Note

The Minimum Number of Components in 4-Regular Perfect Systems of Difference Sets*

Anton Kotzig
Centre de Recherche de Mathématiques Appliquées, Université de Montréal, C.P. 6128, Succursale "A," Montreal, Quebec, Canada H3C 3J7

Philip J. Laufer

College Militaire Royal de Saint-Jean, Saint-Jean, Quebec, Canada JOJ IRO

Communicated by the Managing Editors
Received June 10, 1983; revised December 13, 1983

DEDICATED TO PAUL ERDÖS ON THE OCCASION OF HIS SEVENTIETH BIRTHDAY

Abstract

The number of components m in regular ($m, 5, c$)-systems is given in the literature to date by the inequality $m \geqslant 4 c-2$ (Bermond e al., "Proceedings, 18 th Hungarian Combin. Colloq.", North-Holland, Amsterdam, 1976). The case $m=4 c-2$ is called extremal. It is proved that ($4 c-2,5, c$)-systems do not exist. An example of a ($4 c, 5, c$)-system with $c=2$, is given. Since, in a 4 -regular system, m must be even, loc. cit., it is concluded that the lower bound on the number of components is given by $m \geqslant 4 c$. © 1984 Academic Press, Inc.

Perfect systems of difference sets were introduced in [5]. Further results on perfect systems can be found in $[1-4,6]$. We use the definitions and notation of [5]. We shall only consider the regular case of size four. It is convenient to display the differences of the i th component in the form of a triangle D_{i} as follows:

* Research supported by Grants CRSNG(A-9232) and FCAC(EQ-05391)
where

$$
\begin{array}{ll}
u_{i}=p_{i}+q_{i} ; & x_{i}=p_{i}+q_{i}+r_{i} \\
v_{i}=q_{i}+r_{i} ; & y_{i}=q_{i}+r_{i}+s_{i} \tag{1}\\
w_{i}=r_{i}+s_{i} ; & z_{i}=p_{i}+q_{i}+r_{i}+s_{i}
\end{array}
$$

One can assume that $p_{i}<s_{i}$, otherwise interchange p_{i} and s_{i}, q_{i} and r_{i}, u_{i} and w_{i}, x_{i} and y_{i}.

We define the sets T, where $T \in\{P, Q, R, S, U, V, W, X, Y, Z\}$, as follows: $T=\left\{t_{i} \mid i=1, \ldots, m\right\}$ where $t_{i} \in\left\{p_{i}, q_{i}, r_{i}, s_{i}, u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, z_{i}\right\}$ and we put $t=t_{1}+\cdots+t_{m}$.

The equations (1) imply that

$$
\begin{equation*}
2 z=p+q+r+s+u+w \tag{2}
\end{equation*}
$$

If we sum over the first $6 m$ differences, we obtain

$$
\begin{equation*}
2 z \geqslant 3 m(6 m+2 c-1) \tag{3}
\end{equation*}
$$

Now summing over the m largest differences, we obtain

$$
\begin{equation*}
z \leqslant \frac{m}{2}(19 m+2 c-1) . \tag{4}
\end{equation*}
$$

Thus, $m(19 m+2 c-1) \geqslant 3 m(6 m+2 c-1)$, which implies $m \geqslant 4 c-2$.
We now prove that the supposition $m=4 c-2$ for an arbitrary given c leads to a contradiction. In a 4 -regular perfect system with $m=4 c-2$, the inequalities in (3) and (4) become equalities. We then have $Z=\{9 m+c, \ldots$, $10 m+c-1\}$ and $P \cup Q \cup R \cup S \cup U \cup W=\{c, \ldots, 6 m+c-1\}$. Also, $V \cup$ $X \cup Y=\{6 m+c, \ldots, 9 m+c-1\}$. In each difference triangle $D_{i}, i=1, \ldots, m$, we have $x_{i}+y_{i}=u_{i}+z_{l}, \quad i=1, \ldots, m$ from which it follows that $V=\{6 m+c, \ldots, 7 m+c-1\}$ and $X \cup Y=\{7 m+c, \ldots, 9 m+c-1\}$. Also, $q_{i}=y_{i}-w_{i}$ and $r_{i}=x_{i}-u_{i}, i=1, \ldots, m$. Since $x_{i} \geqslant 7 m+c, y_{i} \geqslant 7 m+c$, $u_{i} \leqslant 6 m+c-1, w_{i} \leqslant 6 m+c-1$, we obtain $q_{i} \geqslant m+1$ and $r_{i} \geqslant m+1$, for $i=1, \ldots, m$. Furthermore, $\quad p_{i}+s_{i}=z_{i}-v_{i} \geqslant 9 m+c-(7 m+c-1)=2 m$. Thus, $s_{i}>m$ and $\{c, \ldots, m\} \subset P$. Let $I=\left\{i \mid p_{i} \in\{c, \ldots, m\}\right\}$. We will compute

$$
\sum_{i \in I} p_{i}
$$

in two ways. First,

$$
\sum_{i \in I} p_{i}=\sum_{j=c}^{m} j
$$

Second, for $i \in I, \quad p_{i}=z_{i}-y_{i}, \quad$ with $\quad z_{i}=9 m+c-1+\alpha_{i}$, and $y_{i}=8 m+c-1+\beta_{i}, 1 \leqslant \alpha_{i} \leqslant \beta_{i} \leqslant m$. Thus,

$$
\sum_{i \in I} p_{i}=\sum_{i \in I}\left(z_{i}-y_{i}\right)=m|I|+\sum_{i \in I} \alpha_{i}-\sum_{i \in I} \beta_{i}
$$

Since

$$
\sum_{i \in I} \alpha_{i} \geqslant \sum_{j=1}^{m+1-c} j \quad \text { and } \quad \sum_{i \in I} \beta_{i} \leqslant \sum_{j=c}^{m} j
$$

we have

$$
\sum_{j=c}^{m} j \geqslant m(m+1-c)+\sum_{j=1}^{m+1-c} j-\sum_{j=c}^{m} j
$$

The above implies that

$$
(m+1-c)(m+c) \geqslant m(m+1-c)+\frac{(m+1-c)(m+2-c)}{2}
$$

or $2 c \geqslant m+2-c$ which yields for $m=4 c-2$, that $c \leqslant 0$, a contradiction. We can now state:

Theorem 1. No $(4 c-2,5, c)$-system exists for any c.
Since m must be even [5, Prop. 2.3], we also have
Theorem 2. In every ($m, 5, c$)-system, $m \geqslant 4 c$.
To show that this is the best possible lower bound on m, we include an example of an $(8,5,2)$-system. Let $d_{i j}$ denote the j th row of the i th difference triangle $D_{i}, i=1, \ldots, 8 ; j=1, \ldots, 4$. We list only the first row of each difference triangle, as this completely determines the corresponding component

$$
\begin{array}{ll}
d_{11}=(13,23,27,18) ; & d_{51}=(3,34,25,15) \\
d_{21}=(10,28,26,16) ; & d_{61}=(4,31,21,20) \\
d_{31}=(8,24,33,14) ; & d_{11}=(2,44,7,22) \\
d_{41}=(9,39,19,11) ; & d_{81}=(5,12,43,6)
\end{array}
$$

Acknowledgment

[^0]
References

1. J. Abrham, Bounds for the sizes of components in perfect systems of difference sets, Ann. Discrete Math. 12 (1983), 1-7.
2. J. Abrham and A. Kotzig, Inequalities for perfect systems of difference sets, Discrete Math., in press.
3. J. Abrham, A. Kotzig, and P. J. Laufer, Perfect systems of difference sets with a small number of components, Working paper No. 83-01, Department of Industrial Engineering, University of Toronto, January 1983; Congr. Numer. 39 (1983), 45-68.
4. J.-C. Bermond and G. Farhi, Sur un problème combinatoire d'antennes en radioastronomie II, Ann. Discrete Math. 12 (1982), 49-53.
5. J.-C. Bermond, A. Kotzig, and J. Turgeon, On a combinatorial problem of antennas in radioastronomy, in "Proc. 18th Hungarian Combinatorial Colloquium, pp. 135-149, North-Holland, Amsterdam, 1976.
6. P. J. Laufer, Regular perfect systems of difference sets of size 4 and extremal systems of size 3, Ann. Discrete Math. 12 (1982), 193-201.

[^0]: The authors are indebted to the referee for his suggestions which simplified our original proof of theorem 1 .

