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Abstract

Motivated by a problem in the design of optical networks, we ask when a graph has a spanning spider (subdivision of
a star), or, more generally, a spanning tree with a bounded number of branch vertices. We investigate the existence of
these spanning subgraphs in analogy to classical studies of Hamiltonicity.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The existence of a Hamilton path in a given graph G is a much studied problem. It is known that deciding if such a
path exists is an NP-complete problem, even for cubic graphs G [12]. On the other hand, if the graph G satis=es any of
a number of density conditions, a Hamilton path is guaranteed to exist. The best known of these density conditions, due
to Dirac [6], requires each vertex of G to have a degree of at least n=2, where n is the number of vertices in G. Other
conditions relax the degree constraint somewhat, while requiring at the same time that K1;3 (or sometimes K1;4) is not an
induced subgraph of G. Excluding these subgraphs has the e@ect of forcing each neighborhood of a vertex to have many
edges, allowing us to guarantee the existence of a Hamilton path with a somewhat weaker degree condition.

There are several natural optimization versions of the Hamilton path problem. For instance, one may want to minimize
the number of leaves [16], or minimize the maximum degree in a spanning tree of G [1,13,15,21]; either of these numbers
is equal to two if and only if G has a Hamilton path. The best known optimization problem of this sort is the longest
path problem [2,7,14] (G has a Hamilton path if and only if the longest path has n vertices). It is known that, unless
P = NP, there is no polynomial time constant ratio approximation algorithm for the longest path problem, even when
restricted to cubic graphs which have a Hamilton path, cf. [2,7] where a number of other nonapproximability results
are also discussed. In this paper, we introduce another possible optimization problem—minimizing the number of branch
vertices in a spanning tree of G.
A branch vertex of G is a vertex of degree greater than two. If G is a connected graph, we let s(G) denote the smallest

number of branch vertices in any spanning tree of G. Since a spanning tree without branch vertices is a Hamilton path
of G, we have s(G) = 0 if and only if G admits a Hamilton path. A tree with at most one branch vertex will be called
a spider. Note that a spider may in fact be a path, i.e., have no branch vertices. Thus a graph G with s(G)6 1 admits
a spanning subgraph that is a spider; we will say that G admits a spanning spider. There is an interesting intermediate
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possibility: We will call a graph G arachnoid, if it admits a spanning spider centered at each vertex of G. (A spider with
a branch vertex is said to be centered at the branch vertex; a spider without branch vertices, i.e., a path, is viewed as
centered at any vertex.) It follows from these de=nitions that the set of arachnoid graphs contains the set of graphs G
with s(G) = 0, and is contained in the set of graphs G with s(G)6 1.
Our interest in the problem of minimizing the number of branch vertices arose from a problem in optical networks.

The wave division multiplexing technology of optical communication supports the propagation of multiple laser beams
through a single optical =ber, as long as each beam has a di@erent wavelength. A lightpath connects two nodes of the
network by a sequence of =ber links, with a =xed wavelength. Thus two lightpaths using the same link must use di@erent
wavelengths. This situation gives rise to many interesting combinatorial problems, cf. [3,10].

We consider a di@erent situation, resulting from a new technology allowing a switch to replicate the signal by splitting
light. A light-tree connects one node to a set of other nodes in the network—allowing multicast communication from
the source to a set of destinations (including the possibility of the set of destinations consisting of all other nodes). The
switches which correspond to the nodes of degree greater than two have to be able to split light (except for the source
of the multicast, which can transmit to any number of neighbors). Typical optical networks will have a limited number
of these more sophisticated switches, and one has to position them in such a way that all possible multicasts can be
performed. Thus we are lead to the problem of =nding spanning trees with as few branch vertices as possible.

Speci=cally, let G be the graph whose vertices are the switches of the network, and whose edges are the =ber links.
With s(G) light-splitting switches, placed at the branch vertices of an optimal spanning tree, we can perform all possible
multicasts. In particular, if s(G) = 1, i.e., if G has a spanning spider, we can do with just one special switch. If G
is an arachnoid graph, no switches are needed. (Recall that the source of the multicast can transmit to any number of
neighbors.) If s(G)¿ 0, the minimum number of light-splitting switches needed for all possible multicasts in G, is in fact
equal to s(G). Indeed, if k vertices of G are allowed to be light-splitting switches, then multicasting from one of these
vertices results in a spanning tree of G with at most k branch vertices, thus k¿ s(G).
In this paper, we investigate the parameter s(G), with emphasis on graphs which admit a spanning spider, or which are

arachnoid, in analogy with the study of graphs which admit a Hamilton path. We show that the recognition problems are
all NP-complete, and that s(G) is even hard to approximate. We explore several density conditions, similar to those for
Hamilton paths, which are suMcient to give interesting upper bounds on s(G). Finally, we also relate the parameter s(G)
to other well studied graph parameters, such as connectivity, independence number, and the length of a longest path.

In dealing with branch vertices of spanning trees, it is helpful to observe that a cut vertex v of a graph G such that
G − v has at least three components must be a branch vertex of any spanning tree of G. We will use this observation
throughout our arguments.

Let G = (V; E) be a graph on n vertices. (We shall reserve n to denote the number of vertices of G, and to avoid
trivialities we shall always assume that n¿ 3.) For a vertex v∈V we let d(v) denote the degree of v in G. More
generally, for a subset X ⊆ V we denote by dX (v) the number of vertices of X that are adjacent to v in G. We write
(G) = minv∈V d(v), to denote the minimum degree in G, and denote by k(G) the minimum sum of the degrees of k
independent vertices in G.

The neighborhood of a vertex x in G is denoted by N (x). For a subset X ⊆ V , the neighborhood of v∈V with respect
to X is de=ned as

NX (v) = {u∈X | uv∈E}:

For sake of simplicity, whenever it is clear from the context, we will identify the vertex set of a subgraph H of G
with H itself. Hence, we will use |H | to denote the number of vertices in the graph and dH (v) and NH (v) will represent,
respectively, the degree and the neighborhood of v with respect to the vertex set of H .

2. Complexity results

In this section, we observe that all of the problems we introduced are NP-complete. We start with graphs admitting a
spanning spider, i.e., graphs G with s(G)6 1.

Proposition 1. It is NP-complete to decide whether a given graph G admits a spanning spider.

Proof. Suppose G is a given graph, and v a given vertex of G. Construct a new graph G′ which consists of three copies
of G and one additional vertex adjacent to the vertex v of all three copies of G. It is then easy to see that G′ has a
spanning spider (necessarily centered at the additional vertex), if and only if G admits a Hamilton path starting at v.
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Recall that it is NP-complete to decide whether, given a graph G and a vertex v, there exists a Hamilton path in G which
starts at v [12].

The problem of recognizing arachnoid graphs is also intractable:

Proposition 2. It is NP-complete to decide whether a given graph G is arachnoid.

Proof. Suppose G is a given graph, and v a given vertex of G. Construct a new graph G′ by including a new vertex
w in G and adding an edge between v and w. The graph G′ is arachnoid if and only if G has a Hamilton path starting
from v.

We close this section by showing that even approximating s(G) seems to be an intractable problem. (More results on
nonapproximability can be obtained by the same technique from other results of [2].)

Proposition 3. Let k = O(n1−�), for � 8xed and 0¡�¡ 1. There is no polynomial time algorithm to check whether
s(G)6 k, unless P = NP.

Proof. Let again G be a given graph, and v a given vertex of G. This time we construct a graph G′ from k disjoint
copies of G and an additional vertex v′ by making the vertex v of every copy of G adjacent to v′. If G admits a Hamilton
path starting at v, then G′ contains a spanning tree with one branch vertex, centered at v′. On the other hand, if no such
Hamilton path exists within G then s(G′)¿ k+1, since every spanning tree of G′ must contain at least one branch vertex
for every copy of G.

Note that the result is easily adapted to c-connected graphs, for =xed c. Even among cubic graphs approximation is
intractable:

Proposition 4. Let k be any 8xed positive integer. If P �= NP, then there is no polynomial time algorithm to check
whether s(G)6 k, even among cubic graphs with s(G) = 0.

Proof. This will follow from [2], and the following observation. Let ‘(G) denote the maximum length of a path in G.
(Thus ‘(G) = n if and only if G admits a Hamilton path.) We claim that in any cubic graph G

‘(G)¿
n

s(G) + 1
: (1)

Consider a spanning tree T of G with s(G) branch vertices. Noticing that each branch vertex of T has degree 3, we
partition the vertices of T into a set of s(G) + 1 paths as follows: Consider any path in T connecting two leaves and
containing exactly one branch vertex; add this path to the partition. Continue recursively on the tree obtained from T by
removing all the vertices of the above path (the new tree has one less branch vertex), until all the branch vertices are
removed (that is, the last tree is a path).

Hence, the number of paths so constructed is s(G) + 1. Since the set constructed is a partition of G, there will be at
least one path of length n=s(G) + 1.

It is shown in [2] that there is no polynomial time algorithm guaranteed to test whether or not ‘(G)¿ n=k, even among
cubic graphs G with ‘(G) = n, hence the proposition follows.

3. A density result

In this section we begin to study density criteria which assure that G has a small value of s(G). Recall that s(G)=0 if
and only if G admits a Hamilton path. Therefore, a classical result of Dirac (or, more generally, of Ore) can be formulated
as follows:

Theorem 1 (Dirac [6], Ore [20]). If (G)¿ (n − 1)=2 (or, more generally, if 2(G)¿ n − 1), then s(G) = 0.

We believe the following generalization of Dirac’s (and Ore’s) theorem may hold:

Conjecture 1. Let G be a connected graph and k a nonnegative integer.
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If (G)¿ (n − 1)=(k + 2) (or, more generally, if k+2(G)¿ n − 1), then s(G)6 k.

While we cannot at this stage prove the general conjecture, we have a proof for the case k = 1: (For more results of
this type, restricted to bipartite graphs, we refer the reader to [8].)

Theorem 2. Let G be a connected graph. If (G)¿ (n − 1)=3 (or, more generally, if 3(G)¿ n − 1), then G contains
a spanning spider.

Furthermore, there is an O(n3) time algorithm that 8nds a spanning spider in G.

In order to construct a spanning spider we =rst =nd a suitable long path in the graph. This path will then be turned
into a spider that, in the last step, can be extended to span the whole graph. Before we can describe the paths we are
looking for, we present some de=nitions.

Let P = [v0v1 : : : vt] denote a path in G. The left neighborhood of x ∈V on P is the set

N−
P (x) = {vi | vi+1x ∈E}:

The right neighborhood of x ∈V on P is de=ned analogously as

N+
P (x) = {vi | vi−1x ∈E}:

When the underlying path is evident from the context we write N−(x) and N+(x) for the left and right neighborhoods,
respectively.

Any left neighbor vi ∈N−(v0) of v0 is an end point of the path P − vivi+1 + v0vi+1 containing the same set of vertices
as P; by symmetry, the same holds for N+(vt); see Fig. 1. Therefore, we say that the elements in N−(v0) and N+(vt)
are potential endpoints with respect to P.
The following set of maximality criteria implicitly suggests a local optimization heuristic to =nd suitably long paths.

We obtain this heuristic by showing how to =nd paths that satisfy the criteria.

De nition 1. A path P = [v0 : : : vt] is called maximal if either it is a Hamilton path or it satis=es each of the following
conditions:

(i) N (r) ∩ N−(v0) = ∅ = N (r) ∩ N+(vt), for every r ∈V − P.
(ii) N (v0) ∩ N+(vt) = ∅. {v0; vt} ∪ N−(v0) ∩ N+(vt) is an independent set.
(iii) N−(r) is an independent set, for every r ∈V − P.
(iv) If N−(v0) ∩ N+(vt) �= ∅ then

(a) no two consecutive vertices in P both have neighbors in V − P,
(b) V − P is an independent set.

We show now that any nonmaximal path P = [v0 : : : vt] can be extended in polynomial time.
If condition (i) is violated then there is a vertex r outside P that is adjacent to a potential end point of a path P′.

Thus, we construct P′ (if r is adjacent to v0 or vt then P′ = P) as described in Fig. 1 and add r to this path.
If condition (ii) is violated then we can =nd a cycle in G that contains all the vertices of P; see Fig. 2. Since G is

connected and P is not a Hamilton path there is a vertex r outside P that is adjacent to a vertex v in P. Thus, we can
extend P by constructing the path P′ obtained by adding rv to the cycle and removing any other edge incident to v.

If condition (iii) is violated we =nd an edge between two vertices in N−(r) and extend P as described in Fig. 3.
If condition (iv) is violated then we have two cases to consider: either there are two consecutive vertices on P that are

both adjacent to vertices in the subgraph G − P, or V − P is not an independent set.
In the =rst case we identify the two vertices vi and vi+1 that are both adjacent to vertices outside P. If they are both

adjacent to the same vertex r ∈V−P then we directly add this new vertex to P obtaining the longer path [v0 : : : virvi+1 : : : vt].
If they are adjacent to di@erent vertices in V −P, we construct the cycle C containing all but one vertex of P as described
in Fig. 4. Let v denote the excluded vertex. Note that vivi+1 ∈E(C) (otherwise either vi = v or vi+1 = v; but v∈N−(v0)
and such a vertex is not adjacent to vertices in V − P, by condition (i)). Assume that vir1 ∈E and vi+1r2 ∈E, where
r1; r2 �∈ P. By removing vivi+1 from C and adding r1vi and vi+1r2 to C, we create a new path of size |P| + 1, with end
points r1 and r2.

For the second case, we observe that if V − P is not an independent set then we can construct a path P′ in G − P
containing at least two vertices, which by the connectivity of G can be connected to the cycle C described above. In this
way we create a new path with size at least |P| + 1.
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Fig. 1. Potential end points in a path.

Fig. 2. If N (v0) ∩ N+(vt) �= ∅ then there is a cycle in G that contains all vertices in P.

Fig. 3. If the left neighborhood on P of a vertex r outside P is not an independent set then P can be extended to include r.

Fig. 4. The cycle C includes all vertices of the path [v0 : : : vt ] except v ∈N−(v0) ∩ N+(vt).

A careful analysis of the violation checks above shows that an algorithm to =nd a maximal path can be implemented
to run in O(n3) time. Thus, we have proved

Theorem 3. A maximal path in a connected graph can be found in O(n3) time.

Let P denote a maximal path in G according to De=nition 1, with P = [v0v1 : : : vt−1vt] and let R = V − P denote the
vertices of G outside P.
Recall that De=nition 1 includes two additional conditions if the set N−(v0)∩N+(vt) is non-empty. We start considering

the other case, i.e., N−(v0) ∩ N+(vt) = ∅.

Lemma 1. If P is maximal then either N−(v0)∩N+(vt) �= ∅ or there is a spanning spider in G whose center is adjacent
to all vertices outside P.

Proof. We prove the equivalent statement that if P is maximal and N−(v0)∩ N+(vt) = ∅ then there is a vertex in P that
is adjacent to all vertices in R. Thus, assume that P is maximal and that N−(v0)∩N+(vt)= ∅. Let X =N−(v0)∪N+(vt).
Take an arbitrary vertex r ∈V − P. From condition (i) of De=nition 1 it follows that r; v0, and vt are independent. Since
N−(v0) ∩ N+(vt) = ∅,

d(r) + |X | = d(r) + d(v0) + d(vt)¿ n − 1: (2)

By condition (i) of De=nition 1, we get that r is adjacent only to vertices in V − X . Since r �∈ P, r is adjacent to at
most n − |P| − 1 vertices in G − P. The remaining edges from r are adjacent to vertices in P − X . The number of these
edges is

dP−X (r)¿d(r) − n + |P| + 1:
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By (2) we get

dP−X (r)¿ n − 1 − |X | − n + |P| + 1

= |P − X |:
That is, r is adjacent to all vertices in P − X , and since r was chosen arbitrarily from R, it follows that any vertex in
P − X is adjacent to all vertices in R, and is hence the center of a spanning spider in G.

Assume from now on that

N−(v0) ∩ N+(vt) �= ∅:
This implies that conditions (iv) (a) and (b) of De=nition 1 hold.

We will give an algorithm proving the following theorem. Later we will extend it to the general case of Theorem 2.

Theorem 4. Any connected graph G with (G)¿ (n − 1)=3 contains a spanning spider. Furthermore, there is an O(n3)
time algorithm that 8nds a spanning spider in G.

The following lemma gives Theorem 4 when the size of R is small.

Lemma 2. If |R|6 2 then G contains a spanning spider.

Proof. If R is empty then P is a Hamilton path.
If |R|= 1 then by the connectivity of G, the vertex in R is adjacent to a vertex in P, yielding a spanning spider of G.
If R contains two vertices r1 and r2, and if both r1 and r2 are neighbors of vi ∈P, then r1vi and r2vi together with P

form a spanning spider, centered at vi. Thus, to prove that there exists a spanning spider in G it is suMcient to prove
that N (r1) ∩ N (r2) �= ∅. For a contradiction, assume that N (r1) ∩ N (r2) = ∅. By De=nition 1, condition (iv) point (a),
N (r1) ∩ N−(r2) = ∅. Hence, N (r1) ⊆ V − R − (N (r2) ∪ N−(r2)) and the size of N (r1) is

|N (r1)|6 n − |R| − |N (r2) ∪ N−(r2)|:
By applying condition iv(a) again, we get that N (r2) ∩ N−(r2) = ∅ implying that |N (r2) ∪ N−(r2)| = |N (r2)| + |N−(r2)|.
It follows that:

|N (r1)|6 n − |R| − |N (r2)| − |N−(r2)|

6 n − 2 − 2(n − 1)=3 = (n − 5)=3

¡ (n − 1)=3;

contradicting the degree condition of G, i.e., that (G)¿ (n − 1)=3.

Assume now that |R|¿ 3, with R = {r1; r2; : : : ; r|R|}, and let r∗ denote an arbitrary vertex in R. In order to prove
Theorem 4, we construct a spanning spider out of the maximal path P. First we need to =nd a suitable center for the
spider. It turns out that a convenient property of such a center is to be adjacent to many independent vertices which in
turn are independent of R.

Lemma 3. The set N−(r∗) ∪ R is independent, with size |R| + (n − 1)=3.

(n − 1)
6

+
3|R| − 1

4
:

Proof. The independence is given by De=nition 1 as follows. If r ∈R and v∈N−(r∗) then rv �∈ E by condition (iv)
point (a). R is an independent set by condition (iv) point (b). Left is to prove that N−(r∗) is independent, but this follows
from condition (iii). The size of the union follows from the degree condition on r∗, and the fact that R and N−(r∗) are
disjoint.

For the second part of the proof, consider the vertices in N−(r∗) ∪ R. Each of them is adjacent only to vertices in
P − N−(r∗), since N−(r∗) ∪ R is an independent set and R ∩ P = ∅. By the pigeonhole principle there exists a vertex
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Table 1
The spider construction algorithm for general graphs

Algorithm. Spider construction in general graphs
Input: A graph G = (V; E), a maximal path P, and a vertex vi satisfying the condition of Lemma 3.
Output: A spider S, centered at vi , and a tail T , that collectively span P and a portion of R.

1 Initially let S := P.
2 For each r ∈R such that vir ∈E: add the edge vir to S.
3 If all r ∈R are adjacent to vi: return the spanning spider S.

Otherwise,
4 For each vj ∈P such that both vj−1vi and vjr∗ are in E:

remove vj−1vj from S, and
add the edge vivj−1 to S.

5 If there is an edge vivj ∈ S with j ¿ i + 1:
remove the edge vivi+1 from S (recall that vi is the center of the spider).

6 Return the spider S and the tail T := P − S.
End Spider construction in general graphs.

Fig. 5. The spider S, the tail T and the set R − R′, after the spider construction algorithm.

vi ∈P − N−(r∗) adjacent to at least
n−1
3 |N−(r∗) ∪ R|
|P − N−(r∗)| =

n−1
3

(
n−1
3 + |R|)

n − n−1
3 − |R| (3)

=
n−1
3

(
n−1
3 − |R|−1

2 + 3|R|−1
2

)

2
(

n−1
3 − |R|−1

2

)

¿
n − 1
6

+
3|R| − 1

4
(4)

vertices in N−(r∗) ∪ R.

Let vi be a vertex in P − N−(r∗) satisfying the condition given in Lemma 3. 1 Let " be the number of vertices in
N−(r∗) ∪ R adjacent to vi, i.e.,

"¿
n − 1
6

+
3|R| − 1

4
: (5)

Using the algorithm in Table 1 we construct a spider S, centered at vi, with branches beginning at vertices in N−(r∗)
and ending at vertices in N (r∗). Note that S fails to include the tail of P. We let T denote this tail; see Fig. 5.

Let L denote the leaves in S and let R′ = S − P − r∗ ⊂ R. We note that the number of leaves in S is at least " + 1
but more importantly, the number of leaves adjacent to r∗ is

dL(r
∗)¿" − |R′| − 2: (6)

To see this, note =rst of all that r∗ is not adjacent to any leaf that belongs to R′. Secondly, the tail T is not in S, but
contains exactly one vertex in N (vi) that also lies in N−(r∗). Finally, if vi is adjacent to r∗, then r∗ is itself a leaf in S,
but is of course not adjacent to itself.

1 Notice that i ¡ t, since by condition (i) of De=nition 1, (N−(r∗) ∪ R) ∩ N (vt) = ∅.
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If there is a matching between the vertices in R − R′ and L − R′, then we can construct a spider covering G. Next we
prove that there is such a matching. A vertex v in S ∪ T is called an internal vertex if v �∈ L. We let I denote the set of
internal vertices.

Lemma 4. There exists a matching between R − R′ and L − R′.

Proof. Since r∗ is adjacent to more than |R − R′| leaves in S, it suMces to show that there is a matching between
R − R′ − {r∗} and L − R′. Let r denote an arbitrary vertex in R − R′ − {r∗}. By de=nition,

d(r) = dI (r) + dL(r): (7)

Since r is not adjacent to vi, and vi+1 is a leaf by construction, neither vi nor vi+1 is counted in dI (r). Neither are they
counted in dL(r∗). This time, vi is not counted, since it is not a leaf, and vi+1 is not counted because vi �∈ N−(r∗).

Therefore,

dI (r) + dL(r
∗)6 (|P| − 2)=2;

since r and r∗ cannot be adjacent to v0 or vt (De=nition 1, condition (ii)), nor to consecutive vertices on P (De=nition 1,
point (a) of condition (iv)). Hence,

dL(r)¿d(r) + dL(r
∗) − (|P| − 2)=2: (8)

Recalling that dL(r∗)¿" − |R′| − 2 (by (6)) and that |P| = n − |R|, by using (8) we get

dL(r)¿
n − 1
3

+ (" − |R′| − 2) − n − |R| − 2
2

: (9)

By using (5) we obtain

dL(r)¿
n − 1
3

+
n − 1
6

+
3|R| − 1

4
− |R′| − 2 − n − |R| − 2

2

= |R| − |R′| + (|R| − 7)=4

¿ |R − R′| − 1:

The last inequality holds since |R|¿ 3 by our assumption. Thus, each vertex in R − R′ − {r∗} is adjacent to at least
|R − R′| − 1 leaves in S, so there exists a matching between R − R′ − {r∗} and L − R′.

Given the above guarantee of a matching we construct the spider as follows. Compute a matching between R − R′

and L. This gives us a new spider S′ that contains all vertices except the tail T . The head of the tail is adjacent to r∗,
and r∗ is a leaf in S′. Add to S′ the edge between r∗ and the head of the tail to complete the spanning spider. This
concludes the proof of Theorem 4.

Our main theorem follows easily from previous discussion:

Proof of Theorem 2. We begin with the following observation. In any independent set, there can be at most two vertices
with degree less than (n − 1)=3. This follows directly from the degree sum criteria. Thus, in the set R there are at most
two vertices with degree less than (n − 1)=3, call these r and r′. It is easy to modify any maximal path so to contain
the eventual low degree vertices, i.e., every vertex in R has at least (n − 1)=3 neighbors. The trick is to make these
vertices part of the maximal path. We do this as follows. Consider a maximal path P = [v1 : : : vt] and its corresponding
set N−(v0) ∩ N+(vt). This set is nonempty by Lemma 1. Hence, there is a cycle containing all vertices except one, call
this vertex v. The excluded vertex is independent from R, being a potential end point of the maximal path. Hence we can
create a new path P′ = [v′

0 : : : v′
t ], replacing r by v in R. Note that r will be an end point of the path P′. At this point we

need to check whether P′ is maximal. If not, we recompute a maximal path out of P′ and repeat the procedure.
Now, reconsider the sets N−(v0) and N+(vt) of the new path. Again, the intersection is non-empty. Thus, we can

repeat the above procedure, replacing r′ ∈R with a vertex v′ in the path. Note that v′ is independent from r and r′, and
has therefore degree higher than (n − 1)=3.

Given this new maximal path we proceed as before. The existence of two vertices with degree less than (n − 1)=3
makes the counting argument stronger.
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4. Claw-free graphs

We now return to density conditions. In the case of Hamilton paths, in addition to density conditions on graphs in
general, research has focused on claw-free graphs, where a weaker density condition is suMcient to assure Hamiltonicity:

Theorem 5 (Liu et al. [17], Mathews and Sumner [19]). Let G be a connected graph without an induced K1;3.
If (G)¿ (n−2)=3 (or, more generally, if 3(G)¿ n−2), then s(G)=0 (in other words, then G has a Hamilton path).

In this context we were able to prove the following full generalization to spanning trees with at most k branch
vertices:

Theorem 6. Let G be a connected graph without an induced K1;3, and let k be a nonnegative integer.

If (G)¿ (n − k − 2)=(k + 3) (or, more generally, if k+3(G)¿ n − k − 2), then s(G)6 k.
In particular, we have the following corollary:

Corollary 1. Let G be a connected graph without an induced K1;3.
If each vertex of G has degree at least (n − 3)=4 (or, more generally, if 4(G)¿ n − 3), then G has a spanning

spider.

Remark 1. In the case k =1 Theorem 6 assures the existence of a spanning spider in any claw free graph with 4(G)¿
n − 3. On the other hand, there is no new result of this type for arachnoid graphs, because the smallest lower bound on
the degrees of a connected graph G without K1;3 which would guarantee that G is arachnoid is (n − 2)=3: The graph
Rp obtained from a triangle abc by attaching a separate copy of Kp, p¿ 3, to each vertex a; b; c, is a K1;3-free graph
with minimum degree (n − 3)=3, which is not arachnoid (all spanning spiders must have the center in the triangle abc).
However, if all degrees of a connected graph G without K1;3 are at least (n − 2)=3, then already Theorem 5 implies that
G has a Hamilton path (and hence is arachnoid).

We remark that Theorem 6 does not hold if K1;3 is not excluded as an induced subgraph: For k =0 this is well-known,
and easily seen by considering, say the complete bipartite graph Kp;p+2 (p¿ 1). For k¿ 1 we can take a path on k + 1
vertices and attach a Kp (p¿ 2) to every vertex of the path. Moreover, we attach an extra Kp to the =rst and the last
vertex of the path. The resulting graph is not K1;3-free, and has no spanning tree with k branch vertices. However, the
degree sum of any k + 3 independent vertices in the graph is at least n − k − 1, where n = (k + 3)p − 2.
We also note that the bound n − k − 2 in the theorem is nearly best possible. For k = 0, this is again well-known, and

can be seen by considering, say, the above graph Rp. For k¿ 1, we consider following example. Take two copies of Rp,
where p = k + 1. Shrink one Kp back to a vertex in one of the two copies of Rp, and attach the vertex to a vertex of
degree p − 1 in the other copy of Rp. The resulting graph has four copies of Kp, each with p − 1 vertices of degree
p − 1, and one copy Kp, denoted by K , with p − 2 vertices of degree p − 1. Take k − 1 vertices of degree p − 1 in
K , and attach a copy of Kp to each. The resulting graph is K1;3-free, and has no spanning tree with at most k branch
vertices. The degree sum of any k + 3 independent vertices is at least n − k − 5, where n = (k + 3)p + 2.

Proof of Theorem 6. Let T ⊆ G be a tree and let L be the set of all leaves and S be the set of all branch vertices of T .
For every leaf u∈ L, there is a unique branch vertex s(u)∈ S (closest to u). These two vertices are joined by a unique
s(u) − u path in T called the branch of u. The path joining two branch vertices of T is called a trunk of T . Note that
a tree with ‘ branch vertices has at least ‘ + 2 branches (and hence at least ‘ + 2 leaves). For every internal vertex v
on a branch, we denote by v− and v+ the predecessor and the successor of v on the branch, respectively. Similarly, by
s(u)+ and u− we denote the successor of s(u) and the predecessor of u on the branch of u, respectively. Note that it is
possible to have s(u)+ = u and/or s(u) = s(v) for some u; v∈ L.

Suppose that G is a counterexample to the theorem. Let T be a tree of G with at most k branch vertices, and therefore,
not spanning G. We assume that T is chosen so that it contains the greatest number of vertices, and, subject to this
condition, so that

(i) the sum of the degrees of the branch vertices of T is as small as possible; and
(ii) subject to (i), the sum, over all leaves u of T , of the distance in T between u and s(u) is as small as possible; and
(iii) subject to (i) and (ii), the length of the longest branch of T is as large as possible, and, for each i = 2; 3; : : : ; the

length of the ith longest branch is as large as possible subject to (i) and (ii), having the longer branches as long as
possible.
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Since G is a counterexample to the theorem, we can assume that the number of branch vertices in T is exactly k and
that G − T �= ∅.
The assumptions imply certain properties of T , which we now explore. Assume that u and v are any two distinct leaves

of T (u; v∈ L) and r is any vertex not in T .

Fact 1. The vertex u cannot be adjacent to s(v)+.

Otherwise, the tree T + us(v)+ − s(v)s(v)+ violates (i).

Fact 2. The vertex u cannot be adjacent to two consecutive vertices on a trunk.

Indeed, if a; b are such vertices, then T + ua + ub − ab − uu− violates (ii).

Fact 3. If the branch of v is at least as long as the branch of u, then v cannot be adjacent to any vertex x (�= s(u))
on the branch of u.

Otherwise, T + vx − xx− violates (iii).

Fact 4. If the branch of v is shorter than the branch of u, then v cannot be adjacent to two consecutive vertices on the
branch of u.

Indeed, if x; y are such consecutive vertices, then the tree T + vx + vy − xy − vv− violates (iii).

Fact 5. The vertex v cannot be adjacent to an internal vertex x on the branch of u such that x− is adjacent to u.

Otherwise, the tree T + x−u + vx − x−x − s(v)s(v)+ violates (i).

Fact 6. The vertex r cannot be adjacent to any leaf or branch vertex of T , or to any two consecutive vertices of T .

This follows by the maximality of T .

Fact 7. The vertex r cannot be adjacent to an internal vertex x on the branch of u such that x− is adjacent to u.

Otherwise, the tree T + x−u + rx − xx− is larger than T , thus violating the initial assumption.
We now =x a vertex r outside of T , and make the following claims:

Claim 1. The set L + r is independent.

Fact 3 implies that no two leaves can be adjacent, and Fact 6 implies that r cannot be adjacent to a leaf.

Claim 2. No vertex of T is adjacent to two distinct leaves of T .

Suppose x is adjacent to both leaves u and v. Then x cannot be a vertex of a nontrivial trunk of T , because Fact 2 would
imply that u; v; x, and a trunk neighbor of x induce a K1;3. Similarly, x cannot be an internal vertex of a branch of T ,
other than the branch of u or v, because Facts 3 and 4 would imply that u; v; x, and a branch neighbor of x induce a K1;3.
Finally, x cannot be an internal vertex of the branch of u or v; because Facts 3–5 would imply that u; v; x; x− induce a
K1;3. Thus x must be the unique branch vertex of T , and it is again easy to see that Fact 1 implies that u; v; x, and a
neighbor of x (on a third branch/trunk) induce a K1;3.

Claim 3. No vertex of T is adjacent to both r and a leaf of T .

This follows in the same manner as Claim 2, substituting as necessary Facts 6 and 7 for Facts 2–5.

Claim 4. Each vertex of G is adjacent to at most one vertex in L + r.
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This follows from Claims 2 and 3, and the fact that no vertex outside of T can be adjacent to a leaf of T , by the
maximality of T .

The set L has at least k + 2 vertices, since T has exactly k branch vertices. Let I be any subset of L ∪ r, with exactly
k+3 vertices. Then I is an independent set with k+3 vertices, and the sum of their degrees is at most n−k −3, contrary
to the assumption.

As in the previous section, it is not diMcult to turn the above proof into a polynomial time algorithm to actually =nd
a spanning tree of G with at most k branch vertices. (The obvious approach yields an O(n4) algorithm.)
Using the same methods we can prove a similar result for K1;4-free graphs. (For the existence of Hamilton paths

and cycles, such results can be found in [4,18].) Naturally, there is a tradeo@ between this weaker assumption and the
minimum degrees in G one has to assume. We only state it here for k¿ 1, the main emphasis of our paper:

Theorem 7. Let G be a connected graph without an induced K1;4, and let k be a positive integer.
If (G)¿ (n + 3k + 1)=(k + 3) (or, more generally, if k+3(G)¿ n + 3k + 1), then s(G)6 k.

Proof. The proof is along the same lines as the proof of Theorem 6; we only point out the di@erences.
Three claims are modi=ed to obtain the following weaker statements: Each branch vertex is adjacent to at most three

leaves of T ; At most one internal vertex of a branch of u is a common neighbor of u and another leaf v of T . In that
case, the branch of u must be longer than the branch of v; At most one internal vertex of a branch of u is a common
neighbor of u and r. Using the modi=ed set of claims we can show that there exists an independent set I with k + 3
vertices and degree sum at most n − (k + 3) + 2k + (k + 1) + (k + 2) = n + 3k, a contradiction.

5. Relation to other problems

In this section we relate our parameter s(G) to other classical graph theoretic parameters.
First we make some additional remarks about arachnoid graphs.

Proposition 5. If G is an arachnoid graph, then, for any set S of vertices, the graph G − S has at most |S| + 1
components.

Proof. If the deletion of S leaves at least |S| + 2 components, then no spider centered in one of the components can be
spanning.

The condition in the proposition is a well-known necessary condition for a graph to have a Hamilton path. Recall that
we have also observed in Section 4, that we do not have a density condition which implies that a graph is arachnoid,
without also implying that it has a Hamilton path. Thus we are led to ask whether or not every arachnoid graph must
have a Hamilton path. This is, in fact, not the case, but examples are not easy to =nd. One can, for instance, take a
hypotraceable graph G, that is a graph which does not have a Hamilton path, but such that for each vertex v, the graph
G − v has a Hamilton path. Hypotraceable graphs are constructed in [22,23].

Proposition 6. Every hypotraceable graph is arachnoid.

Proof. For any vertex x, consider the Hamilton path in G − v, where v is any neighbor of x. Adding the edge xv yields
a spanning spider of G centered at x.

We note that we only know two types of arachnoid graphs: There are the graphs with a Hamilton path (sometimes
called traceable graphs), and then there are the hypotraceable graphs. Moreover, the traceable graphs have at each vertex
a spider with at most two branches, and the hypotraceable graphs have at each vertex a spider with at most three branches
(one consisting of only one edge, cf. the proof above). It would be interesting to construct arachnoid graphs which are
neither traceable nor hypotraceable. In the same vein, it would be interesting to construct arachnoid graphs in which some
vertex is center only to spiders with more than three branches.

The following observation shows the relationship between path coverings and s(G).

Proposition 7. If G is a connected graph whose vertices can be covered by k disjoint paths, then G has a spanning tree
with at most 2k − 2 branch vertices, i.e. s(G)6 2k − 2.
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Let )(G) denote the independence number of G, i.e. maximum size of an independent set of vertices in G, and let
*(G) denote the connectivity of G, i.e. minimum number of vertices removal of which disconnects G or results in the
empty graph. ChvPatal and Erdős [5] proved that vertices of any graph G can be covered by at most )(G)=*(G)� vertex
disjoint paths. Using the previous proposition we have

Theorem 8. Let G be a connected graph. Then s(G)6 2)(G)=*(G)� − 2.

Thus, for 1-connected graphs, previous theorem gives s(G)6 2)(G) − 2. One may in fact do a little bit better:

Proposition 8. Let G = (V; E) be a connected graph that is not complete. Then s(G)6 )(G) − 2, and a spanning tree
with at most )(G) − 2 branch vertices can be found in O(|V | + |E|) time.

Proof. Consider a depth =rst search tree T of G. This is a spanning tree where the set of all leaves, save possibly the
root, forms an independent set. If either the root r of T is a branch vertex or r is independent from the other leaves, then
G has a spanning tree with at most )(G) leaves and hence, at most )(G) − 2 branch vertices.
In case the root r has degree one and it is adjacent to another leaf u, then we can remove in T the edge s(u)s(u)+

and add the edge ru (recall that s(u) is the branch vertex closest to u in T and s(u)+ is its successor on the path from
s(u) to u in T ). Again, we get a spanning tree in which the number of leaves is at most )(G), thus implying that the
number of branch vertices is at most )(G) − 2.

A caterpillar in which all branch vertices are of degree 3 shows that Proposition 8 is the best possible.
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[5] V. ChvPatal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
[6] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69–81.
[7] T. Feder, R. Motwani, C. Subi, Finding long paths and cycles in sparse Hamiltonian graphs, Proceedings of the ACM Symposium

on Theory of Computing, STOC’00, 2000.
[8] L. Gargano, M. Hammar, There are spanning spiders in dense graphs (and we know how to =nd them), ICALP’03, June 30–

July 04, 2002, Eindhoven, The Netherlands.
[9] L. Gargano, P. Hell, L. Stacho, U. Vaccaro, Spanning trees with bounded number of branch vertices, ICALP’02, July 8–13, MPalaga,

Spain, 2002.
[10] L. Gargano, U. Vaccaro, Routing in all-optical networks: algorithmic and graph-theoretic problems, in: I. Althofer, et al. (Eds.),

Numbers, Information and Complexity, Kluwer Academic Publisher, Dordrecht, 2000, pp. 555–578.
[12] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Proceedings of the Symposium,

IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y., 1972), Plenum, New York, 1972, pp. 85–103.
[13] J. KVonemann, R. Ravi, A matter of degree: improved approximation algorithms for degree-bounded minimum spanning trees,

Proceedings of ACM Symposium on Theory of Computing, STOC’00, 2000.
[14] D. Krager, R. Motwani, D.S. Ramkumar, On approximating the longest path in a graph, Algorithmica 18 (1997) 82–98.
[15] A. Kyaw, A suMcient condition for a graph to have a k tree, Graphs Combin. 17 (2001) 113–121.
[16] M. Las Vergnas, Sur une proprietPe des arbres maximaux dans un graphe, C. R. Acad. Sci. Paris, Ser. A 271 (1971) 1297–1300.
[17] Y. Liu, F. Tian, Z. Wu, Some results on longest paths and cycles in K1;3-free graphs, J. Changsha Railway Inst. 4 (1986) 105–106.
[18] L.R. Markus, Hamiltonian results in K1; r-free graphs, in: Proceedings of the 24th Southeastern International Conference on

Combinatorics, Graph Theory, and Computing, Vol. 98, Boca Raton, Florida, 1993, pp. 143–149.



L. Gargano et al. / Discrete Mathematics 285 (2004) 83–95 95

[19] M.M. Matthews, D.P. Sumner, Longest paths and cycles in K1;3-free graphs, J. Graph Theory 9 (2) (1985) 269–277.
[20] O. Ore, A note on Hamilton circuits, Am. Math. Monthly 67 (1960) 55.
[21] B. Raghavachari, Algorithms for =nding low-degree structures, in: D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard

Problems, PWS Publishing Company, Boston, 1997, pp. 266–295.
[22] C. Thomassen, Hypohamiltonian and hypotraceable graphs, Discrete Math. 9 (1974) 91–96.
[23] C. Thomassen, Planar cubic hypo-Hamiltonian and hypotraceable graphs, J. Combin. Theory Ser. B 30 (1) (1981) 36–44.


	Spanning spiders and light-splitting switches
	Introduction
	Complexity results
	A density result
	Claw-free graphs
	Relation to other problems
	Acknowledgements
	References


