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DEDICATEDTOPAULERDijS ONTHE OCCASIONOFHIS SEVENTIETHBIRTHDAY 

The number of components m in regular (m, 5, c)-systems is given in the 
literature to date by the inequality m > 4c - 2 (Bermond et al., “Proceedings, 18 th 
Hungarian Combin. Colloq.“, North-Holland, Amsterdam, 1976). The case 
m = 4c - 2 is called extremal. It is proved that (4~ - 2, 5, c)-systems do not exist. 
An example of a (4c, 5, c)-system with c = 2, is given. Since, in a 4-regular system, 
m must be even , lot. cit., it is concluded that the lower bound on the number of 
components is given by m > 4c. 0 1984 Academic press, h. 

Perfect systems of difference sets were introduced in [5]. Further results 
on perfect systems can be found in [ l-4,6]. We use the definitions and 
notation of [5]. We shall only consider the regular case of size four. It is 
convenient to display the differences of the ith component in the form of a 
triangle Di as follows: 

zi 

xi Yi 

#i vi wi 

pi qi ri si 
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where 

u,=pi+q,; X,=pi+q,+ri 

Ui=qi+rj; yi = 41 + ri + si (1) 
W,=ri+Si; Zi =pi + qi+ ri + si’ 

One can assume that pi < si, otherwise interchange pi and si, qi and ri, ui 
and Wi, X[ and yi. 

We define the sets T, where T E {P, Q, R, S, U, V, W, X, Y, Z}, as follows: 
T= {t, 1 i = l,..., m} where ti E {Pi, qi, Tip zi, uI, ~1, Wi, Xi,yi, zi} and we put 
t = t, + *** + t,. 

The equations (1) imply that 

2z=p+q+r+s+u+w. (2) 

If we sum over the first 6m differences, we obtain 

2z>3m(6m+2c-1). (3) 

Now summing over the m largest differences, we obtain 

z<t (19m+2c- 1). (4) 

Thus, m(l9m + 2c - 1) > 3m(6m + 2c - l), which implies m > 4c - 2. 
We now prove that the supposition m = 4c - 2 for an arbitrary given c 

leads to a contradiction. In a 4-regular perfect system with m = 4c - 2, the 
inequalities in (3) and (4) become equalities. We then have Z = (9m + c,..., 
lOm+c-l}andPUQURUSUUUW={c,...,6mtc-l}.Also, VU 
XV Y = {am + c,..., 9m + c - 11. In each difference triangle D,, i = l,..., m, 
we have xl+yi=uitzl, i = l,..., m from which it follows that 
V= {6m t c,..., 7mtc-l} and XUY={7mtc,..., 9mtc-1). Also, 
qi =yI - wi and ri = Xi - I(~, i = l,..., 112. Since Xi~ 7m + C, yip 7m + C, 

ui<6mtc-1, wi<6mtc-1, weobtainq,>mtl andri>mtl,for 
i = l,..., m. Furthermore, p,ts,=z,--v,>9mtc-(7mtc-1)=2m. 
Thus, s, > m and {c ,..., m) c P. Let I = {i 1 pi E {c ,..., m}}. We will compute 

c Pi ie1 
in two ways. First, 
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Second, for i E I, Pizzi-Yyi, with zi=9m+c- 1 +a,, and 
yi=8m+c- 1 +/Ii, l<ai</$<m. Thus, 

C Pi = C (zi -Yi) = m Izl + C ai - 2 Pi* 
isl isI iel icI 

Since 

m+l-c 

CaiZ C .i and 
isl j=l 

z Pi < 5 j, 
j=e 

we have 

2 j>m(m+ l-c)+I+i-‘j- 2 j. 
/=C j=l i=c 

The above implies that 

(m+ I-c)(m+c)>m(m+ l-c)+(m+ 1-c$m+2-c) 

or 2c > m + 2 - c which yields for m = 4c - 2, that c < 0, a contradiction. 
We can now state: 

THEOREM 1. No (4c - 2,5, c)-system exists for any c. 

Since m must be even [5, Prop. 2.31, we also have 

THEOREM 2. In every (m, 5, c)-system, m > 4~. 

To show that this is the best possible lower bound on m, we include an 
example of an (8,5,2)-system. Let d,/ denote the jth row of the ith difference 
triangle Di, i = l,..., 8; j = l,..., 4. We list only the first row of each 
difference triangle, as this completely determines the corresponding com- 
ponent 

d,, = (13,23,27, 18); d,, = (3, 34, 25, 15) 

d,, = (10, 28,26, 16); d,, = (4,3 1,21,20) 

d,, = (8,24,33, 14); d,, = (2,44, 7,22) 

ddl = (9,39, 19, 11); d,, = (5, 12,43,6). 
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