

yn

N
+

1
2β

(
E[V (yn Zn H δ)] − vλn

(yn)
)

.

By Lemma 3.5, the third term in on the right-hand side converges to E[V (y Z H δ)], whereas the
fourth term converges to vλ(y), thanks to Proposition 3.9, and so the limit, as n → ∞, of those
two terms can be bounded from above by

E[V (y Z H δ)] − E[V (y Z H)] ≤ δK , where K = E[V (y Z)] − E[V (y Z H)],

by a straightforward use of V ’s convexity. To recapitulate, we have

lim sup
n→∞

P[yn Zn
|Hn

− H | > 2ε] ≤
2yδ

ε
+ 2

y
N

+ K
δ

2β
. (3.7)

Letting first δ → 0, and then N → ∞ in (3.7) shows that

lim
n→∞

P[yn Zn
|Hn

− H | > ε] = 0, ∀ε > 0,

meaning yn Zn Hn
− yn Zn H → 0 in probability, and since also yn Zn

→ y Z in probability, the
result follows. �
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3.5. Proof of Proposition 2.13

Convergence of the value functions uλn
towards uλ0

implies the convergence of the derivatives
(uλn

)′ (towards (uλ0
)′) (see Theorem 25.7 in [24]). Following the ideas from the proof of

Proposition 3.9, we can conclude that vλn
→ vλ0

and (vλn
)′ → (vλ0

)′. Since X̂ x,λn

T =

−V ′((uλn
)′(x)Zλn

T ), n ∈ N0, and U ′
= (−V ′)−1 is a continuous function, the sequence Zλn

T

converges towards Zλ0

T in probability, implying that the convergence λn
→ λ0 is appropriate.

By the definition of the dual value functions, we have vλn
(y) = E[V (y Zλn

T )]. The family
{V −(y Zλn

T ) : λ ∈ Λ} is uniformly integrable, and hence E[V +(y Zλn

T )] → E[V +(y Zλ0

T )] for
every y > 0. This observation, and the fact that V +(y Zλn

T ) → V +(y Zλ0

T ) in probability, can
be fed into Scheffe’s Lemma to conclude that {V (y Zλn

T ) : n ∈ N0} is a uniformly integrable
sequence. Setting y = 1 completes the proof.
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Appendix A

Proposition A.1. Suppose that λn
→ λ0 in L2(µM ), for some sequence {λn

}n∈N0 in L2(µM ).
Then Zλn

T → Zλ0
T in probability.

Proof. The Itô-isometry implies that
∫ T

0 λn
u dMu →

∫ T
0 λ0

u dMu in L2(P), and, hence also in
probability. Thanks to the continuity of the exponential function, it will be enough to show that∫ T

0
(λn

u)2 d〈M〉u →

∫ T

0
(λ0

u)2 d〈M〉u in probability. (A.1)

Let us recall a well-known characterization of convergence in probability which states that a
sequence {Xn

}n∈N of random variables converges towards a random variable X0 in probability
if and only if, for any subsequence {Xnk }k∈N of {Xn

}n∈N, there exists a further subsequence
{Xnkl }l∈N which converges to X0 almost surely. With this in mind, let

∫ T
0 (λ

nk
u )2 d〈M〉u be

an arbitrary subsequence of
∫ T

0 (λn
u)2 d〈M〉u . Since λnk → λ0 in L2(µM ), we can extract

a subsequence of {λnk }k which converges µM -almost everywhere to λ0. We denote this
subsequence by {λnk }k , as well. By Fatou’s lemma (applied to the d〈M〉-integrals), we have

lim inf
k→∞

∫ T

0
(λnk

u )2 d〈M〉u ≥

∫ T

0
(λ0

u)2 d〈M〉u . (A.2)

Another application of Fatou’s lemma (this time with respect to the probability P), and the fact
that ‖λnk ‖

2
L2(µM )

→ ‖λ0
‖

2
L2(µM )

, imply that
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E
[∫ T

0
(λ0

u)2 d〈M〉u

]
= lim

k→∞
E
[∫ T

0
(λnk

u )2 d〈M〉u

]
≥ E

[
lim inf
k→∞

∫ T

0
(λnk

u )2 d〈M〉u

]
≥ E

[∫ T

0
(λ0

u)2 d〈M〉u

]
which shows that we have equality in (A.2), P-almost surely. To extract an a.s.-convergent
subsequence from

∫ T
0 (λ

nk
u )2 d〈M〉u – and finish the proof – all we need to do is apply the result

of Lemma A.2 below. �

Lemma A.2. Any sequence { f k
}k∈N ⊆ L1(P) of non-negative random variables which satisfies

the two properties

lim
n→∞

E[ f k
] = E[ f 0

], lim inf
k→∞

f k
= f 0 P-a.s. (A.3)

for some f 0
∈ L1(P), has a subsequence { f kl }l∈N converging almost surely to f 0.

Proof. From (A.3) and Lebesgue’s theorem of monotone convergence, we have

lim
k→∞

E
[

inf
m≥k

f m
]

= E[ f 0
] = lim

k→∞
E[ f k

]

which means that f k
− infm≥k f m

→ 0 in L1. We can, therefore, extract a subsequence
{ f kl }l∈N of { f k

}k∈N such that f kl − infm≥l f km converges to 0 P-a.s. Thanks to the monotonicity
of infm≥k f m , the sequence f kl must itself converge P-a.s. towards limk→∞ infm≥k f m

=

lim infk f k
= f 0. �
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[4] L. Carasus, M. Rásonyi, Optimal strategies and utility-based prices converge when agents’ preferences do, 2005
(preprint).

[5] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (3)
(1994) 463–520.

[6] F. Delbaen, W. Schachermayer, The existence of absolutely continuous local martingale measures, Ann. Appl.
Probab. 5 (4) (1995) 926–945.

[7] F. Delbaen, W. Schachermayer, A simple counterexample to several problems in the theory of asset pricing, Math.
Finance 8 (1) (1998) 1–11.
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