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We study the regularity of the extremal solution of the semilinear
biharmonic equation β�2u − τ�u = λ

(1−u)2 on a ball B ⊂ R
N ,

under Navier boundary conditions u = �u = 0 on ∂ B , where λ > 0
is a parameter, while τ > 0, β > 0 are fixed constants. It is known
that there exists λ∗ such that for λ > λ∗ there is no solution while
for λ < λ∗ there is a branch of minimal solutions. Our main result
asserts that the extremal solution u∗ is regular (supB u∗ < 1) for
N � 8 and β,τ > 0 and it is singular (supB u∗ = 1) for N � 9,
β > 0, and τ > 0 with τ

β
small. Our proof for the singularity

of extremal solutions in dimensions N � 9 is based on certain
improved Hardy–Rellich inequalities.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Consider the fourth order elliptic problem

⎧⎪⎨
⎪⎩

β�2u − τ�u = λ

(1 − u)2
in Ω,

0 < u � 1 in Ω,

u = �u = 0 on ∂Ω ,

(Gλ)

where λ > 0 is a parameter, τ > 0, β > 0 are fixed constants, and Ω ⊂ R
N (N � 2) is a bounded

smooth domain. This problem with β = 0 models a simple electrostatic Micro-Electromechanical Sys-
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tems (MEMS) device which has been recently studied by many authors. For instance, see [3,5,7–11,
14–16], and the references cited therein.

Recently, Lin and Yang [18] derived the equation (Gλ) in the study of the charged plates in elec-
trostatic actuators. They showed that there exists 0 < λ∗ < ∞ such that for λ ∈ (0, λ∗) (Gλ) has a
minimal regular solutions uλ (supB uλ < 1) while for λ > λ∗ , (Gλ) does not have any regular so-
lution. Moreover, the branch λ → uλ(x) is increasing for each x ∈ B , and therefore the function
u∗ = limλ↗λ∗ uλ can be considered as a generalized solution that corresponds to the pull-in volt-
age λ∗ . Now the important question is whether the extremal solution u∗ is regular or not. In a recent
paper Guo and Wei [17] proved that the extremal solution u∗ is regular for dimensions N � 4. In this
paper we consider the problem (Gλ) on the unit ball in R

N :

⎧⎪⎨
⎪⎩

β�2u − τ�u = λ

(1 − u)2
in B,

0 < u � 1 in B,

u = �u = 0 on ∂ B ,

(Pλ)

and show that the critical dimension for (Pλ) is N = 9. Indeed we prove that the extremal solu-
tion of (Pλ) is regular (supB u∗ < 1) for N � 8 and β, τ > 0 and it is singular (supB u∗ = 1) for
N � 9, β > 0, and τ > 0 with τ

β
small. Our proof of regularity of the extremal solution in dimensions

5 � N � 8 is heavily inspired by [4,6]. On the other hand we shall use certain improved Hardy–Rellich
inequalities to prove that the extremal solution is singular in dimensions N � 9. Our improve Hardy–
Rellich inequalities follow from the recent result of Ghoussoub and Moradifam [12,13] about Hardy
and Hardy–Rellich inequalities.

We now start by recalling some of the results from [17] concerning (Pλ) that will be needed in
the sequel. Define

λ∗(B) := sup
{
λ > 0: (Pλ) has a classical solution

}
.

We now introduce the following notion of solution.

Definition 1. We say that u is a weak solution of (Gλ), if 0 � u � 1 a.e. in Ω , 1
(1−u)2 ∈ L1(Ω) and if

∫
Ω

u
(
β�2φ − τ�φ

)
dx = λ

∫
Ω

φ

(1 − u)2
dx, ∀φ ∈ W 4,2(Ω) ∩ H1

0(Ω).

Say that u is a weak super-solution (respectively weak sub-solution) of (Gλ), if the equality is replaced
with � (respectively �) for φ � 0.

We now introduce the notion of stability. First, we equip the function space H := H2(Ω) ∩
H1

0(Ω) = W 2,2(Ω) ∩ H1
0(Ω) with the norm

‖ψ‖ =
(∫

Ω

[
τ |∇ψ |2 + β|�ψ |2]dx

) 1
2

.

Definition 2. We say that a weak solution uλ of (Gλ) is stable (respectively semi-stable) if the first
eigenvalue μ1,λ(uλ) of the problem

−τ�h + β�2h − 2λ

(1 − uλ)3
h = μh in Ω, h = �h = 0 on ∂Ω (1)

is positive (respectively non-negative).
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The operator β�2u − τ�u satisfies the following maximum principle which will be frequently
used in the sequel.

Lemma 1.1. (See [17].) Let u ∈ L1(Ω). Then u � 0 a.e. in Ω , provided one of the following conditions hold:

1. u ∈ C4(Ω̄), β�2u − τ�u � 0 on Ω , and u = �u = 0 on ∂Ω .

2.
∫
Ω

u(β�2φ − τ�φ)dx � 0 for all 0 � φ ∈ W 4,2(Ω) ∩ H1
0(Ω).

3. u ∈ W 2,2(Ω), u = 0, �u � 0 on ∂ B, and
∫
Ω

[β�u�φ + τ∇u∇φ]dx � 0 for all 0 � φ ∈ W 2,2(Ω) ∩
H1

0(Ω).

Moreover, either u ≡ 0 or u > 0 a.e. in Ω .

2. The pull-in voltage

As in [4,6], we are led here to examine problem (Pλ) with non-homogeneous boundary conditions
such as

⎧⎪⎨
⎪⎩

β�2u − τ�u = λ

(1 − u)2
in B,

α < u � 1 in B,

u = α, �u = γ on ∂ B ,

(Pλ,α,γ )

where α,γ are given. Whenever we need to emphasis the parameters β and τ we will refer to
problem (Pλ,α,γ ) as (Pλ,β,τ ,α,γ ). In this section and Section 3 we will obtain several results for the
following general form of (Pλ,α,γ ),

⎧⎪⎨
⎪⎩

β�2u − τ�u = λ

(1 − u)2
in Ω,

α < u � 1 in Ω,

u = α, �u = γ on ∂Ω ,

(Gλ,α,γ )

which are analogous to the results obtained by Gui and Wei for (Gλ) in [17].
Let Φ denote the unique solution of

{
β�2Φ − τ�Φ = 0 in Ω,

Φ = α, �Φ = γ on ∂Ω.
(2)

We will say that the pair (α,γ ) is admissible if γ � 0, α < 1, and supΩ Φ < 1. We now introduce
a notion of weak solution.

Definition 3. We say that u is a weak solution of (Pλ,α,γ ), if α � u � 1 a.e. in Ω , 1
(1−u)2 ∈ L1(Ω) and

if

∫
Ω

(u − Φ)
(
β�2φ − τ�φ

) = λ

∫
Ω

φ

(1 − u)2
∀φ ∈ W 4,2(Ω) ∩ H1

0(Ω),

where Φ is given in (2). We say u is a weak super-solution (respectively weak sub-solution) of (Pλ,α,γ ),
if the equality is replaced with � (respectively �) for φ � 0.

Definition 4. We say a weak solution u of (Pλ,α,γ ) is regular (respectively singular) if ‖u‖∞ < 1
(respectively ‖u‖∞ = 1).
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We now define

λ∗(α,γ ) := sup
{
λ > 0: (Pλ,α,γ ) has a classical solution

}

and

λ∗(α,γ ) := sup
{
λ > 0: (Pλ,α,γ ) has a weak solution

}
.

Observe that by the Implicit Function Theorem, we can classically solve (Pλ,α,γ ) for small λ’s. There-
fore, λ∗(α,γ ) and λ∗(α,γ ) are well defined for any admissible pair (α,γ ). To cut down on notations
we won’t always indicate α and γ . For example, λ∗ and λ∗ will denote the “weak and strong critical
voltages” of (Pλ,α,γ ).

Now let U be a weak super-solution of (Pλ,α,γ ) and recall the following existence result.

Theorem 2.1. (See [17].) For every 0 � f ∈ L1(Ω) there exists a unique 0 � u ∈ L1(Ω) which satisfies

∫
Ω

u
(
β�2φ − τ�φ

)
dx =

∫
Ω

f φ dx,

for all φ ∈ W 4,2(Ω) ∩ H1
0(Ω).

We can introduce the following “weak” iterative scheme: u0 = U and (inductively) let un , n � 1,
be the solution of

∫
Ω

(un − Φ)
(
β�2φ − τ�φ

) = λ

∫
Ω

φ

(1 − un−1)2
∀φ ∈ W 4,2(Ω̄) ∩ H1

0(Ω)

given by Theorem 2.1. Since 0 is a sub-solution of (Pλ,α,γ ), inductively it is easily shown by Lemma 1.1
that α � un+1 � un � U for every n � 0. Since

(1 − un)
−2 � (1 − U )−2 ∈ L1(Ω),

by Lebesgue theorem the function u = limn→+∞ un is a weak solution of (Pλ,α,γ ) so that α � u � U .
We therefore have the following result.

Lemma 2.2. Assume the existence of a weak super-solution U of (Pλ,α,γ ). Then there exists a weak solution u
of (Pλ,α,γ ) so that α � u � U a.e. in Ω .

In particular, for every λ ∈ (0, λ∗), we can find a weak solution of (Pλ,α,γ ). In the same range
of λ′s, this is still true for regular weak solutions as shown in the following lemma.

Lemma 2.3. Let (α,γ ) be an admissible pair and u be a weak solution of (Pλ,α,γ ). Then, there exists a regular
solution for every 0 < μ < λ.

Proof. Let ε ∈ (0,1) be given and let ū = (1 − ε)u + εΦ , where Φ is given in (2). By Lemma 1.1
supΩ Φ < supΩ u � 1. Hence,

sup ū � (1 − ε) + ε supΦ < 1, inf
Ω

ū � (1 − ε)α + ε inf
Ω

Φ = α,

Ω Ω
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and for every 0 � φ ∈ W 4,2(Ω̄) ∩ H1
0(Ω) there holds:

∫
Ω

(ū − Φ)
(
β�2φ − τ�φ

) = (1 − ε)

∫
Ω

(u − Φ)
(
β�2φ − τ�φ

)

= (1 − ε)λ

∫
Ω

φ

(1 − u)2

= (1 − ε)3λ

∫
Ω

φ

(1 − ū + ε(Φ − 1))2

� (1 − ε)3λ

∫
Ω

φ

(1 − ū)2
.

Note that 0 � (1−ε)(1−u) = 1− ū +ε(Φ −1) < 1− ū. So ū is a weak super-solution of (P (1−ε)3λ,α,γ )

so that supΩ ū < 1. By Lemma 2.2 we get the existence of a weak solution w of (P (1−ε)3λ,α,γ ) so that
α � w � ū. In particular, supΩ w < 1 and w is a regular weak solution. Since ε ∈ (0,1) is arbitrarily
chosen, the proof is done. �

Lemma 2.3 implies the existence of a regular weak solution Uλ for every λ ∈ (0, λ∗). Introduce
now a “classical” iterative scheme: u0 = 0 and (inductively) un = vn +Φ , n � 1, where vn ∈ W 4,2(Ω)∩
H1

0(Ω) is the solution of

β�2 vn − τ�vn = β�2un − τ�un = λ

(1 − un−1)2
in Ω and �vn = 0 on ∂Ω. (3)

Since vn ∈ W 4,2(Ω) ∩ H1
0(Ω), un is also a weak solution of (3), and by Lemma 1.1 we know that α �

un � un+1 � Uλ for every n � 0. Since supΩ un � supΩ Uλ < 1 for n � 0, we get that (1 − un−1)
−2 ∈

L2(Ω) and the existence of vn is guaranteed. Since vn is easily seen to be uniformly bounded in
H2(Ω), we have that uλ := limn→+∞ un does hold pointwise and weakly in H2(Ω). By Lebesgue
theorem, we have that uλ is a radial weak solution of (Pλ) so that supΩ uλ � supΩ Uλ < 1. By elliptic
regularity theory [1], uλ ∈ C∞(Ω̄) and uλ = �uλ = 0 on ∂Ω . So we can integrate by parts to get

∫
Ω

β
(
�2uλ − τ�uλ

)
φ dx =

∫
Ω

uλ

(
β�2φ − τ�φ

)
dx = λ

∫
Ω

φ

(1 − uλ)2

for every φ ∈ W 4,2(Ω) ∩ H1
0(Ω). Hence, uλ is a classical solution of (Pλ) showing that λ∗ = λ∗ .

Since the argument above shows that uλ < U for any other classical solution U of (Pμ,α,γ ) with
μ � λ, we have that uλ is exactly the minimal solution and uλ is strictly increasing as λ ↑ λ∗ . In
particular, we can define u∗ in the usual way: u∗(x) = limλ↗λ∗ uλ(x).

Lemma 2.4. λ∗(Ω) < +∞.

Proof. Let u be a classical solution of (Pλ,α,γ ) and let (ψ,μ1) with �ψ = 0 on ∂Ω denote the first
eigenpair of β�2 − τ� in H2(Ω) ∩ H1

0(Ω) with ψ > 0. Now let C be such that

∫ (
(τα − βγ )∂νψ − βα∂ν(�ψ)

) = C

∫
ψ.
∂Ω Ω
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Multiplying (Pλ,α,γ ) by ψ and then integrating by parts one arrives at

∫
Ω

(
λ

(1 − u)2
− μ1u − C

)
ψ = 0.

Since ψ > 0 there must exist a point x̄ ∈ Ω where λ

(1−u(x̄))2 − μ1u(x̄) − C � 0. Since α < u(x̄) < 1,

hence one can conclude that λ � sup0<u<1(μ1u + C)(1 − u)2, which shows that λ∗ < +∞. �
In conclusion, we have shown the following description of the minimal branch.

Theorem 2.5. λ∗ ∈ (0,+∞) and the following holds:

1. For each 0 < λ < λ∗ there exists a regular and minimal solution uλ of (Pλ,α,γ ).
2. For each x ∈ Ω the map λ �→ uλ(x) is strictly increasing on (0, λ∗).
3. For λ > λ∗ there are no weak solutions of (Pλ,α,γ ).

3. Stability of the minimal solutions

This section is devoted to the proof of the following stability result for minimal solutions. We shall
need the following notion of H-weak solutions, which is an intermediate class between classical and
weak solutions.

Definition 5. We say that u is an H-weak solution of (Pλ,α,γ ) if u − Φ ∈ H2(Ω) ∩ H1
0(Ω), 0 � u � 1

a.e. in Ω , 1
(1−u)2 ∈ L1(Ω) and

∫
Ω

[β�u�φ + τ∇u∇φ]dx = λ

∫
Ω

φ

(1 − u)2
, ∀φ ∈ W 2,2(Ω) ∩ H1

0(Ω),

where Φ is given by (2). We say that u is an H-weak super-solution (respectively an H-weak
sub-solution) of (Pλ,α,γ ) if for φ � 0 the equality is replaced with � (respectively �) and u � 0
(respectively �), �u � 0 (respectively �) on ∂Ω .

Theorem 3.1. Suppose that (α,γ ) is an admissible pair.

1. The minimal solution uλ is stable, and is the unique semi-stable H-weak solution of (Pλ,α,γ ).
2. The function u∗ := limλ↗λ∗ uλ is a well-defined semi-stable H-weak solution of (Pλ∗,α,γ ).
3. u∗ is the unique H-weak solution of (Pλ∗,α,γ ), and when u∗ is classical solution, then μ1(u∗) = 0.
4. If v is a singular, semi-stable H-weak solution of (Pλ,α,γ ), then v = u∗ and λ = λ∗ .

The main tool is the following comparison lemma which is valid exactly in the class H.

Lemma 3.2. Let (α,γ ) be an admissible pair and u be a semi-stable H-weak solution of (Pλ,α,γ ). Assume U
is a H-weak super-solution of (Pλ,α,γ ). Then

1. u � U a.e. in Ω;
2. if u is a classical solution and μ1(u) = 0 then U = u.

Proof. (i) Define w := u − U . Then by means of the Moreau decomposition for the biharmonic op-
erator (see [2,19]), there exist w1 and w2 ∈ H2(Ω) ∩ H1

0(Ω), with w = w1 + w2, w1 � 0 a.e.,
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β�2 w2 − τ�w2 � 0 in the H-weak sense and
∫
Ω

β�w1�w2 + τ∇w1.∇w2 = 0. Lemma 1.1 gives
that w2 � 0 a.e. in Ω .

Given 0 � φ ∈ C∞
c (Ω), we have

∫
Ω

β�w�φ + τ∇w.∇φ � λ

∫
Ω

(
f (u) − f (U )

)
φ,

where f (u) := (1 − u)−2. Since u is semi-stable, one has

λ

∫
Ω

f ′(u)w2
1 �

∫
Ω

β(�w1)
2 + τ |∇w1|2 =

∫
Ω

β�w�w1 + τ∇w.∇w1 � λ

∫
Ω

(
f (u) − f (U )

)
w1.

Since w1 � w one has

∫
Ω

f ′(u)w w1 �
∫
Ω

(
f (u) − f (U )

)
w1,

which re-arranged gives

∫
Ω

f̃ w1 � 0,

where f̃ (u) = f (u) − f (U ) − f ′(u)(u − U ). The strict convexity of f gives f̃ � 0 and f̃ < 0 whenever
u �= U . Since w1 � 0 a.e. in Ω , one sees that w � 0 a.e. in Ω . The inequality u � U a.e. in Ω is then
established.

(ii) Since u is a classical solution, it is easy to see that the infimum of μ1(u) is attained at some φ.
The function φ is then the first eigenfunction of β�2 −τ�− 2λ

(1−u)3 in H2(Ω)∩ H1
0(Ω). Now we show

that φ is of fixed sign. Using the above decomposition, one has φ = φ1 + φ2 where φi ∈ H2(Ω) ∩
H1

0(Ω) for i = 1,2, φ1 � 0,
∫
Ω

β�φ1�φ2 + τ∇φ1.∇φ2 = 0 and β�2φ2 − τ�φ2 � 0 in the H-weak
sense. If φ changes sign, then φ1 �≡ 0 and φ2 < 0 in Ω (recall that either φ2 < 0 or φ2 = 0 a.e. in Ω).
We can write now

0 = μ1(u) �
∫
Ω

β(�(φ1 − φ2))
2 + τ |∇(φ1 − φ2)|2 − λ f ′(u)(φ1 − φ2)

2∫
Ω

(φ1 − φ2)2

<

∫
Ω

β(�φ)2 + τ |∇φ|2 − λ f ′(u)φ2∫
Ω

φ2

= μ1(u),

in view of φ1φ2 < −φ1φ2 in a set of positive measure, leading to a contradiction.
So we can assume φ � 0, and by Lemma 1.1 we have φ > 0 in Ω . For 0 � t � 1, define

g(t) =
∫

β�
[
tU + (1 − t)u

]
�φ + τ∇[

tU + (1 − t)u
]
.∇φ − λ

∫
f
(
tU + (1 − t)u

)
φ,
Ω Ω



A. Moradifam / J. Differential Equations 248 (2010) 594–616 601
where φ is the above first eigenfunction. Since f is convex one sees that

g(t) � λ

∫
Ω

[
t f (U ) + (1 − t) f (u) − f

(
tU + (1 − t)u

)]
φ � 0

for every t � 0. Since g(0) = 0 and

g′(0) =
∫
Ω

β�(U − u)�φ + τ∇(U − u).∇φ − λ f ′(u)(U − u)φ = 0,

we get that

g′′(0) = −λ

∫
Ω

f ′′(u)(U − u)2φ � 0.

Since f ′′(u)φ > 0 in Ω , we finally get that U = u a.e. in Ω . �
A more general version of Lemma 3.2 is available in the following.

Lemma 3.3. Let (α,γ ) be an admissible pair and γ ′ � 0. Let u be a semi-stable H-weak sub-solution of
(Pλ,α,γ ) with u = α′ � α, �u = β ′ � β on ∂Ω . Assume that U is a H-weak super-solution of (Pλ,α,γ ) with
U = α, �U = β on ∂Ω . Then U � u a.e. in Ω .

Proof. Let ũ ∈ H2(Ω) ∩ H1
0(Ω) denote a weak solution of β�2ũ − τ�ũ = β�2(u − U ) − τ�(u − U )

in Ω and ũ = �ũ = 0 on ∂Ω . Since ũ − u + U � 0 and �(ũ − u + U ) � 0 on ∂Ω , by Lemma 1.1
one has that ũ � u − U a.e. in Ω . By means of the Moreau decomposition (see [2,19]) we write
ũ as ũ = w + v , where w, v ∈ H2

0(Ω), w � 0 a.e. in Ω , β�2 v − τ�v � 0 in a H-weak sense and∫
Ω

β�w�v + τ∇w.∇v = 0. Then for 0 � φ ∈ W 4,2(Ω̄) ∩ H1
0(Ω), one has

∫
Ω

β�ũ�φ + τ∇ũ.∇φ � λ

∫
Ω

(
f (u) − f (U )

)
φ.

In particular, we have

∫
Ω

β�ũ�w + τ∇ũ.∇w � λ

∫
Ω

(
f (u) − f (U )

)
w.

Since the semi-stability of u gives that

λ

∫
Ω

f ′(u)w2 �
∫
Ω

β(�w)2 + τ |∇w|2 =
∫
Ω

β�ũ�w + τ∇ũ.∇w,

we get that

∫
f ′(u)w2 �

∫ (
f (u) − f (U )

)
w.
Ω Ω
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By Lemma 1.1 we have v � 0 and then w � ũ � u − U a.e. in Ω . So we obtain that

0 �
∫
Ω

(
f (u) − f (U ) − f ′(u)(u − U )

)
w.

The strict convexity of f implies that U � u a.e. in Ω . �
We need also some a priori estimates along the minimal branch uλ .

Lemma 3.4. Let (α,γ ) be an admissible pair. Then for every λ ∈ (0, λ∗), we have

2
∫
Ω

(uλ − Φ)2

(1 − uλ)3
�

∫
Ω

uλ − Φ

(1 − uλ)2
,

where Φ is given by (2). In particular, there is a constant C > 0 independent of λ so that

∫
Ω

(
τ |∇uλ|2 + β|�uλ|2

)
dx +

∫
Ω

1

(1 − uλ)3
� C, (4)

for every λ ∈ (0, λ∗).

Proof. Testing (Pλ,α,γ ) on uλ − Φ ∈ W 4,2(Ω) ∩ H1
0(Ω), we see that

λ

∫
Ω

uλ − Φ

(1 − uλ)2
=

∫
Ω

(
τ
∣∣∇(uλ − Φ)

∣∣2 + β
(
�(uλ − Φ)

)2)
dx � 2λ

∫
Ω

(uλ − Φ)2

(1 − uλ)3
.

In the view of β�2Φ − τ�Φ = 0. In particular, for δ > 0 small we have that

∫
{|uλ|�δ}

1

(1 − uλ)3
� 1

δ2

∫
{|uλ−Φ|�δ}

(uλ − Φ)2

(1 − uλ)3
� 1

δ2

∫
Ω

1

(1 − uλ)2

� δ

∫
{|uλ−Φ|�δ}

1

(1 − uλ)3
+ Cδ

by means of Young’s inequality. Since for δ small

∫
{|uλ−Φ|�δ}

1

(1 − uλ)3
� C,

for some C > 0, we get that

∫
Ω

1

(1 − uλ)3
� C,

for some C > 0 and for every λ ∈ (0, λ∗). Since
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∫
Ω

(
τ |∇uλ|2 + β|�uλ|2

)
dx =

∫
Ω

(β�uλ�Φ + τ∇uλ.∇Φ) + λ

∫
Ω

uλ − Φ

(1 − uλ)2

� δ

∫
Ω

(
τ |∇uλ|2 + β|�uλ|2

)
dx + Cδ + C

(∫
Ω

1

(1 − uλ)3

) 2
3

in view of Young’s and Hölder’s inequalities, estimate (4) is finally established. �
Proof of Theorem 3.1. (1) Since ‖uλ‖∞ < 1, the infimum defining μ1(uλ) is achieved at a first eigen-
function for every λ ∈ (0, λ∗). Since λ �→ uλ(x) is increasing for every x ∈ Ω , it is easily seen that
λ �→ μ1(uλ) is a decreasing and continuous function on (0, λ∗). Define

λ∗∗ := sup
{

0 < λ < λ∗: μ1(uλ) > 0
}
.

We have that λ∗∗ = λ∗ . Indeed, otherwise we would have μ1(uλ∗∗ ) = 0, and for every μ ∈ (λ∗∗, λ∗),
uμ would be a classical super-solution of (Pλ∗∗,α,γ ). A contradiction arises since Lemma 3.2 implies
uμ = uλ∗∗ . Finally, Lemma 3.2 guarantees the uniqueness in the class of semi-stable H-weak solutions.

(2) It follows from (4) that uλ → u∗ in a pointwise sense and weakly in H2(Ω), and 1
1−u∗ ∈ L3(Ω).

In particular, u∗ is a H2-weak solution of (Pλ∗,α,γ ) which is also semi-stable as the limiting function
of the semi-stable solutions {uλ}.

(3) Whenever ‖u∗‖∞ < 1, the function u∗ is a classical solution, and by the Implicit Function
Theorem we have that μ1(u∗) = 0 to prevent the continuation of the minimal branch beyond λ∗ . By
Lemma 3.2, u∗ is then the unique H-weak solution of (Pλ∗,α,γ ).

(4) If λ < λ∗ , we get by uniqueness that v = uλ . So v is not singular and a contradiction arises.
Now, by Theorem 3(3) we have that λ = λ∗ . Since v is a semi-stable H-weak solution of (Pλ∗,α,γ )

and u∗ is a H-weak super-solution of (Pλ∗,α,γ ), we can apply Lemma 3.2 to get v � u∗ a.e. in Ω .
Since u∗ is also a semi-stable solution, we can reverse the roles of v and u∗ in Lemma 3.2 to see that
v � u∗ a.e. in Ω . So equality v = u∗ holds and the proof is done. �
4. Regularity of the extremal solutions in dimensions N ��� 8

In this section we shall show that the extremal solution is regular in small dimensions. Let us
begin with the following lemma.

Lemma 4.1. Let N � 5 and (u∗, λ∗) be the extremal pair of (Pλ). If u∗ is singular, and he set

Γ := {
r ∈ (0,1): uδ(r) > u∗(r)

}
(5)

is non-empty, where uδ(x) := 1 − Cδ |x| 4
3 and Cδ > 1 is a constant. Then there exists r1 ∈ (0,1) such that

uδ(r1) � u∗(r1) and �uδ(r1) � �u∗(r1).

Proof. Assume by contradiction that for every r with uδ(r1) � u∗(r1) one has �uδ(r1) > �u∗(r1).
Since Γ is non-empty and

uδ(1) = 1 − Cδ < 0 = u∗(1),

there exists s1 ∈ (0,1) such that uδ(s1) = u∗(s1). We claim that

uδ(s) > u∗(s),
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for 0 < s < s1. Assume that there exist s3 < s2 � s1 such that u∗(s2) = uδ(s2), u∗(s3) = uδ(s3) and
uδ(s) � u∗(s) for s ∈ (s3, s2). By our assumption �us > �u∗(s) for s ∈ (s3, s2) which contradicts the
maximum principle and justifies the claim. Therefore uδ(s) > u∗(s) for 0 < s < s1. Now set w :=
uδ − u∗ . Then w � 0 on Bs1 and �w � 0 in Bs1 . Since w(0) = 0, by strong maximum principle we
get w ≡ 0 on Bs1 . This is a contradiction and completes the proof. �
Theorem 4.2. Let N � 5 and (u∗, λ∗) be the extremal pair of (Pλ). When u∗ is singular, then

1 − u∗ � C |x| 4
3 in B,

where C := ( λ∗
βλ̄

)
1
3 and λ̄ := 8(N− 2

3 )(N− 8
3 )

9 .

Proof. For δ > 0, define uδ(x) := 1 − Cδ |x| 4
3 with Cδ := ( λ∗

βλ̄
+ δ)

1
3 > 1. Since N � 5, we have that

uδ ∈ H2
loc(R

N ) and uδ is a H-weak solution of

β�2uδ − τ�uδ = λ∗ + βδλ̄

(1 − uδ)2
+ 4

3
τCδ

(
N − 2

3

)
|x|− 2

3 in R
N .

We claim that uδ � u∗ in B , which will finish the proof by just letting δ → 0.
Assume by contradiction that the set Γ := {r ∈ (0,1): uδ(r) > u∗(r)} is non-empty. By Lemma 4.1

the set

Λ := {
r ∈ (0,1): uδ(r) � u∗(r) and �uδ(r) � �u∗(r)

}

is non-empty. Let r1 ∈ Λ. Since

uδ(1) = 1 − Cδ < 0 = u∗(1),

we have that 0 < r1 < 1. Define

α := u∗(r1) � uδ(r1), γ := �u∗(r1) � �uδ(r1).

Setting uδ,r1 = r
− 4

3
1 (uδ(r1r)−1)+1, we see that uδ,r1 is a H-weak super-solution of (P

λ∗+δλ,β,r−2
1 τ ,α′,γ ′ ),

where

α′ := r
− 4

3
1 (α − 1) + 1, γ ′ = r

2
3
1 γ .

Similarly, define u∗
r1

(r) = r
− 4

3
1 (u∗(r1r) − 1) + 1. Note that �2u∗ − α�u∗ � 0 in B and �u∗ = 0 on ∂ B .

Hence, by maximum principle we have �u∗ � 0 in B and therefore γ ′ � 0. Also obviously α′ < 1.
So, (α′, γ ′) is an admissible pair and by Theorem 3.1(4) we get that (u∗

r1
, λ∗) coincides with the

extremal pair of (P
λ,β,r−2

1 τ ,α′,γ ′) in B . Also by Lemma 2.2 we get the existence of a week solution of

(P
λ∗+δλ,β,r−2

1 τ ,α′,γ ′). Since λ∗ + δλ > λ∗ , we contradict the fact that λ∗ is the extremal parameter of

(P
λ,β,r−2

1 τ ,α′,γ ′ ). �
Now we are ready to prove the following result.

Theorem 4.3. If 5 � N � 8, then the extremal solution u∗ of (P )λ is regular.
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Proof. Assume that u∗ is singular. For ε > 0 define ϕ(x) := |x| 4−N
2 +ε and note that

(�ϕ)2 = (
HN + O (ε)

)|x|−N+2ε, where HN := N2(N − 4)2

16
.

Given η ∈ C∞
0 (B), and since N � 5, we can use the test function ηϕ ∈ H2

0(B) into the stability in-
equality to obtain

2λ∗
∫
B

ϕ2

(1 − u∗)3
� β

∫
B

(�ϕ)2 + τ

∫
B

|∇ϕ|2 + O (1),

where O (1) is a bounded function as ε → 0. By Theorem 4.2 we find

2λ̄

∫
B

ϕ2

|x|4 �
∫
B

(�ϕ)2 + O (1),

and then

2λ̄

∫
B

|x|−N+2ε �
(

HN + O (ε)
)∫

B

|x|−N+2ε + O (1).

Computing the integrals on obtains

2λ̄ � HN + O (ε).

Letting ε → 0 we get 2λ̄ � HN . Graphing this relation we see that N � 9. �
5. The extremal solution is singular in dimensions N ��� 9

In this section we will show that the extremal solution u∗ of (Pλ,β,τ ,0,0) in dimensions N � 9
is singular for τ > 0 sufficiently small. To do this, first we shall show that the extremal solution of
(Pλ,1,0,0,0) is singular in dimensions N � 9. Again to cut down the notation we won’t always indicate
that β = 1 and τ = 0.

We have to distinguish between three different ranges for the dimension. For each range, we will
need a suitable Hardy–Rellich type inequality that will be established in Appendix A, by using the
recent results of Ghoussoub and Moradifam [12].

• Case N � 16. To establish the singularity of u∗ for these dimensions we shall need the classical
Hardy–Rellich inequality, which is valid for all φ ∈ H2(B) ∩ H1

0(B):

∫
B

(�φ)2 dx � N2(N − 4)2

16

∫
B

φ2

|x|4 dx. (6)

• Case 10 � N � 16. For this case, we shall need the following inequality valid for all φ ∈ H2(B) ∩
H1

0(B),
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∫
B

(�φ)2 � (N − 2)2(N − 4)2

16

∫
B

φ2

(|x|2 − N
2(N−1)

|x| N
2 +1)(|x|2 − |x| N

2 )

+ (N − 1)(N − 4)2

4

∫
B

φ2

|x|2(|x|2 − |x| N
2 )

. (7)

• Case N = 9. This case is the trickiest and will require the following inequality for all φ ∈ H2(B) ∩
H1

0(B), which is valid for N � 7,

∫
B

|�u|2 �
∫
B

W
(|x|)u2. (8)

where

W (r) = K (r)

(
(N − 2)2

4(r2 − N
2(N−1)

r
N
2 +1)

+ (N − 1)

r2

)
,

K (r) = −ϕ′′(r) + (n−3)
r ϕ′(r)

ϕ(r)
,

and

ϕ(r) = r− N
2 +2 + 9r−2 + 10r − 20.

The next lemma will be our main tool to guarantee that u∗ is singular for N � 9. The proof is
based on an upper estimate by a singular stable sub-solution.

Lemma 5.1. Suppose there exist λ′ > 0 and a radial function u ∈ H2(B) ∩ W 4,∞
loc (B \ {0}) such that

�2u � λ′

(1 − u)2
for 0 < r < 1, (9)

u(1) = 0, �u|r=1 = 0, (10)

u is singular, (11)

and

2β

∫
B

ϕ2

(1 − u)3
�

∫
B

(�ϕ)2 for all ϕ ∈ H2(B) ∩ H1
0(B), (12)

for some β > λ′ . Then u∗ is singular and

λ∗ � λ′. (13)
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Proof. By Lemma 3.3 we have (13). Let λ′
β

< γ < 1 and

α :=
(

γ λ∗

λ′

) 1
3

, (14)

and define ū := 1 − α(1 − u). We claim that

u∗ � ū in B. (15)

To prove this, we shall show that for λ < λ∗ ,

uλ � ū in B. (16)

Indeed, we have

�2(ū) = α�2(ū) � αλ′

(1 − u)2
= α3λ′

(1 − ū)2
.

By (13) and the choice of α,

α3λ′ < λ∗.

To prove (15) it suffices to prove it for α3λ′ < λ < λ∗ . Fix such λ and assume that (15) is not true.
Then

Λ = {
0 � R � 1

∣∣ uλ(R) > ū(R)
}
,

in non-empty. There exists 0 < R1 < 1, such that uλ(R1) � u∗(R1) and �uλ(R1) � �u∗(R1), since
otherwise we can find 0 < s1 < s2 < 1 so that uλ(s1) = ū(s1), uλ(s2) = ū(s2), uλ(R) > ū(R), and
�uλ(R1) > �u∗(R1) which contradict the maximum principle. Now consider the following problem

�2u = λ

(1 − u)2
in B,

u = uλ(R1) on ∂ B,

�u = �uλ on ∂ B.

Then uλ is a solution to the above problem while ū is a sub-solution to the same problem. Moreover
ū is stable since,

λ < λ∗

and hence

2λ

(1 − ū)3
� 2λ∗

α3(1 − u)3
= 2λ′

γ (1 − u)3
<

2β

(1 − u)3
.
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Table 1
Summary.

N λ′
N βN

9 249 251

10 320 367

11 405 574

12 502 851

13 610 1211

14 730 1668

15 860 2235

16 � N � 30 H N
2 − 1 H N

2

N � 31 27λ̄ H N
2

We deduce ū � uλ in B R1 which is impossible, since ū is singular while uλ is smooth. This estab-
lishes (15). From (15) and the above two inequalities we have

2λ∗

(1 − u∗)3
� 2λ′

γ (1 − u)3
<

β

(1 − u)3
.

Thus

inf
ϕ∈C∞

0

(B)

∫
B(�ϕ)2 − 2λ∗ϕ2

(1−u∗)3∫
B ϕ2

> 0.

This is not possible if u∗ is a smooth solution. �
For any m > 4

3 define

wm := 1 − aN,mr
4
3 + bN,mrm,

where

aN,m := m(N + m − 2)

m(N + m − 2) − 4
3 (N − 2/3)

and bN,m :=
4
3 (N − 2/3)

m(N + m − 2) − 4
3 (N − 2/3)

.

Now we are ready to prove the main result of this section.

Theorem 5.2. The following upper bounds on λ∗ hold in large dimensions.

1. If N � 31, then Lemma 5.1 holds with u := w2 , λ′
N = 27λ̄ and β = HN

2 > 27λ̄.

2. If 16 � N � 30, then Lemma 5.1 holds with u := w3 , λ′
N = HN

2 − 1, βN = HN
2 .

3. If 10 � N � 15, then Lemma 5.1 holds with u := w3 , λ′
N < βN given in Table 1.

4. If N = 9, then Lemma 5.1 holds with u := w2.8 , λ′
9 := 249 < β9 := 251.

The extremal solution is therefore singular for dimensions N � 9.

Proof. (1) Assume first that N � 31, then it is easy to see that aN,2 < 3 and a3
N,2λ̄ � 27λ̄ < HN

2 .
We shall show that w2 is a singular H-weak sub-solution of (P )a3 λ̄ which is stable.Note that
N,2
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w2 ∈ H2(B), 1
1−w2

∈ L3(B), 0 � w2 � 1 in B , and

�2 w2 �
a3

N,2λ̄

(1 − w2)2
in B \ {0}.

So w2 is a H-weak sub-solution of (P )27λ̄ . Moreover,

w2 = 1 − |x| 4
3 + (aN,2 − 1)

(|x| 4
3 − |x|2) � 1 − |x| 4

3 .

Since 27λ̄ � HN
2 , we get that

54λ̄

∫
B

ϕ2

(1 − w2)3
� HN

∫
B

ϕ2

(1 − w2)3
� HN

∫
B

ϕ2

|x|4 �
∫
B

(�ϕ)2

for all ϕ ∈ C∞
0 (B). Hence, w2 is stable. Thus it follows from Lemma 5.1 that u∗ is singular and

λ∗ � 27λ̄.
(2) Assume 16 � N � 30 and consider

w3 := 1 − aN,3r
4
3 + bN,3r3.

We show that it is a singular H-weak sub-solution of (P HN
2 −1

) which is stable. Indeed, we clearly

have 0 � w3 � 1 a.e. in B , w3 ∈ H2(B) and 1
1−w3

∈ L3(B). Note that

HN

∫
B

ϕ2

(1 − w3)3
= HN

∫
B

ϕ2

(aN,mr
4
3 − bN,mrm)3

� sup
0<r<1

HN

(aN,m − bN,mrm− 4
3 )3

∫
B

ϕ2

r4

= HN

∫
B

ϕ2

r4
�

∫
B

(�ϕ)2.

Using maple one can verify that for 16 � N � 31,

�2 w3 �
H N
2 − 1

(1 − w3)2
on (0,1).

Hence, w3 is a sub-solution of (P HN
2 −1

). By Lemma 5.1 u∗ is singular and λ∗ � HN
2 − 1.

(3) Assume 10 � N � 15. We shall show that w3 satisfies the assumptions of Lemma 5.1 for each
dimension 10 � N � 15. Using maple, for each dimension 10 � N � 15, one can verify that inequality
(17) holds for λ′

N given by Table 1. Then, by using maple again, we show that there exists βN > λ′
N

such that

(N − 2)2(N − 4)2

16

1

(|x|2 − N
2(N−1)

|x| N
2 +1)(|x|2 − |x| N

2 )
+ (N − 1)(N − 4)2

4

1

|x|2(|x|2 − |x| N
2 )

� 2βN
3
.

(1 − w3)
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The above inequality and improved Hardy–Rellich inequality (30) guarantee that the stability condi-
tion (20) holds for βN > λ′ . Hence, by Lemma 5.1 the extremal solution is singular for 10 � N � 15.
The values of λN and βN are shown in Table 1.

(4) Let u := w2.8. Using Maple on can see that

�2u � 249

(1 − u)2
in B

and

502

(1 − u(r))3
� W (r) for all r ∈ (0,1),

where W is given by (32). Since, 502 > 2 × 249, by Lemma 5.1 the extremal solution u∗ is singular in
dimension N = 9. �
Remark 5.3. It follows from the proof of Theorem 5.2 that for N � 9 and τ

β
sufficiently small, there

exists u ∈ H2(B) ∩ W 4,∞
loc (B \ {0}) such that

�2u − τ

β
�u �

λ′′
N

(1 − u)2
for 0 < r < 1, (17)

u(1) = 0, �u|r=1 = 0, (18)

u is singular, (19)

and

2β ′
N

∫
B

ϕ2

(1 − u)3
�

∫
B

(�ϕ)2 + τ

β
|∇ϕ|2 for all ϕ ∈ H2(B) ∩ H1

0(B), (20)

where β ′
N > λ′′

N > 0 are constants. Indeed, for each dimension N � 9, it is enough to take u to be the
sub-solution we constructed in the proof of Theorem 5.2, β ′

N := βN , λ′ < λ′′ < β . If τ
β

is sufficiently

small so that − τ
β
�u < λ′′−λ′

(1−u)2 on (0,1), then with an argument similar to that of Lemma 5.1 we

deduce that the extremal solution u∗ of (Pλ,β,τ ,0,0) is singular. We believe that the extremal solution
of (Pλ,β,τ ,0,0) is singular for all β, τ > 0 in dimensions N � 9.
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Appendix A. Improved Hardy–Rellich inequalities

We now prove the improved Hardy–Rellich inequalities used in Section 4. They rely on the re-
sults of Ghoussoub and Moradifam in [12] which provide necessary and sufficient conditions for such
inequalities to hold. At the heart of this characterization is the following notion of a Bessel pair of
functions.

Definition 6. Assume that B is a ball of radius R in R
N , V , W ∈ C1(0,1), and

∫ R
0

1
rN−1 V (r)

dr = +∞.

Say that the couple (V , W ) is a Bessel pair on (0, R) if the ordinary differential equation
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y′′(r) +
(

N − 1

r
+ Vr(r)

V (r)

)
y′(r) + W (r)

V (r)
y(r) = 0 (BV ,W )

has a positive solution on the interval (0, R).

The needed inequalities will follow from the following two results.

Theorem A.1. (See Ghoussoub and Moradifam [12].) Let V and W be positive radial C1-functions on B\{0},
where B is a ball centered at zero with radius R in R

N (N � 1) such that
∫ R

0
1

rN−1 V (r)
dr = +∞ and∫ R

0 rN−1 V (r)dr < +∞. The following statements are then equivalent:

1. (V , W ) is a Bessel pair on (0, R).

2.
∫

B V (|x|)|∇φ|2 dx �
∫

B W (|x|)φ2 dx for all φ ∈ C∞
0 (B).

Theorem A.2. Let B be the unit ball in R
N (N � 5). Then the inequality

∫
B

|�u|2 dx �
∫
B

|∇u|2
|x|2 − N

2(N−1)
|x| N

2 +1
dx + (N − 1)

∫
B

|∇u|2
|x|2 dx (21)

holds for all u ∈ C∞
0 (B̄).

We shall need the following result to prove (21).

Lemma A.3. For every u ∈ C1([0,1]) the following inequality holds

1∫
0

∣∣u′(r)
∣∣2

rN−1 dr �
1∫

0

u2

r2 − N
2(N−1)

r
N
2 +1

rN−1 dr − (N − 1)
(
u(1)

)2
. (22)

Proof. Let ϕ := r− N
2 +1 − N

2(N−1)
and k(r) := rN−1. Define ψ(r) = u(r)/ϕ(r), r ∈ [0,1]. Then

1∫
0

∣∣u′(r)
∣∣2

k(r)dr =
1∫

0

∣∣ψ(r)
∣∣2∣∣ϕ′(r)

∣∣2
k(r)dr +

1∫
0

2ϕ(r)ϕ′(r)ψ(r)ψ ′(r)k(r)dr

+
1∫

0

∣∣ϕ(r)
∣∣2∣∣ψ ′(r)

∣∣2
k(r)dr

=
1∫

0

∣∣ψ(r)
∣∣2(∣∣ϕ′(r)

∣∣2
k(r) − (kϕϕ′)′(r)

)
dr +

1∫
0

∣∣ϕ(r)
∣∣2∣∣ψ ′(r)

∣∣2
k(r)dr

+ ψ2(1)ϕ′(1)ϕ(1)

�
1∫ ∣∣ψ(r)

∣∣2(∣∣ϕ′(r)
∣∣2

k(r) − (kϕϕ′)′(r)
)

dr + ψ2(1)ϕ′(1)ϕ(1).
0
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Note that ψ2(1)ϕ′(1)ϕ(1) = u2(1)
ϕ′(1)
ϕ(1)

= −(N − 1)u2(1). Hence, we have

1∫
0

∣∣u′(r)
∣∣2

k(r)dr �
1∫

0

−u2(r)

(
k′(r)ϕ′(r) + k(r)ϕ′′(r)

ϕ

)
dr − (N − 1)u2(1) (23)

Simplifying the above inequality we get (22). �
The decomposition of a function into its spherical harmonics will be one of our tools to prove

Theorem A.2. Let u ∈ C∞
0 (B̄). By decomposing u into spherical harmonics we get

u = Σ∞
k=0uk where uk = fk

(|x|)ϕk(x)

and (ϕk(x))k are the orthonormal eigenfunctions of the Laplace–Beltrami operator with corresponding
eigenvalues ck = k(N + k − 2), k � 0. The functions fk belong to u ∈ C∞([0,1]), fk(1) = 0, and satisfy
fk(r) = O (rk) and f ′(r) = O (rk−1) as r → 0. In particular,

ϕ0 = 1 and f0 = 1

NωNrN−1

∫
∂ Br

u ds = 1

NωN

∫
|x|=1

u(rx)ds. (24)

We also have for any k � 0, and any continuous real valued W on (0,1),

∫
B

|�uk|2 dx =
∫
B

(
� fk

(|x|) − ck
fk(|x|)
|x|2

)2

dx, (25)

and

∫
B

W
(|x|)|∇uk|2 dx =

∫
B

W
(|x|)|∇ fk|2 dx + ck

∫
B

W
(|x|)|x|−2 f 2

k dx. (26)

Now we are ready to prove Theorem A.2. We shall use the inequality

1∫
0

∣∣x′(r)
∣∣2

rN−1 dr � (N − 2)2

4

1∫
0

x2(r)

r2 − N
2(N−1)

r
N
2 +1

rN−1 dr

for all x ∈ C1([0,1]) with x(1) = 0. (27)

Proof of Theorem A.2. For all N � 5 and k � 0, we have

1

N w N

∫
B

|�uk|2 dx = 1

N w N

∫
B

(
� fk

(|x|) − ck
fk(|x|)
|x|2

)2

dx

=
1∫ (

f ′′
k (r) + N − 1

r
f ′
k(r) − ck

fk(r)

r2

)2

rN−1 dr
0
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=
1∫

0

(
f ′′
k (r)

)2
rN−1 dr + (N − 1)2

1∫
0

(
f ′
k(r)

)2
rN−3 dr

+ c2
k

1∫
0

f 2
k (r)rN−5 + 2(N − 1)

1∫
0

f ′′
k (r) f ′

k(r)r
N−2

− 2ck

1∫
0

f ′′
k (r) fk(r)r

N−3 dr − 2ck(N − 1)

1∫
0

f ′
k(r) fk(r)r

N−4 dr.

Integrate by parts and use (24) for k = 0 to get

1

NωN

∫
B

|�uk|2 dx �
1∫

0

(
f ′′
k (r)

)2
rN−1 dr + (N − 1 + 2ck)

1∫
0

(
f ′
k(r)

)2
rN−3 dr

+ (
2ck(n − 4) + c2

k

) 1∫
0

rn−5 f 2
k (r)dr + (N − 1)

(
f ′
k(1)

)2
. (28)

Now define gk(r) = fk(r)
r and note that gk(r) = O (rk−1) for all k � 1. We have

1∫
0

(
f ′
k(r)

)2
rN−3 =

1∫
0

(
g′

k(r)
)2

rN−1 dr +
1∫

0

2gk(r)g′
k(r)r

N−2 dr +
1∫

0

g2
k (r)rN−3 dr

=
1∫

0

(
g′

k(r)
)2

rN−1 dr − (N − 3)

1∫
0

g2
k (r)rN−3 dr.

Thus,

1∫
0

(
f ′
k(r)

)2
rN−3 � (N − 2)2

4

1∫
0

f 2
k (r)

r2 − N
2(N−1)

r
N
2 +1

rN−3 dr − (N − 3)

1∫
0

f 2
k (r)rN−5 dr. (29)

Substituting 2ck
∫ 1

0 ( f ′
k(r))

2rN−3 in (28) by its lower estimate in the last inequality (29), and using
Lemma A.3, we get

1

NωN

∫
B

|�uk|2 dx � (N − 2)2

4

1∫
0

( f ′
k(r))

2

r2 − N
2(N−1)

r
N
2 +1

rN−1 dr

+ 2ck
(N − 2)2

4

1∫
f 2
k (r)

r2 − N
2(N−1)

r
N
2 +1

rn−3 dr
0
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+ (N − 1)

1∫
0

(
f ′
k(r)

)2
rN−3 dr + ck(N − 1)

1∫
0

(
fk(r)

)2
rN−5 dr

+ ck
(
ck − (N − 1)

) 1∫
0

rN−5 f 2
k (r)dr + ck

1∫
0

(N − 2)2

4(r2 − N
2(N−1)

r
N
2 +1)

− 2

r2
dr

� (N − 2)2

4

1∫
0

( f ′
k(r))

2

r2 − N
2(N−1)

r
N
2 +1

rN−1 dr

+ ck
(N − 2)2

4

1∫
0

f 2
k (r)

r2 − N
2(N−1)

r
N
2 +1

rn−3 dr

+ (N − 1)

1∫
0

(
f ′
k(r)

)2
rN−3 dr + ck(N − 1)

1∫
0

(
fk(r)

)2
rN−5 dr.

The proof is complete in the view of (26). �
We shall now deduce the following corollary.

Corollary A.4. Let N � 5 and B be the unit ball in R
N . Then the following improved Hardy–Rellich inequality

holds for all φ ∈ H2(B) ∩ H1
0(B):

∫
B

(�φ)2 � (N − 2)2(N − 4)2

16

∫
B

φ2

(|x|2 − N
2(N−1)

|x| N
2 +1)(|x|2 − |x| N

2 )

+ (N − 1)(N − 4)2

4

∫
B

φ2

|x|2(|x|2 − |x| N
2 )

. (30)

Proof. Let α := N
2(N−1)

and V (r) := 1

r2−αr
N
2 +1

and note that

Vr

V
= −2

r
+ α(N − 2)

2

r
N
2 −2

1 − αr
N
2 −1

� −2

r
.

The function y(r) = r− N
2 +2 − 1 is decreasing and is then a positive super-solution on (0,1) for the

ODE

y′′ +
(

N − 1

r
+ Vr

V

)
y′(r) + W1(r)

V (r)
y = 0,

where

W1(r) = (N − 4)2

2 N
2 2 N

2 +1
.

4(r − r )(r − αr )
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Hence, by Theorem A.1 we deduce

∫
B

|∇φ|2
|x|2 − α|x| N

2 +1
�

(
N − 4

2

)2 ∫
B

φ2

(|x|2 − α|x| N
2 +1)(|x|2 − |x| N

2 )

for all φ ∈ H2(B) ∩ H1
0(B). Similarly, for V (r) = 1

r2 we have that

∫
B

|∇φ|2
|x|2 �

(
N − 4

2

)2 ∫
B

φ2

|x|2(|x|2 − |x| N
2 )

for all φ ∈ H2(B) ∩ H1
0(B). Combining the above two inequalities with (21) we get (30). �

Corollary A.5. Let N � 7 and B be the unit ball in R
N . Then the following improved Hardy–Rellich inequality

holds for all φ ∈ H2(B) ∩ H1
0(B):

∫
B

|�u|2 �
∫
B

W
(|x|)u2, (31)

where

W (r) = K (r)

(
(N − 2)2

4(r2 − N
2(N−1)

r
N
2 +1)

+ (N − 1)

r2

)
, (32)

K (r) = −ϕ′′(r) + (n−3)
r ϕ′(r)

ϕ(r)
,

and

ϕ(r) = r− N
2 +2 + 9r−2 + 10r − 20.

Proof. Let α := N
2(N−1)

and V (r) := 1

r2−αr
N
2 +1

. Then ϕ is a sub-solution for the ODE

y′′ +
(

N − 1

r
+ Vr

V

)
y′(r) + W2(r)

V (r)
y = 0,

where

W2(r) = K (r)

r2 − αr
N
2 +1

.

Hence, by Theorem A.1 we have

∫ |∇u|2
|x|2 − α|x| N

2 +1
�

∫
W2

(|x|)u2. (33)
B B



616 A. Moradifam / J. Differential Equations 248 (2010) 594–616
Similarly

∫
B

|∇u|2
|x|2 �

∫
B

W3
(|x|)u2, (34)

where

W3(r) = K (r)

r2
.

Combining the above two inequalities with (22) we get improved Hardy–Rellich inequality (31). �
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