On the critical dimension of a fourth order elliptic problem with negative exponent

Amir Moradifam ${ }^{1}$
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1 Z2

A R T I C LE I N F O

Article history:

Received 10 May 2009
Available online 18 September 2009

Abstract

We study the regularity of the extremal solution of the semilinear biharmonic equation $\beta \Delta^{2} u-\tau \Delta u=\frac{\lambda}{(1-u)^{2}}$ on a ball $B \subset \mathbb{R}^{N}$, under Navier boundary conditions $u=\Delta u=0$ on ∂B, where $\lambda>0$ is a parameter, while $\tau>0, \beta>0$ are fixed constants. It is known that there exists λ^{*} such that for $\lambda>\lambda^{*}$ there is no solution while for $\lambda<\lambda^{*}$ there is a branch of minimal solutions. Our main result asserts that the extremal solution u^{*} is regular $\left(\sup _{B} u^{*}<1\right)$ for $N \leqslant 8$ and $\beta, \tau>0$ and it is singular $\left(\sup _{B} u^{*}=1\right)$ for $N \geqslant 9$, $\beta>0$, and $\tau>0$ with $\frac{\tau}{\beta}$ small. Our proof for the singularity of extremal solutions in dimensions $N \geqslant 9$ is based on certain improved Hardy-Rellich inequalities.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Consider the fourth order elliptic problem

$$
\begin{cases}\beta \Delta^{2} u-\tau \Delta u=\frac{\lambda}{(1-u)^{2}} & \text { in } \Omega \\ 0<u \leqslant 1 & \text { in } \Omega \\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$ is a parameter, $\tau>0, \beta>0$ are fixed constants, and $\Omega \subset \mathbb{R}^{N}(N \geqslant 2)$ is a bounded smooth domain. This problem with $\beta=0$ models a simple electrostatic Micro-Electromechanical Sys-

[^0]tems (MEMS) device which has been recently studied by many authors. For instance, see [3,5,7-11, 14-16], and the references cited therein.

Recently, Lin and Yang [18] derived the equation $\left(G_{\lambda}\right)$ in the study of the charged plates in electrostatic actuators. They showed that there exists $0<\lambda^{*}<\infty$ such that for $\lambda \in\left(0, \lambda^{*}\right)\left(G_{\lambda}\right)$ has a minimal regular solutions $u_{\lambda}\left(\sup _{B} u_{\lambda}<1\right)$ while for $\lambda>\lambda^{*},\left(G_{\lambda}\right)$ does not have any regular solution. Moreover, the branch $\lambda \rightarrow u_{\lambda}(x)$ is increasing for each $x \in B$, and therefore the function $u^{*}=\lim _{\lambda \not \lambda^{*}} u_{\lambda}$ can be considered as a generalized solution that corresponds to the pull-in voltage λ^{*}. Now the important question is whether the extremal solution u^{*} is regular or not. In a recent paper Guo and Wei [17] proved that the extremal solution u^{*} is regular for dimensions $N \leqslant 4$. In this paper we consider the problem $\left(G_{\lambda}\right)$ on the unit ball in \mathbb{R}^{N} :

$$
\begin{cases}\beta \Delta^{2} u-\tau \Delta u=\frac{\lambda}{(1-u)^{2}} & \text { in } B, \\ 0<u \leqslant 1 & \text { in } B, \\ u=\Delta u=0 & \text { on } \partial B,\end{cases}
$$

and show that the critical dimension for $\left(P_{\lambda}\right)$ is $N=9$. Indeed we prove that the extremal solution of $\left(P_{\lambda}\right)$ is regular $\left(\sup _{B} u^{*}<1\right)$ for $N \leqslant 8$ and $\beta, \tau>0$ and it is singular $\left(\sup _{B} u^{*}=1\right)$ for $N \geqslant 9, \beta>0$, and $\tau>0$ with $\frac{\tau}{\beta}$ small. Our proof of regularity of the extremal solution in dimensions $5 \leqslant N \leqslant 8$ is heavily inspired by [4,6]. On the other hand we shall use certain improved Hardy-Rellich inequalities to prove that the extremal solution is singular in dimensions $N \geqslant 9$. Our improve HardyRellich inequalities follow from the recent result of Ghoussoub and Moradifam [12,13] about Hardy and Hardy-Rellich inequalities.

We now start by recalling some of the results from [17] concerning $\left(P_{\lambda}\right)$ that will be needed in the sequel. Define

$$
\lambda^{*}(B):=\sup \left\{\lambda>0:\left(P_{\lambda}\right) \text { has a classical solution }\right\}
$$

We now introduce the following notion of solution.
Definition 1. We say that u is a weak solution of $\left(G_{\lambda}\right)$, if $0 \leqslant u \leqslant 1$ a.e. in $\Omega, \frac{1}{(1-u)^{2}} \in L^{1}(\Omega)$ and if

$$
\int_{\Omega} u\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) d x=\lambda \int_{\Omega} \frac{\phi}{(1-u)^{2}} d x, \quad \forall \phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

Say that u is a weak super-solution (respectively weak sub-solution) of (G_{λ}), if the equality is replaced with \geqslant (respectively \leqslant) for $\phi \geqslant 0$.

We now introduce the notion of stability. First, we equip the function space $\mathcal{H}:=H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)=W^{2,2}(\Omega) \cap H_{0}^{1}(\Omega)$ with the norm

$$
\|\psi\|=\left(\int_{\Omega}\left[\tau|\nabla \psi|^{2}+\beta|\Delta \psi|^{2}\right] d x\right)^{\frac{1}{2}} .
$$

Definition 2. We say that a weak solution u_{λ} of $\left(G_{\lambda}\right)$ is stable (respectively semi-stable) if the first eigenvalue $\mu_{1, \lambda}\left(u_{\lambda}\right)$ of the problem

$$
\begin{equation*}
-\tau \Delta h+\beta \Delta^{2} h-\frac{2 \lambda}{\left(1-u_{\lambda}\right)^{3}} h=\mu h \quad \text { in } \Omega, \quad h=\Delta h=0 \quad \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

is positive (respectively non-negative).

The operator $\beta \Delta^{2} u-\tau \Delta u$ satisfies the following maximum principle which will be frequently used in the sequel.

Lemma 1.1. (See [17].) Let $u \in L^{1}(\Omega)$. Then $u \geqslant 0$ a.e. in Ω, provided one of the following conditions hold:

1. $u \in C^{4}(\bar{\Omega}), \beta \Delta^{2} u-\tau \Delta u \geqslant 0$ on Ω, and $u=\Delta u=0$ on $\partial \Omega$.
2. $\int_{\Omega} u\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) d x \geqslant 0$ for all $0 \leqslant \phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)$.
3. $u \in W^{2,2}(\Omega), u=0, \Delta u \leqslant 0$ on ∂B, and $\int_{\Omega}[\beta \Delta u \Delta \phi+\tau \nabla u \nabla \phi] d x \geqslant 0$ for all $0 \leqslant \phi \in W^{2,2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$.

Moreover, either $u \equiv 0$ or $u>0$ a.e. in Ω.

2. The pull-in voltage

As in $[4,6]$, we are led here to examine problem $\left(P_{\lambda}\right)$ with non-homogeneous boundary conditions such as

$$
\left\{\begin{array}{ll}
\beta \Delta^{2} u-\tau \Delta u=\frac{\lambda}{(1-u)^{2}} & \text { in } B, \\
\alpha<u \leqslant 1 & \text { in } B, \\
u=\alpha, \quad \Delta u=\gamma & \text { on } \partial B,
\end{array} \quad\left(P_{\lambda}, \alpha, \gamma\right)\right.
$$

where α, γ are given. Whenever we need to emphasis the parameters β and τ we will refer to problem $\left(P_{\lambda, \alpha, \gamma}\right)$ as $\left(P_{\lambda, \beta, \tau, \alpha, \gamma}\right)$. In this section and Section 3 we will obtain several results for the following general form of $\left(P_{\lambda}, \alpha, \gamma\right)$,

$$
\begin{cases}\beta \Delta^{2} u-\tau \Delta u=\frac{\lambda}{(1-u)^{2}} & \text { in } \Omega, \\ \alpha<u \leqslant 1 & \text { in } \Omega, \\ u=\alpha, \quad \Delta u=\gamma & \text { on } \partial \Omega,\end{cases}
$$

which are analogous to the results obtained by Gui and Wei for $\left(G_{\lambda}\right)$ in [17].
Let Φ denote the unique solution of

$$
\begin{cases}\beta \Delta^{2} \Phi-\tau \Delta \Phi=0 & \text { in } \Omega, \tag{2}\\ \Phi=\alpha, & \Delta \Phi=\gamma \\ \text { on } \partial \Omega .\end{cases}
$$

We will say that the pair (α, γ) is admissible if $\gamma \leqslant 0, \alpha<1$, and $\sup _{\Omega} \Phi<1$. We now introduce a notion of weak solution.

Definition 3. We say that u is a weak solution of $\left(P_{\lambda, \alpha, \gamma}\right)$, if $\alpha \leqslant u \leqslant 1$ a.e. in $\Omega, \frac{1}{(1-u)^{2}} \in L^{1}(\Omega)$ and if

$$
\int_{\Omega}(u-\Phi)\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right)=\lambda \int_{\Omega} \frac{\phi}{(1-u)^{2}} \quad \forall \phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

where Φ is given in (2). We say u is a weak super-solution (respectively weak sub-solution) of ($P_{\lambda, \alpha, \gamma}$), if the equality is replaced with \geqslant (respectively \leqslant) for $\phi \geqslant 0$.

Definition 4. We say a weak solution u of ($P_{\lambda, \alpha, \gamma}$) is regular (respectively singular) if $\|u\|_{\infty}<1$ (respectively $\|u\|_{\infty}=1$).

We now define

$$
\lambda^{*}(\alpha, \gamma):=\sup \left\{\lambda>0:\left(P_{\lambda, \alpha, \gamma}\right) \text { has a classical solution }\right\}
$$

and

$$
\lambda_{*}(\alpha, \gamma):=\sup \left\{\lambda>0:\left(P_{\lambda, \alpha, \gamma}\right) \text { has a weak solution }\right\} .
$$

Observe that by the Implicit Function Theorem, we can classically solve ($P_{\lambda, \alpha, \gamma}$) for small λ 's. Therefore, $\lambda^{*}(\alpha, \gamma)$ and $\lambda_{*}(\alpha, \gamma)$ are well defined for any admissible pair (α, γ). To cut down on notations we won't always indicate α and γ. For example, λ_{*} and λ^{*} will denote the "weak and strong critical voltages" of ($P_{\lambda, \alpha, \gamma}$).

Now let U be a weak super-solution of ($P_{\lambda, \alpha, \gamma}$) and recall the following existence result.
Theorem 2.1. (See [17].) For every $0 \leqslant f \in L^{1}(\Omega)$ there exists a unique $0 \leqslant u \in L^{1}(\Omega)$ which satisfies

$$
\int_{\Omega} u\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) d x=\int_{\Omega} f \phi d x
$$

for all $\phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)$.
We can introduce the following "weak" iterative scheme: $u_{0}=U$ and (inductively) let $u_{n}, n \geqslant 1$, be the solution of

$$
\int_{\Omega}\left(u_{n}-\Phi\right)\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right)=\lambda \int_{\Omega} \frac{\phi}{\left(1-u_{n-1}\right)^{2}} \quad \forall \phi \in W^{4,2}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)
$$

given by Theorem 2.1. Since 0 is a sub-solution of ($P_{\lambda, \alpha, \gamma}$), inductively it is easily shown by Lemma 1.1 that $\alpha \leqslant u_{n+1} \leqslant u_{n} \leqslant U$ for every $n \geqslant 0$. Since

$$
\left(1-u_{n}\right)^{-2} \leqslant(1-U)^{-2} \in L^{1}(\Omega),
$$

by Lebesgue theorem the function $u=\lim _{n \rightarrow+\infty} u_{n}$ is a weak solution of $\left(P_{\lambda, \alpha, \gamma}\right)$ so that $\alpha \leqslant u \leqslant U$. We therefore have the following result.

Lemma 2.2. Assume the existence of a weak super-solution U of ($P_{\lambda, \alpha, \gamma}$). Then there exists a weak solution u of ($P_{\lambda, \alpha, \gamma}$) so that $\alpha \leqslant u \leqslant U$ a.e. in Ω.

In particular, for every $\lambda \in\left(0, \lambda_{*}\right)$, we can find a weak solution of ($P_{\lambda, \alpha, \gamma}$). In the same range of $\lambda^{\prime} \mathrm{s}$, this is still true for regular weak solutions as shown in the following lemma.

Lemma 2.3. Let (α, γ) be an admissible pair and u be a weak solution of $\left(P_{\lambda, \alpha, \gamma}\right)$. Then, there exists a regular solution for every $0<\mu<\lambda$.

Proof. Let $\epsilon \in(0,1)$ be given and let $\bar{u}=(1-\epsilon) u+\epsilon \Phi$, where Φ is given in (2). By Lemma 1.1 $\sup _{\Omega} \Phi<\sup _{\Omega} u \leqslant 1$. Hence,

$$
\sup _{\Omega} \bar{u} \leqslant(1-\epsilon)+\epsilon \sup _{\Omega} \Phi<1, \quad \inf _{\Omega} \bar{u} \geqslant(1-\epsilon) \alpha+\epsilon \inf _{\Omega} \Phi=\alpha,
$$

and for every $0 \leqslant \phi \in W^{4,2}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$ there holds:

$$
\begin{aligned}
\int_{\Omega}(\bar{u}-\Phi)\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) & =(1-\epsilon) \int_{\Omega}(u-\Phi)\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) \\
& =(1-\epsilon) \lambda \int_{\Omega} \frac{\phi}{(1-u)^{2}} \\
& =(1-\epsilon)^{3} \lambda \int_{\Omega} \frac{\phi}{(1-\bar{u}+\epsilon(\Phi-1))^{2}} \\
& \geqslant(1-\epsilon)^{3} \lambda \int_{\Omega} \frac{\phi}{(1-\bar{u})^{2}} .
\end{aligned}
$$

Note that $0 \leqslant(1-\epsilon)(1-u)=1-\bar{u}+\epsilon(\Phi-1)<1-\bar{u}$. So \bar{u} is a weak super-solution of $\left(P_{(1-\epsilon)^{3} \lambda, \alpha, \gamma}\right)$ so that $\sup _{\Omega} \bar{u}<1$. By Lemma 2.2 we get the existence of a weak solution w of $\left(P_{(1-\epsilon)^{3} \lambda, \alpha, \gamma}\right)$ so that $\alpha \leqslant w \leqslant \bar{u}$. In particular, $\sup _{\Omega} w<1$ and w is a regular weak solution. Since $\epsilon \in(0,1)$ is arbitrarily chosen, the proof is done.

Lemma 2.3 implies the existence of a regular weak solution U_{λ} for every $\lambda \in\left(0, \lambda_{*}\right)$. Introduce now a "classical" iterative scheme: $u_{0}=0$ and (inductively) $u_{n}=v_{n}+\Phi, n \geqslant 1$, where $v_{n} \in W^{4,2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$ is the solution of

$$
\begin{equation*}
\beta \Delta^{2} v_{n}-\tau \Delta v_{n}=\beta \Delta^{2} u_{n}-\tau \Delta u_{n}=\frac{\lambda}{\left(1-u_{n-1}\right)^{2}} \quad \text { in } \Omega \text { and } \Delta v_{n}=0 \text { on } \partial \Omega \tag{3}
\end{equation*}
$$

Since $v_{n} \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega), u_{n}$ is also a weak solution of (3), and by Lemma 1.1 we know that $\alpha \leqslant$ $u_{n} \leqslant u_{n+1} \leqslant U_{\lambda}$ for every $n \geqslant 0$. Since $\sup _{\Omega} u_{n} \leqslant \sup _{\Omega} U_{\lambda}<1$ for $n \geqslant 0$, we get that $\left(1-u_{n-1}\right)^{-2} \in$ $L^{2}(\Omega)$ and the existence of v_{n} is guaranteed. Since v_{n} is easily seen to be uniformly bounded in $H^{2}(\Omega)$, we have that $u_{\lambda}:=\lim _{n \rightarrow+\infty} u_{n}$ does hold pointwise and weakly in $H^{2}(\Omega)$. By Lebesgue theorem, we have that u_{λ} is a radial weak solution of $\left(P_{\lambda}\right)$ so that $\sup _{\Omega} u_{\lambda} \leqslant \sup _{\Omega} U_{\lambda}<1$. By elliptic regularity theory [1], $u_{\lambda} \in C^{\infty}(\bar{\Omega})$ and $u_{\lambda}=\Delta u_{\lambda}=0$ on $\partial \Omega$. So we can integrate by parts to get

$$
\int_{\Omega} \beta\left(\Delta^{2} u_{\lambda}-\tau \Delta u_{\lambda}\right) \phi d x=\int_{\Omega} u_{\lambda}\left(\beta \Delta^{2} \phi-\tau \Delta \phi\right) d x=\lambda \int_{\Omega} \frac{\phi}{\left(1-u_{\lambda}\right)^{2}}
$$

for every $\phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)$. Hence, u_{λ} is a classical solution of (P_{λ}) showing that $\lambda^{*}=\lambda_{*}$.
Since the argument above shows that $u_{\lambda}<U$ for any other classical solution U of (P_{μ}, α, γ) with $\mu \geqslant \lambda$, we have that u_{λ} is exactly the minimal solution and u_{λ} is strictly increasing as $\lambda \uparrow \lambda^{*}$. In particular, we can define u^{*} in the usual way: $u^{*}(x)=\lim _{\lambda / \lambda^{*}} u_{\lambda}(x)$.

Lemma 2.4. $\lambda^{*}(\Omega)<+\infty$.
Proof. Let u be a classical solution of ($P_{\lambda, \alpha, \gamma}$) and let (ψ, μ_{1}) with $\Delta \psi=0$ on $\partial \Omega$ denote the first eigenpair of $\beta \Delta^{2}-\tau \Delta$ in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ with $\psi>0$. Now let C be such that

$$
\int_{\partial \Omega}\left((\tau \alpha-\beta \gamma) \partial_{\nu} \psi-\beta \alpha \partial_{\nu}(\Delta \psi)\right)=C \int_{\Omega} \psi
$$

Multiplying ($P_{\lambda, \alpha, \gamma}$) by ψ and then integrating by parts one arrives at

$$
\int_{\Omega}\left(\frac{\lambda}{(1-u)^{2}}-\mu_{1} u-C\right) \psi=0
$$

Since $\psi>0$ there must exist a point $\bar{x} \in \Omega$ where $\frac{\lambda}{(1-u(\bar{x}))^{2}}-\mu_{1} u(\bar{x})-C \leqslant 0$. Since $\alpha<u(\bar{x})<1$, hence one can conclude that $\lambda \leqslant \sup _{0<u<1}\left(\mu_{1} u+C\right)(1-u)^{2}$, which shows that $\lambda^{*}<+\infty$.

In conclusion, we have shown the following description of the minimal branch.
Theorem 2.5. $\lambda^{*} \in(0,+\infty)$ and the following holds:

1. For each $0<\lambda<\lambda^{*}$ there exists a regular and minimal solution u_{λ} of $\left(P_{\lambda, \alpha, \gamma}\right)$.
2. For each $x \in \Omega$ the map $\lambda \mapsto u_{\lambda}(x)$ is strictly increasing on $\left(0, \lambda^{*}\right)$.
3. For $\lambda>\lambda^{*}$ there are no weak solutions of ($P_{\lambda, \alpha, \gamma}$).

3. Stability of the minimal solutions

This section is devoted to the proof of the following stability result for minimal solutions. We shall need the following notion of \mathcal{H}-weak solutions, which is an intermediate class between classical and weak solutions.

Definition 5. We say that u is an \mathcal{H}-weak solution of $\left(P_{\lambda, \alpha, \gamma}\right)$ if $u-\Phi \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), 0 \leqslant u \leqslant 1$ a.e. in $\Omega, \frac{1}{(1-u)^{2}} \in L^{1}(\Omega)$ and

$$
\int_{\Omega}[\beta \Delta u \Delta \phi+\tau \nabla u \nabla \phi] d x=\lambda \int_{\Omega} \frac{\phi}{(1-u)^{2}}, \quad \forall \phi \in W^{2,2}(\Omega) \cap H_{0}^{1}(\Omega),
$$

where Φ is given by (2). We say that u is an \mathcal{H}-weak super-solution (respectively an \mathcal{H}-weak sub-solution) of ($P_{\lambda, \alpha, \gamma}$) if for $\phi \geqslant 0$ the equality is replaced with \geqslant (respectively \leqslant) and $u \geqslant 0$ (respectively \leqslant), $\Delta u \leqslant 0$ (respectively \geqslant) on $\partial \Omega$.

Theorem 3.1. Suppose that (α, γ) is an admissible pair.

1. The minimal solution u_{λ} is stable, and is the unique semi-stable \mathcal{H}-weak solution of $\left(P_{\lambda, \alpha, \gamma}\right)$.
2. The function $u^{*}:=\lim _{\lambda} \not \lambda^{*} u_{\lambda}$ is a well-defined semi-stable \mathcal{H}-weak solution of $\left(P_{\lambda^{*}, \alpha, \gamma}\right)$.
3. u^{*} is the unique \mathcal{H}-weak solution of $\left(P_{\lambda^{*}, \alpha, \gamma}\right)$, and when u^{*} is classical solution, then $\mu_{1}\left(u^{*}\right)=0$.
4. If v is a singular, semi-stable \mathcal{H}-weak solution of ($P_{\lambda, \alpha, \gamma}$), then $v=u^{*}$ and $\lambda=\lambda^{*}$.

The main tool is the following comparison lemma which is valid exactly in the class \mathcal{H}.
Lemma 3.2. Let (α, γ) be an admissible pair and u be a semi-stable \mathcal{H}-weak solution of ($P_{\lambda, \alpha, \gamma}$). Assume U is a \mathcal{H}-weak super-solution of $\left(P_{\lambda, \alpha, \gamma}\right)$. Then

1. $u \leqslant U$ a.e. in Ω;
2. if u is a classical solution and $\mu_{1}(u)=0$ then $U=u$.

Proof. (i) Define $w:=u-U$. Then by means of the Moreau decomposition for the biharmonic operator (see [2,19]), there exist w_{1} and $w_{2} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, with $w=w_{1}+w_{2}, w_{1} \geqslant 0$ a.e.,
$\beta \Delta^{2} w_{2}-\tau \Delta w_{2} \leqslant 0$ in the \mathcal{H}-weak sense and $\int_{\Omega} \beta \Delta w_{1} \Delta w_{2}+\tau \nabla w_{1} . \nabla w_{2}=0$. Lemma 1.1 gives that $w_{2} \leqslant 0$ a.e. in Ω.

Given $0 \leqslant \phi \in C_{c}^{\infty}(\Omega)$, we have

$$
\int_{\Omega} \beta \Delta w \Delta \phi+\tau \nabla w \cdot \nabla \phi \leqslant \lambda \int_{\Omega}(f(u)-f(U)) \phi
$$

where $f(u):=(1-u)^{-2}$. Since u is semi-stable, one has

$$
\lambda \int_{\Omega} f^{\prime}(u) w_{1}^{2} \leqslant \int_{\Omega} \beta\left(\Delta w_{1}\right)^{2}+\tau\left|\nabla w_{1}\right|^{2}=\int_{\Omega} \beta \Delta w \Delta w_{1}+\tau \nabla w . \nabla w_{1} \leqslant \lambda \int_{\Omega}(f(u)-f(U)) w_{1}
$$

Since $w_{1} \geqslant w$ one has

$$
\int_{\Omega} f^{\prime}(u) w w_{1} \leqslant \int_{\Omega}(f(u)-f(U)) w_{1}
$$

which re-arranged gives

$$
\int_{\Omega} \tilde{f} w_{1} \geqslant 0
$$

where $\tilde{f}(u)=f(u)-f(U)-f^{\prime}(u)(u-U)$. The strict convexity of f gives $\tilde{f} \leqslant 0$ and $\tilde{f}<0$ whenever $u \neq U$. Since $w_{1} \geqslant 0$ a.e. in Ω, one sees that $w \leqslant 0$ a.e. in Ω. The inequality $u \leqslant U$ a.e. in Ω is then established.
(ii) Since u is a classical solution, it is easy to see that the infimum of $\mu_{1}(u)$ is attained at some ϕ. The function ϕ is then the first eigenfunction of $\beta \Delta^{2}-\tau \Delta-\frac{2 \lambda}{(1-u)^{3}}$ in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Now we show that ϕ is of fixed sign. Using the above decomposition, one has $\phi=\phi_{1}+\phi_{2}$ where $\phi_{i} \in H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$ for $i=1,2, \phi_{1} \geqslant 0, \int_{\Omega} \beta \Delta \phi_{1} \Delta \phi_{2}+\tau \nabla \phi_{1} . \nabla \phi_{2}=0$ and $\beta \Delta^{2} \phi_{2}-\tau \Delta \phi_{2} \leqslant 0$ in the \mathcal{H}-weak sense. If ϕ changes sign, then $\phi_{1} \not \equiv 0$ and $\phi_{2}<0$ in Ω (recall that either $\phi_{2}<0$ or $\phi_{2}=0$ a.e. in Ω). We can write now

$$
\begin{aligned}
0=\mu_{1}(u) & \leqslant \frac{\int_{\Omega} \beta\left(\Delta\left(\phi_{1}-\phi_{2}\right)\right)^{2}+\tau\left|\nabla\left(\phi_{1}-\phi_{2}\right)\right|^{2}-\lambda f^{\prime}(u)\left(\phi_{1}-\phi_{2}\right)^{2}}{\int_{\Omega}\left(\phi_{1}-\phi_{2}\right)^{2}} \\
& <\frac{\int_{\Omega} \beta(\Delta \phi)^{2}+\tau|\nabla \phi|^{2}-\lambda f^{\prime}(u) \phi^{2}}{\int_{\Omega} \phi^{2}} \\
& =\mu_{1}(u),
\end{aligned}
$$

in view of $\phi_{1} \phi_{2}<-\phi_{1} \phi_{2}$ in a set of positive measure, leading to a contradiction.
So we can assume $\phi \geqslant 0$, and by Lemma 1.1 we have $\phi>0$ in Ω. For $0 \leqslant t \leqslant 1$, define

$$
g(t)=\int_{\Omega} \beta \Delta[t U+(1-t) u] \Delta \phi+\tau \nabla[t U+(1-t) u] \cdot \nabla \phi-\lambda \int_{\Omega} f(t U+(1-t) u) \phi
$$

where ϕ is the above first eigenfunction. Since f is convex one sees that

$$
g(t) \geqslant \lambda \int_{\Omega}[t f(U)+(1-t) f(u)-f(t U+(1-t) u)] \phi \geqslant 0
$$

for every $t \geqslant 0$. Since $g(0)=0$ and

$$
g^{\prime}(0)=\int_{\Omega} \beta \Delta(U-u) \Delta \phi+\tau \nabla(U-u) . \nabla \phi-\lambda f^{\prime}(u)(U-u) \phi=0,
$$

we get that

$$
g^{\prime \prime}(0)=-\lambda \int_{\Omega} f^{\prime \prime}(u)(U-u)^{2} \phi \geqslant 0
$$

Since $f^{\prime \prime}(u) \phi>0$ in Ω, we finally get that $U=u$ a.e. in Ω.
A more general version of Lemma 3.2 is available in the following.
Lemma 3.3. Let (α, γ) be an admissible pair and $\gamma^{\prime} \leqslant 0$. Let u be a semi-stable \mathcal{H}-weak sub-solution of $\left(P_{\lambda, \alpha, \gamma}\right)$ with $u=\alpha^{\prime} \leqslant \alpha, \Delta u=\beta^{\prime} \geqslant \beta$ on $\partial \Omega$. Assume that U is a \mathcal{H}-weak super-solution of $\left(P_{\lambda, \alpha, \gamma}\right)$ with $U=\alpha, \Delta U=\beta$ on $\partial \Omega$. Then $U \geqslant u$ a.e. in Ω.

Proof. Let $\tilde{u} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ denote a weak solution of $\beta \Delta^{2} \tilde{u}-\tau \Delta \tilde{u}=\beta \Delta^{2}(u-U)-\tau \Delta(u-U)$ in Ω and $\tilde{u}=\Delta \tilde{u}=0$ on $\partial \Omega$. Since $\tilde{u}-u+U \geqslant 0$ and $\Delta(\tilde{u}-u+U) \leqslant 0$ on $\partial \Omega$, by Lemma 1.1 one has that $\tilde{u} \geqslant u-U$ a.e. in Ω. By means of the Moreau decomposition (see $[2,19]$) we write \tilde{u} as $\tilde{u}=w+v$, where $w, v \in H_{0}^{2}(\Omega), w \geqslant 0$ a.e. in $\Omega, \beta \Delta^{2} v-\tau \Delta v \leqslant 0$ in a \mathcal{H}-weak sense and $\int_{\Omega} \beta \Delta w \Delta v+\tau \nabla w \cdot \nabla v=0$. Then for $0 \leqslant \phi \in W^{4,2}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$, one has

$$
\int_{\Omega} \beta \Delta \tilde{u} \Delta \phi+\tau \nabla \tilde{u} \cdot \nabla \phi \leqslant \lambda \int_{\Omega}(f(u)-f(U)) \phi .
$$

In particular, we have

$$
\int_{\Omega} \beta \Delta \tilde{u} \Delta w+\tau \nabla \tilde{u} . \nabla w \leqslant \lambda \int_{\Omega}(f(u)-f(U)) w .
$$

Since the semi-stability of u gives that

$$
\lambda \int_{\Omega} f^{\prime}(u) w^{2} \leqslant \int_{\Omega} \beta(\Delta w)^{2}+\tau|\nabla w|^{2}=\int_{\Omega} \beta \Delta \tilde{u} \Delta w+\tau \nabla \tilde{u} . \nabla w,
$$

we get that

$$
\int_{\Omega} f^{\prime}(u) w^{2} \leqslant \int_{\Omega}(f(u)-f(U)) w .
$$

By Lemma 1.1 we have $v \leqslant 0$ and then $w \geqslant \tilde{u} \geqslant u-U$ a.e. in Ω. So we obtain that

$$
0 \leqslant \int_{\Omega}\left(f(u)-f(U)-f^{\prime}(u)(u-U)\right) w
$$

The strict convexity of f implies that $U \geqslant u$ a.e. in Ω.
We need also some a priori estimates along the minimal branch u_{λ}.
Lemma 3.4. Let (α, γ) be an admissible pair. Then for every $\lambda \in\left(0, \lambda^{*}\right)$, we have

$$
2 \int_{\Omega} \frac{\left(u_{\lambda}-\Phi\right)^{2}}{\left(1-u_{\lambda}\right)^{3}} \leqslant \int_{\Omega} \frac{u_{\lambda}-\Phi}{\left(1-u_{\lambda}\right)^{2}}
$$

where Φ is given by (2). In particular, there is a constant $C>0$ independent of λ so that

$$
\begin{equation*}
\int_{\Omega}\left(\tau\left|\nabla u_{\lambda}\right|^{2}+\beta\left|\Delta u_{\lambda}\right|^{2}\right) d x+\int_{\Omega} \frac{1}{\left(1-u_{\lambda}\right)^{3}} \leqslant C \tag{4}
\end{equation*}
$$

for every $\lambda \in\left(0, \lambda^{*}\right)$.
Proof. Testing ($P_{\lambda, \alpha, \gamma}$) on $u_{\lambda}-\Phi \in W^{4,2}(\Omega) \cap H_{0}^{1}(\Omega)$, we see that

$$
\lambda \int_{\Omega} \frac{u_{\lambda}-\Phi}{\left(1-u_{\lambda}\right)^{2}}=\int_{\Omega}\left(\tau\left|\nabla\left(u_{\lambda}-\Phi\right)\right|^{2}+\beta\left(\Delta\left(u_{\lambda}-\Phi\right)\right)^{2}\right) d x \geqslant 2 \lambda \int_{\Omega} \frac{\left(u_{\lambda}-\Phi\right)^{2}}{\left(1-u_{\lambda}\right)^{3}}
$$

In the view of $\beta \Delta^{2} \Phi-\tau \Delta \Phi=0$. In particular, for $\delta>0$ small we have that

$$
\begin{aligned}
\int_{\left\{\left|u_{\lambda}\right| \geqslant \delta\right\}} \frac{1}{\left(1-u_{\lambda}\right)^{3}} & \leqslant \frac{1}{\delta^{2}} \int_{\left\{\left|u_{\lambda}-\Phi\right| \geqslant \delta\right\}} \frac{\left(u_{\lambda}-\Phi\right)^{2}}{\left(1-u_{\lambda}\right)^{3}} \leqslant \frac{1}{\delta^{2}} \int_{\Omega} \frac{1}{\left(1-u_{\lambda}\right)^{2}} \\
& \leqslant \delta \int_{\left\{\left|u_{\lambda}-\Phi\right| \geqslant \delta\right\}} \frac{1}{\left(1-u_{\lambda}\right)^{3}}+C_{\delta}
\end{aligned}
$$

by means of Young's inequality. Since for δ small

$$
\int_{\left\{\left|u_{\lambda}-\Phi\right| \leqslant \delta\right\}} \frac{1}{\left(1-u_{\lambda}\right)^{3}} \leqslant C
$$

for some $C>0$, we get that

$$
\int_{\Omega} \frac{1}{\left(1-u_{\lambda}\right)^{3}} \leqslant C
$$

for some $C>0$ and for every $\lambda \in\left(0, \lambda^{*}\right)$. Since

$$
\begin{aligned}
\int_{\Omega}\left(\tau\left|\nabla u_{\lambda}\right|^{2}+\beta\left|\Delta u_{\lambda}\right|^{2}\right) d x & =\int_{\Omega}\left(\beta \Delta u_{\lambda} \Delta \Phi+\tau \nabla u_{\lambda} . \nabla \Phi\right)+\lambda \int_{\Omega} \frac{u_{\lambda}-\Phi}{\left(1-u_{\lambda}\right)^{2}} \\
& \leqslant \delta \int_{\Omega}\left(\tau\left|\nabla u_{\lambda}\right|^{2}+\beta\left|\Delta u_{\lambda}\right|^{2}\right) d x+C_{\delta}+C\left(\int_{\Omega} \frac{1}{\left(1-u_{\lambda}\right)^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

in view of Young's and Hölder's inequalities, estimate (4) is finally established.
Proof of Theorem 3.1. (1) Since $\left\|u_{\lambda}\right\|_{\infty}<1$, the infimum defining $\mu_{1}\left(u_{\lambda}\right)$ is achieved at a first eigenfunction for every $\lambda \in\left(0, \lambda^{*}\right)$. Since $\lambda \mapsto u_{\lambda}(x)$ is increasing for every $x \in \Omega$, it is easily seen that $\lambda \mapsto \mu_{1}\left(u_{\lambda}\right)$ is a decreasing and continuous function on $\left(0, \lambda^{*}\right)$. Define

$$
\lambda_{* *}:=\sup \left\{0<\lambda<\lambda^{*}: \mu_{1}\left(u_{\lambda}\right)>0\right\} .
$$

We have that $\lambda_{* *}=\lambda^{*}$. Indeed, otherwise we would have $\mu_{1}\left(u_{\lambda_{* *}}\right)=0$, and for every $\mu \in\left(\lambda_{* *}, \lambda^{*}\right)$, u_{μ} would be a classical super-solution of ($P_{\lambda_{* *}, \alpha, \gamma}$). A contradiction arises since Lemma 3.2 implies $u_{\mu}=u_{\lambda_{* *}}$. Finally, Lemma 3.2 guarantees the uniqueness in the class of semi-stable \mathcal{H}-weak solutions.
(2) It follows from (4) that $u_{\lambda} \rightarrow u^{*}$ in a pointwise sense and weakly in $H^{2}(\Omega)$, and $\frac{1}{1-u^{*}} \in L^{3}(\Omega)$. In particular, u^{*} is a H^{2}-weak solution of ($P_{\lambda^{*}, \alpha, \gamma}$) which is also semi-stable as the limiting function of the semi-stable solutions $\left\{u_{\lambda}\right\}$.
(3) Whenever $\left\|u^{*}\right\|_{\infty}<1$, the function u^{*} is a classical solution, and by the Implicit Function Theorem we have that $\mu_{1}\left(u^{*}\right)=0$ to prevent the continuation of the minimal branch beyond λ^{*}. By Lemma 3.2, u^{*} is then the unique \mathcal{H}-weak solution of ($P_{\lambda^{*}, \alpha, \gamma}$).
(4) If $\lambda<\lambda^{*}$, we get by uniqueness that $v=u_{\lambda}$. So v is not singular and a contradiction arises. Now, by Theorem 3(3) we have that $\lambda=\lambda^{*}$. Since v is a semi-stable \mathcal{H}-weak solution of ($P_{\lambda^{*}, \alpha, \gamma}$) and u^{*} is a \mathcal{H}-weak super-solution of ($P_{\lambda^{*}, \alpha, \gamma}$), we can apply Lemma 3.2 to get $v \leqslant u^{*}$ a.e. in Ω. Since u^{*} is also a semi-stable solution, we can reverse the roles of v and u^{*} in Lemma 3.2 to see that $v \geqslant u^{*}$ a.e. in Ω. So equality $v=u^{*}$ holds and the proof is done.

4. Regularity of the extremal solutions in dimensions $N \leqslant 8$

In this section we shall show that the extremal solution is regular in small dimensions. Let us begin with the following lemma.

Lemma 4.1. Let $N \geqslant 5$ and $\left(u^{*}, \lambda^{*}\right)$ be the extremal pair of $\left(P_{\lambda}\right)$. If u^{*} is singular, and he set

$$
\begin{equation*}
\Gamma:=\left\{r \in(0,1): u_{\delta}(r)>u^{*}(r)\right\} \tag{5}
\end{equation*}
$$

is non-empty, where $u_{\delta}(x):=1-C_{\delta}|x|^{\frac{4}{3}}$ and $C_{\delta}>1$ is a constant. Then there exists $r_{1} \in(0,1)$ such that $u_{\delta}\left(r_{1}\right) \geqslant u^{*}\left(r_{1}\right)$ and $\Delta u_{\delta}\left(r_{1}\right) \leqslant \Delta u^{*}\left(r_{1}\right)$.

Proof. Assume by contradiction that for every r with $u_{\delta}\left(r_{1}\right) \geqslant u^{*}\left(r_{1}\right)$ one has $\Delta u_{\delta}\left(r_{1}\right)>\Delta u^{*}\left(r_{1}\right)$. Since Γ is non-empty and

$$
u_{\delta}(1)=1-C_{\delta}<0=u^{*}(1),
$$

there exists $s_{1} \in(0,1)$ such that $u_{\delta}\left(s_{1}\right)=u^{*}\left(s_{1}\right)$. We claim that

$$
u_{\delta}(s)>u^{*}(s),
$$

for $0<s<s_{1}$. Assume that there exist $s_{3}<s_{2} \leqslant s_{1}$ such that $u^{*}\left(s_{2}\right)=u_{\delta}\left(s_{2}\right), u^{*}\left(s_{3}\right)=u_{\delta}\left(s_{3}\right)$ and $u_{\delta}(s) \geqslant u^{*}(s)$ for $s \in\left(s_{3}, s_{2}\right)$. By our assumption $\Delta u_{s}>\Delta u^{*}(s)$ for $s \in\left(s_{3}, s_{2}\right)$ which contradicts the maximum principle and justifies the claim. Therefore $u_{\delta}(s)>u^{*}(s)$ for $0<s<s_{1}$. Now set $w:=$ $u_{\delta}-u^{*}$. Then $w \geqslant 0$ on $B_{s_{1}}$ and $\Delta w \leqslant 0$ in $B_{s_{1}}$. Since $w(0)=0$, by strong maximum principle we get $w \equiv 0$ on $B_{s_{1}}$. This is a contradiction and completes the proof.

Theorem 4.2. Let $N \geqslant 5$ and $\left(u^{*}, \lambda^{*}\right)$ be the extremal pair of $\left(P_{\lambda}\right)$. When u^{*} is singular, then

$$
1-u^{*} \leqslant C|x|^{\frac{4}{3}} \quad \text { in } B,
$$

where $C:=\left(\frac{\lambda^{*}}{\beta \bar{\lambda}}\right)^{\frac{1}{3}}$ and $\bar{\lambda}:=\frac{8\left(N-\frac{2}{3}\right)\left(N-\frac{8}{3}\right)}{9}$.

Proof. For $\delta>0$, define $u_{\delta}(x):=1-C_{\delta}|x|^{\frac{4}{3}}$ with $C_{\delta}:=\left(\frac{\lambda^{*}}{\beta \lambda}+\delta\right)^{\frac{1}{3}}>1$. Since $N \geqslant 5$, we have that $u_{\delta} \in H_{\text {loc }}^{2}\left(\mathbb{R}^{N}\right)$ and u_{δ} is a \mathcal{H}-weak solution of

$$
\beta \Delta^{2} u_{\delta}-\tau \Delta u_{\delta}=\frac{\lambda^{*}+\beta \delta \bar{\lambda}}{\left(1-u_{\delta}\right)^{2}}+\frac{4}{3} \tau C_{\delta}\left(N-\frac{2}{3}\right)|x|^{-\frac{2}{3}} \quad \text { in } \mathbb{R}^{N}
$$

We claim that $u_{\delta} \leqslant u^{*}$ in B, which will finish the proof by just letting $\delta \rightarrow 0$.
Assume by contradiction that the set $\Gamma:=\left\{r \in(0,1): u_{\delta}(r)>u^{*}(r)\right\}$ is non-empty. By Lemma 4.1 the set

$$
\Lambda:=\left\{r \in(0,1): u_{\delta}(r) \geqslant u^{*}(r) \text { and } \Delta u_{\delta}(r) \leqslant \Delta u^{*}(r)\right\}
$$

is non-empty. Let $r_{1} \in \Lambda$. Since

$$
u_{\delta}(1)=1-C_{\delta}<0=u^{*}(1)
$$

we have that $0<r_{1}<1$. Define

$$
\alpha:=u_{*}\left(r_{1}\right) \leqslant u_{\delta}\left(r_{1}\right), \quad \gamma:=\Delta u^{*}\left(r_{1}\right) \geqslant \Delta u_{\delta}\left(r_{1}\right)
$$

Setting $u_{\delta, r_{1}}=r_{1}^{-\frac{4}{3}}\left(u_{\delta}\left(r_{1} r\right)-1\right)+1$, we see that $u_{\delta, r_{1}}$ is a \mathcal{H}-weak super-solution of $\left(P_{\lambda^{*}+\delta \lambda, \beta, r_{1}^{-2} \tau, \alpha^{\prime}, \gamma^{\prime}}\right)$, where

$$
\alpha^{\prime}:=r_{1}^{-\frac{4}{3}}(\alpha-1)+1, \quad \gamma^{\prime}=r_{1}^{\frac{2}{3}} \gamma
$$

Similarly, define $u_{r_{1}}^{*}(r)=r_{1}^{-\frac{4}{3}}\left(u^{*}\left(r_{1} r\right)-1\right)+1$. Note that $\Delta^{2} u^{*}-\alpha \Delta u^{*} \geqslant 0$ in B and $\Delta u^{*}=0$ on ∂B. Hence, by maximum principle we have $\Delta u^{*} \leqslant 0$ in B and therefore $\gamma^{\prime} \leqslant 0$. Also obviously $\alpha^{\prime}<1$. So, $\left(\alpha^{\prime}, \gamma^{\prime}\right)$ is an admissible pair and by Theorem 3.1(4) we get that $\left(u_{r_{1}}^{*}, \lambda^{*}\right)$ coincides with the extremal pair of ($P_{\lambda, \beta, r_{1}^{-2} \tau, \alpha^{\prime}, \gamma^{\prime}}$) in B. Also by Lemma 2.2 we get the existence of a week solution of $\left(P_{\lambda^{*}+\delta \lambda, \beta, r_{1}^{-2} \tau, \alpha^{\prime}, \gamma^{\prime}}\right)$. Since $\lambda^{*}+\delta \lambda>\lambda^{*}$, we contradict the fact that λ^{*} is the extremal parameter of $\left(P_{\lambda, \beta, r_{1}^{-2} \tau, \alpha^{\prime}, \gamma^{\prime}}\right)$.

Now we are ready to prove the following result.

Theorem 4.3. If $5 \leqslant N \leqslant 8$, then the extremal solution u^{*} of $(P)_{\lambda}$ is regular.

Proof. Assume that u^{*} is singular. For $\epsilon>0$ define $\varphi(x):=|x|^{\frac{4-N}{2}+\epsilon}$ and note that

$$
(\Delta \varphi)^{2}=\left(H_{N}+O(\epsilon)\right)|x|^{-N+2 \epsilon}, \quad \text { where } H_{N}:=\frac{N^{2}(N-4)^{2}}{16} .
$$

Given $\eta \in C_{0}^{\infty}(B)$, and since $N \geqslant 5$, we can use the test function $\eta \varphi \in H_{0}^{2}(B)$ into the stability inequality to obtain

$$
2 \lambda^{*} \int_{B} \frac{\varphi^{2}}{\left(1-u^{*}\right)^{3}} \leqslant \beta \int_{B}(\Delta \varphi)^{2}+\tau \int_{B}|\nabla \varphi|^{2}+O(1)
$$

where O (1) is a bounded function as $\epsilon \rightarrow 0$. By Theorem 4.2 we find

$$
2 \bar{\lambda} \int_{B} \frac{\varphi^{2}}{|x|^{4}} \leqslant \int_{B}(\Delta \varphi)^{2}+O(1),
$$

and then

$$
2 \bar{\lambda} \int_{B}|x|^{-N+2 \epsilon} \leqslant\left(H_{N}+O(\epsilon)\right) \int_{B}|x|^{-N+2 \epsilon}+O(1) .
$$

Computing the integrals on obtains

$$
2 \bar{\lambda} \leqslant H_{N}+O(\epsilon) .
$$

Letting $\epsilon \rightarrow 0$ we get $2 \bar{\lambda} \leqslant H_{N}$. Graphing this relation we see that $N \geqslant 9$.

5. The extremal solution is singular in dimensions $\boldsymbol{N} \geqslant 9$

In this section we will show that the extremal solution u^{*} of ($P_{\lambda, \beta, \tau, 0,0}$) in dimensions $N \geqslant 9$ is singular for $\tau>0$ sufficiently small. To do this, first we shall show that the extremal solution of ($P_{\lambda, 1,0,0,0}$) is singular in dimensions $N \geqslant 9$. Again to cut down the notation we won't always indicate that $\beta=1$ and $\tau=0$.

We have to distinguish between three different ranges for the dimension. For each range, we will need a suitable Hardy-Rellich type inequality that will be established in Appendix A, by using the recent results of Ghoussoub and Moradifam [12].

- Case $N \geqslant 16$. To establish the singularity of u^{*} for these dimensions we shall need the classical Hardy-Rellich inequality, which is valid for all $\phi \in H^{2}(B) \cap H_{0}^{1}(B)$:

$$
\begin{equation*}
\int_{B}(\Delta \phi)^{2} d x \geqslant \frac{N^{2}(N-4)^{2}}{16} \int_{B} \frac{\phi^{2}}{|x|^{4}} d x . \tag{6}
\end{equation*}
$$

- Case $10 \leqslant N \leqslant 16$. For this case, we shall need the following inequality valid for all $\phi \in H^{2}(B) \cap$ $H_{0}^{1}(B)$,

$$
\begin{align*}
\int_{B}(\Delta \phi)^{2} \geqslant & \frac{(N-2)^{2}(N-4)^{2}}{16} \int_{B} \frac{\phi^{2}}{\left(|x|^{2}-\frac{N}{2(N-1)}|x|^{\frac{N}{2}+1}\right)\left(|x|^{2}-|x|^{\frac{N}{2}}\right)} \\
& +\frac{(N-1)(N-4)^{2}}{4} \int_{B} \frac{\phi^{2}}{|x|^{2}\left(|x|^{2}-|x|^{\frac{N}{2}}\right)} \tag{7}
\end{align*}
$$

- Case $N=9$. This case is the trickiest and will require the following inequality for all $\phi \in H^{2}(B) \cap$ $H_{0}^{1}(B)$, which is valid for $N \geqslant 7$,

$$
\begin{equation*}
\int_{B}|\Delta u|^{2} \geqslant \int_{B} W(|x|) u^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
W(r)=K(r)\left(\frac{(N-2)^{2}}{4\left(r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}\right)}+\frac{(N-1)}{r^{2}}\right), \\
K(r)=-\frac{\varphi^{\prime \prime}(r)+\frac{(n-3)}{r} \varphi^{\prime}(r)}{\varphi(r)},
\end{gathered}
$$

and

$$
\varphi(r)=r^{-\frac{N}{2}+2}+9 r^{-2}+10 r-20 .
$$

The next lemma will be our main tool to guarantee that u^{*} is singular for $N \geqslant 9$. The proof is based on an upper estimate by a singular stable sub-solution.

Lemma 5.1. Suppose there exist $\lambda^{\prime}>0$ and a radial function $u \in H^{2}(B) \cap W_{\mathrm{loc}}^{4, \infty}(B \backslash\{0\})$ such that

$$
\begin{gather*}
\Delta^{2} u \leqslant \frac{\lambda^{\prime}}{(1-u)^{2}} \quad \text { for } 0<r<1, \tag{9}\\
u(1)=0,\left.\quad \Delta u\right|_{r=1}=0, \tag{10}
\end{gather*}
$$

u is singular,
and

$$
\begin{equation*}
2 \beta \int_{B} \frac{\varphi^{2}}{(1-u)^{3}} \leqslant \int_{B}(\Delta \varphi)^{2} \quad \text { for all } \varphi \in H^{2}(B) \cap H_{0}^{1}(B) \tag{12}
\end{equation*}
$$

for some $\beta>\lambda^{\prime}$. Then u^{*} is singular and

$$
\begin{equation*}
\lambda^{*} \leqslant \lambda^{\prime} \tag{13}
\end{equation*}
$$

Proof. By Lemma 3.3 we have (13). Let $\frac{\lambda^{\prime}}{\beta}<\gamma<1$ and

$$
\begin{equation*}
\alpha:=\left(\frac{\gamma \lambda^{*}}{\lambda^{\prime}}\right)^{\frac{1}{3}}, \tag{14}
\end{equation*}
$$

and define $\bar{u}:=1-\alpha(1-u)$. We claim that

$$
\begin{equation*}
u^{*} \leqslant \bar{u} \quad \text { in } B . \tag{15}
\end{equation*}
$$

To prove this, we shall show that for $\lambda<\lambda^{*}$,

$$
\begin{equation*}
u_{\lambda} \leqslant \bar{u} \quad \text { in } B . \tag{16}
\end{equation*}
$$

Indeed, we have

$$
\Delta^{2}(\bar{u})=\alpha \Delta^{2}(\bar{u}) \leqslant \frac{\alpha \lambda^{\prime}}{(1-u)^{2}}=\frac{\alpha^{3} \lambda^{\prime}}{(1-\bar{u})^{2}} .
$$

By (13) and the choice of α,

$$
\alpha^{3} \lambda^{\prime}<\lambda^{*} .
$$

To prove (15) it suffices to prove it for $\alpha^{3} \lambda^{\prime}<\lambda<\lambda^{*}$. Fix such λ and assume that (15) is not true. Then

$$
\Lambda=\left\{0 \leqslant R \leqslant 1 \mid u_{\lambda}(R)>\bar{u}(R)\right\},
$$

in non-empty. There exists $0<R_{1}<1$, such that $u_{\lambda}\left(R_{1}\right) \geqslant u^{*}\left(R_{1}\right)$ and $\Delta u_{\lambda}\left(R_{1}\right) \leqslant \Delta u^{*}\left(R_{1}\right)$, since otherwise we can find $0<s_{1}<s_{2}<1$ so that $u_{\lambda}\left(s_{1}\right)=\bar{u}\left(s_{1}\right), u_{\lambda}\left(s_{2}\right)=\bar{u}\left(s_{2}\right), u_{\lambda}(R)>\bar{u}(R)$, and $\Delta u_{\lambda}\left(R_{1}\right)>\Delta u^{*}\left(R_{1}\right)$ which contradict the maximum principle. Now consider the following problem

$$
\begin{aligned}
\Delta^{2} u & =\frac{\lambda}{(1-u)^{2}} \quad \text { in } B, \\
u & =u_{\lambda}\left(R_{1}\right) \quad \text { on } \partial B, \\
\Delta u & =\Delta u_{\lambda} \quad \text { on } \partial B .
\end{aligned}
$$

Then u_{λ} is a solution to the above problem while \bar{u} is a sub-solution to the same problem. Moreover \bar{u} is stable since,

$$
\lambda<\lambda^{*}
$$

and hence

$$
\frac{2 \lambda}{(1-\bar{u})^{3}} \leqslant \frac{2 \lambda^{*}}{\alpha^{3}(1-u)^{3}}=\frac{2 \lambda^{\prime}}{\gamma(1-u)^{3}}<\frac{2 \beta}{(1-u)^{3}} .
$$

Table 1
Summary.

N	λ_{N}^{\prime}	β_{N}
9	249	251
10	320	367
11	405	574
12	502	851
13	610	1211
14	730	1668
15	860	2235
$16 \leqslant N \leqslant 30$	$\frac{H_{N}}{2}-1$	$\frac{H_{N}}{2}$
$N \geqslant 31$	$27 \bar{\lambda}$	$\frac{H_{N}}{2}$

We deduce $\bar{u} \leqslant u_{\lambda}$ in $B_{R_{1}}$ which is impossible, since \bar{u} is singular while u_{λ} is smooth. This establishes (15). From (15) and the above two inequalities we have

$$
\frac{2 \lambda^{*}}{\left(1-u^{*}\right)^{3}} \leqslant \frac{2 \lambda^{\prime}}{\gamma(1-u)^{3}}<\frac{\beta}{(1-u)^{3}} .
$$

Thus

$$
\inf _{\varphi \in C_{0}^{\infty}}(B) \frac{\int_{B}(\Delta \varphi)^{2}-\frac{2 \lambda^{*} \varphi^{2}}{\left(1-u^{*}\right)^{3}}}{\int_{B} \varphi^{2}}>0 .
$$

This is not possible if u^{*} is a smooth solution.
For any $m>\frac{4}{3}$ define

$$
w_{m}:=1-a_{N, m} r^{\frac{4}{3}}+b_{N, m} r^{m}
$$

where

$$
a_{N, m}:=\frac{m(N+m-2)}{m(N+m-2)-\frac{4}{3}(N-2 / 3)} \quad \text { and } \quad b_{N, m}:=\frac{\frac{4}{3}(N-2 / 3)}{m(N+m-2)-\frac{4}{3}(N-2 / 3)} .
$$

Now we are ready to prove the main result of this section.
Theorem 5.2. The following upper bounds on λ^{*} hold in large dimensions.

1. If $N \geqslant 31$, then Lemma 5.1 holds with $u:=w_{2}, \lambda_{N}^{\prime}=27 \bar{\lambda}$ and $\beta=\frac{H_{N}}{2}>27 \bar{\lambda}$.
2. If $16 \leqslant N \leqslant 30$, then Lemma 5.1 holds with $u:=w_{3}, \lambda_{N}^{\prime}=\frac{H_{N}}{2}-1, \beta_{N}=\frac{H_{N}}{2}$.
3. If $10 \leqslant N \leqslant 15$, then Lemma 5.1 holds with $u:=w_{3}, \lambda_{N}^{\prime}<\beta_{N}$ given in Table 1 .
4. If $N=9$, then Lemma 5.1 holds with $u:=w_{2.8}, \lambda_{9}^{\prime}:=249<\beta_{9}:=251$.

The extremal solution is therefore singular for dimensions $N \geqslant 9$.
Proof. (1) Assume first that $N \geqslant 31$, then it is easy to see that $a_{N, 2}<3$ and $a_{N, 2}^{3} \bar{\lambda} \leqslant 27 \bar{\lambda}<\frac{H_{N}}{2}$. We shall show that w_{2} is a singular \mathcal{H}-weak sub-solution of $(P)_{a_{N, 2}^{3}}$ in which is stable.Note that
$w_{2} \in H^{2}(B), \frac{1}{1-w_{2}} \in L^{3}(B), 0 \leqslant w_{2} \leqslant 1$ in B, and

$$
\Delta^{2} w_{2} \leqslant \frac{a_{N, 2}^{3} \bar{\lambda}}{\left(1-w_{2}\right)^{2}} \quad \text { in } B \backslash\{0\}
$$

So w_{2} is a \mathcal{H}-weak sub-solution of $(P)_{27 \bar{\lambda}}$. Moreover,

$$
w_{2}=1-|x|^{\frac{4}{3}}+\left(a_{N, 2}-1\right)\left(|x|^{\frac{4}{3}}-|x|^{2}\right) \leqslant 1-|x|^{\frac{4}{3}} .
$$

Since $27 \bar{\lambda} \leqslant \frac{H_{N}}{2}$, we get that

$$
54 \bar{\lambda} \int_{B} \frac{\varphi^{2}}{\left(1-w_{2}\right)^{3}} \leqslant H_{N} \int_{B} \frac{\varphi^{2}}{\left(1-w_{2}\right)^{3}} \leqslant H_{N} \int_{B} \frac{\varphi^{2}}{|x|^{4}} \leqslant \int_{B}(\Delta \varphi)^{2}
$$

for all $\varphi \in C_{0}^{\infty}(B)$. Hence, w_{2} is stable. Thus it follows from Lemma 5.1 that u^{*} is singular and $\lambda^{*} \leqslant 27 \bar{\lambda}$.
(2) Assume $16 \leqslant N \leqslant 30$ and consider

$$
w_{3}:=1-a_{N, 3} r^{\frac{4}{3}}+b_{N, 3} r^{3}
$$

We show that it is a singular \mathcal{H}-weak sub-solution of ($P_{\frac{H_{N}-1}{2}}$) which is stable. Indeed, we clearly have $0 \leqslant w_{3} \leqslant 1$ a.e. in $B, w_{3} \in H^{2}(B)$ and $\frac{1}{1-w_{3}} \in L^{3}(B)$. Note that

$$
\begin{aligned}
H_{N} \int_{B} \frac{\varphi^{2}}{\left(1-w_{3}\right)^{3}} & =H_{N} \int_{B} \frac{\varphi^{2}}{\left(a_{N, m} r^{\frac{4}{3}}-b_{N, m} r^{m}\right)^{3}} \\
& \leqslant \sup _{0<r<1} \frac{H_{N}}{\left(a_{N, m}-b_{N, m} r^{m-\frac{4}{3}}\right)^{3}} \int_{B} \frac{\varphi^{2}}{r^{4}} \\
& =H_{N} \int_{B} \frac{\varphi^{2}}{r^{4}} \leqslant \int_{B}(\Delta \varphi)^{2}
\end{aligned}
$$

Using maple one can verify that for $16 \leqslant N \leqslant 31$,

$$
\Delta^{2} w_{3} \leqslant \frac{\frac{H_{N}}{2}-1}{\left(1-w_{3}\right)^{2}} \quad \text { on }(0,1)
$$

Hence, w_{3} is a sub-solution of $\left(P_{\frac{H_{N}-1}{2}}\right)$. By Lemma $5.1 u^{*}$ is singular and $\lambda^{*} \leqslant \frac{H_{N}}{2}-1$.
(3) Assume $10 \leqslant N \leqslant 15$. We shall show that w_{3} satisfies the assumptions of Lemma 5.1 for each dimension $10 \leqslant N \leqslant 15$. Using maple, for each dimension $10 \leqslant N \leqslant 15$, one can verify that inequality (17) holds for λ_{N}^{\prime} given by Table 1 . Then, by using maple again, we show that there exists $\beta_{N}>\lambda_{N}^{\prime}$ such that

$$
\begin{aligned}
& \frac{(N-2)^{2}(N-4)^{2}}{16} \frac{1}{\left(|x|^{2}-\frac{N}{2(N-1)}|x|^{\frac{N}{2}+1}\right)\left(|x|^{2}-|x|^{\frac{N}{2}}\right)}+\frac{(N-1)(N-4)^{2}}{4} \frac{1}{|x|^{2}\left(|x|^{2}-|x|^{\frac{N}{2}}\right)} \\
& \geqslant \frac{2 \beta_{N}}{\left(1-w_{3}\right)^{3}}
\end{aligned}
$$

The above inequality and improved Hardy-Rellich inequality (30) guarantee that the stability condition (20) holds for $\beta_{N}>\lambda^{\prime}$. Hence, by Lemma 5.1 the extremal solution is singular for $10 \leqslant N \leqslant 15$. The values of λ_{N} and β_{N} are shown in Table 1 .
(4) Let $u:=w_{2.8}$. Using Maple on can see that

$$
\Delta^{2} u \leqslant \frac{249}{(1-u)^{2}} \quad \text { in } B
$$

and

$$
\frac{502}{(1-u(r))^{3}} \leqslant W(r) \quad \text { for all } r \in(0,1)
$$

where W is given by (32). Since, $502>2 \times 249$, by Lemma 5.1 the extremal solution u^{*} is singular in dimension $N=9$.

Remark 5.3. It follows from the proof of Theorem 5.2 that for $N \geqslant 9$ and $\frac{\tau}{\beta}$ sufficiently small, there exists $u \in H^{2}(B) \cap W_{\text {loc }}^{4, \infty}(B \backslash\{0\})$ such that

$$
\begin{gather*}
\Delta^{2} u-\frac{\tau}{\beta} \Delta u \leqslant \frac{\lambda_{N}^{\prime \prime}}{(1-u)^{2}} \text { for } 0<r<1, \tag{17}\\
u(1)=0,\left.\quad \Delta u\right|_{r=1}=0, \tag{18}\\
u \text { is singular, } \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
2 \beta_{N}^{\prime} \int_{B} \frac{\varphi^{2}}{(1-u)^{3}} \leqslant \int_{B}(\Delta \varphi)^{2}+\frac{\tau}{\beta}|\nabla \varphi|^{2} \quad \text { for all } \varphi \in H^{2}(B) \cap H_{0}^{1}(B), \tag{20}
\end{equation*}
$$

where $\beta_{N}^{\prime}>\lambda_{N}^{\prime \prime}>0$ are constants. Indeed, for each dimension $N \geqslant 9$, it is enough to take u to be the sub-solution we constructed in the proof of Theorem 5.2, $\beta_{N}^{\prime}:=\beta_{N}, \lambda^{\prime}<\lambda^{\prime \prime}<\beta$. If $\frac{\tau}{\beta}$ is sufficiently small so that $-\frac{\tau}{\beta} \Delta u<\frac{\lambda^{\prime \prime}-\lambda^{\prime}}{(1-u)^{2}}$ on $(0,1)$, then with an argument similar to that of Lemma 5.1 we deduce that the extremal solution u^{*} of ($P_{\lambda, \beta, \tau, 0,0}$) is singular. We believe that the extremal solution of ($P_{\lambda, \beta, \tau, 0,0}$) is singular for all $\beta, \tau>0$ in dimensions $N \geqslant 9$.

Acknowledgments

I would like to thank Professor Nassif Ghoussoub, my supervisor, for his valuable suggestions, constant support, and encouragement. I also thank C. Cowan for useful discussions.

Appendix A. Improved Hardy-Rellich inequalities

We now prove the improved Hardy-Rellich inequalities used in Section 4. They rely on the results of Ghoussoub and Moradifam in [12] which provide necessary and sufficient conditions for such inequalities to hold. At the heart of this characterization is the following notion of a Bessel pair of functions.

Definition 6. Assume that B is a ball of radius R in $\mathbb{R}^{N}, V, W \in C^{1}(0,1)$, and $\int_{0}^{R} \frac{1}{r^{N-1} V(r)} d r=+\infty$. Say that the couple (V, W) is a Bessel pair on $(0, R)$ if the ordinary differential equation

$$
\begin{equation*}
y^{\prime \prime}(r)+\left(\frac{N-1}{r}+\frac{V_{r}(r)}{V(r)}\right) y^{\prime}(r)+\frac{W(r)}{V(r)} y(r)=0 \tag{V,W}
\end{equation*}
$$

has a positive solution on the interval $(0, R)$.
The needed inequalities will follow from the following two results.
Theorem A.1. (See Ghoussoub and Moradifam [12].) Let V and W be positive radial C^{1}-functions on $B \backslash\{0\}$, where B is a ball centered at zero with radius R in $\mathbb{R}^{N}(N \geqslant 1)$ such that $\int_{0}^{R} \frac{1}{r^{N-1} V(r)} d r=+\infty$ and $\int_{0}^{R} r^{N-1} V(r) d r<+\infty$. The following statements are then equivalent:

1. (V, W) is a Bessel pair on $(0, R)$.
2. $\int_{B} V(|x|)|\nabla \phi|^{2} d x \geqslant \int_{B} W(|x|) \phi^{2} d x$ for all $\phi \in C_{0}^{\infty}(B)$.

Theorem A.2. Let B be the unit ball in $\mathbb{R}^{N}(N \geqslant 5)$. Then the inequality

$$
\begin{equation*}
\int_{B}|\Delta u|^{2} d x \geqslant \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}-\frac{N}{2(N-1)}|x|^{\frac{N}{2}+1}} d x+(N-1) \int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} d x \tag{21}
\end{equation*}
$$

holds for all $u \in C_{0}^{\infty}(\bar{B})$.
We shall need the following result to prove (21).
Lemma A.3. For every $u \in C^{1}([0,1])$ the following inequality holds

$$
\begin{equation*}
\int_{0}^{1}\left|u^{\prime}(r)\right|^{2} r^{N-1} d r \geqslant \int_{0}^{1} \frac{u^{2}}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{N-1} d r-(N-1)(u(1))^{2} . \tag{22}
\end{equation*}
$$

Proof. Let $\varphi:=r^{-\frac{N}{2}+1}-\frac{N}{2(N-1)}$ and $k(r):=r^{N-1}$. Define $\psi(r)=u(r) / \varphi(r), r \in[0,1]$. Then

$$
\begin{aligned}
\int_{0}^{1}\left|u^{\prime}(r)\right|^{2} k(r) d r= & \int_{0}^{1}|\psi(r)|^{2}\left|\varphi^{\prime}(r)\right|^{2} k(r) d r+\int_{0}^{1} 2 \varphi(r) \varphi^{\prime}(r) \psi(r) \psi^{\prime}(r) k(r) d r \\
& +\int_{0}^{1}|\varphi(r)|^{2}\left|\psi^{\prime}(r)\right|^{2} k(r) d r \\
= & \int_{0}^{1}|\psi(r)|^{2}\left(\left|\varphi^{\prime}(r)\right|^{2} k(r)-\left(k \varphi \varphi^{\prime}\right)^{\prime}(r)\right) d r+\int_{0}^{1}|\varphi(r)|^{2}\left|\psi^{\prime}(r)\right|^{2} k(r) d r \\
& +\psi^{2}(1) \varphi^{\prime}(1) \varphi(1) \\
\geqslant & \int_{0}^{1}|\psi(r)|^{2}\left(\left|\varphi^{\prime}(r)\right|^{2} k(r)-\left(k \varphi \varphi^{\prime}\right)^{\prime}(r)\right) d r+\psi^{2}(1) \varphi^{\prime}(1) \varphi(1)
\end{aligned}
$$

Note that $\psi^{2}(1) \varphi^{\prime}(1) \varphi(1)=u^{2}(1) \frac{\varphi^{\prime}(1)}{\varphi(1)}=-(N-1) u^{2}(1)$. Hence, we have

$$
\begin{equation*}
\int_{0}^{1}\left|u^{\prime}(r)\right|^{2} k(r) d r \geqslant \int_{0}^{1}-u^{2}(r)\left(\frac{k^{\prime}(r) \varphi^{\prime}(r)+k(r) \varphi^{\prime \prime}(r)}{\varphi}\right) d r-(N-1) u^{2}(1) \tag{23}
\end{equation*}
$$

Simplifying the above inequality we get (22).
The decomposition of a function into its spherical harmonics will be one of our tools to prove Theorem A.2. Let $u \in C_{0}^{\infty}(\bar{B})$. By decomposing u into spherical harmonics we get

$$
u=\Sigma_{k=0}^{\infty} u_{k} \quad \text { where } u_{k}=f_{k}(|x|) \varphi_{k}(x)
$$

and $\left(\varphi_{k}(x)\right)_{k}$ are the orthonormal eigenfunctions of the Laplace-Beltrami operator with corresponding eigenvalues $c_{k}=k(N+k-2), k \geqslant 0$. The functions f_{k} belong to $u \in C^{\infty}([0,1]), f_{k}(1)=0$, and satisfy $f_{k}(r)=O\left(r^{k}\right)$ and $f^{\prime}(r)=O\left(r^{k-1}\right)$ as $r \rightarrow 0$. In particular,

$$
\begin{equation*}
\varphi_{0}=1 \quad \text { and } \quad f_{0}=\frac{1}{N \omega_{N} r^{N-1}} \int_{\partial B_{r}} u d s=\frac{1}{N \omega_{N}} \int_{|x|=1} u(r x) d s \tag{24}
\end{equation*}
$$

We also have for any $k \geqslant 0$, and any continuous real valued W on $(0,1)$,

$$
\begin{equation*}
\int_{B}\left|\Delta u_{k}\right|^{2} d x=\int_{B}\left(\Delta f_{k}(|x|)-c_{k} \frac{f_{k}(|x|)}{|x|^{2}}\right)^{2} d x \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B} W(|x|)\left|\nabla u_{k}\right|^{2} d x=\int_{B} W(|x|)\left|\nabla f_{k}\right|^{2} d x+c_{k} \int_{B} W(|x|)|x|^{-2} f_{k}^{2} d x . \tag{26}
\end{equation*}
$$

Now we are ready to prove Theorem A.2. We shall use the inequality

$$
\begin{align*}
& \int_{0}^{1}\left|x^{\prime}(r)\right|^{2} r^{N-1} d r \geqslant \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{x^{2}(r)}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{N-1} d r \\
& \text { for all } x \in C^{1}([0,1]) \text { with } x(1)=0 . \tag{27}
\end{align*}
$$

Proof of Theorem A.2. For all $N \geqslant 5$ and $k \geqslant 0$, we have

$$
\begin{aligned}
\frac{1}{N w_{N}} \int_{B}\left|\Delta u_{k}\right|^{2} d x & =\frac{1}{N w_{N}} \int_{B}\left(\Delta f_{k}(|x|)-c_{k} \frac{f_{k}(|x|)}{|x|^{2}}\right)^{2} d x \\
& =\int_{0}^{1}\left(f_{k}^{\prime \prime}(r)+\frac{N-1}{r} f_{k}^{\prime}(r)-c_{k} \frac{f_{k}(r)}{r^{2}}\right)^{2} r^{N-1} d r
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{0}^{1}\left(f_{k}^{\prime \prime}(r)\right)^{2} r^{N-1} d r+(N-1)^{2} \int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} d r \\
& +c_{k}^{2} \int_{0}^{1} f_{k}^{2}(r) r^{N-5}+2(N-1) \int_{0}^{1} f_{k}^{\prime \prime}(r) f_{k}^{\prime}(r) r^{N-2} \\
& -2 c_{k} \int_{0}^{1} f_{k}^{\prime \prime}(r) f_{k}(r) r^{N-3} d r-2 c_{k}(N-1) \int_{0}^{1} f_{k}^{\prime}(r) f_{k}(r) r^{N-4} d r .
\end{aligned}
$$

Integrate by parts and use (24) for $k=0$ to get

$$
\begin{align*}
\frac{1}{N \omega_{N}} \int_{B}\left|\Delta u_{k}\right|^{2} d x \geqslant & \int_{0}^{1}\left(f_{k}^{\prime \prime}(r)\right)^{2} r^{N-1} d r+\left(N-1+2 c_{k}\right) \int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} d r \\
& +\left(2 c_{k}(n-4)+c_{k}^{2}\right) \int_{0}^{1} r^{n-5} f_{k}^{2}(r) d r+(N-1)\left(f_{k}^{\prime}(1)\right)^{2} \tag{28}
\end{align*}
$$

Now define $g_{k}(r)=\frac{f_{k}(r)}{r}$ and note that $g_{k}(r)=O\left(r^{k-1}\right)$ for all $k \geqslant 1$. We have

$$
\begin{aligned}
\int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} & =\int_{0}^{1}\left(g_{k}^{\prime}(r)\right)^{2} r^{N-1} d r+\int_{0}^{1} 2 g_{k}(r) g_{k}^{\prime}(r) r^{N-2} d r+\int_{0}^{1} g_{k}^{2}(r) r^{N-3} d r \\
& =\int_{0}^{1}\left(g_{k}^{\prime}(r)\right)^{2} r^{N-1} d r-(N-3) \int_{0}^{1} g_{k}^{2}(r) r^{N-3} d r
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} \geqslant \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{f_{k}^{2}(r)}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{N-3} d r-(N-3) \int_{0}^{1} f_{k}^{2}(r) r^{N-5} d r \tag{29}
\end{equation*}
$$

Substituting $2 c_{k} \int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3}$ in (28) by its lower estimate in the last inequality (29), and using Lemma A.3, we get

$$
\begin{aligned}
\frac{1}{N \omega_{N}} \int_{B}\left|\Delta u_{k}\right|^{2} d x \geqslant & \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{\left(f_{k}^{\prime}(r)\right)^{2}}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{N-1} d r \\
& +2 c_{k} \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{f_{k}^{2}(r)}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{n-3} d r
\end{aligned}
$$

$$
\begin{aligned}
& +(N-1) \int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} d r+c_{k}(N-1) \int_{0}^{1}\left(f_{k}(r)\right)^{2} r^{N-5} d r \\
& \quad+c_{k}\left(c_{k}-(N-1)\right) \int_{0}^{1} r^{N-5} f_{k}^{2}(r) d r+c_{k} \int_{0}^{1} \frac{(N-2)^{2}}{4\left(r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}\right)}-\frac{2}{r^{2}} d r \\
& \geqslant \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{\left(f_{k}^{\prime}(r)\right)^{2}}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{N-1} d r \\
& \quad+c_{k} \frac{(N-2)^{2}}{4} \int_{0}^{1} \frac{f_{k}^{2}(r)}{r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}} r^{n-3} d r \\
& \quad+(N-1) \int_{0}^{1}\left(f_{k}^{\prime}(r)\right)^{2} r^{N-3} d r+c_{k}(N-1) \int_{0}^{1}\left(f_{k}(r)\right)^{2} r^{N-5} d r
\end{aligned}
$$

The proof is complete in the view of (26).
We shall now deduce the following corollary.
Corollary A.4. Let $N \geqslant 5$ and B be the unit ball in \mathbb{R}^{N}. Then the following improved Hardy-Rellich inequality holds for all $\phi \in H^{2}(B) \cap H_{0}^{1}(B)$:

$$
\begin{align*}
\int_{B}(\Delta \phi)^{2} \geqslant & \frac{(N-2)^{2}(N-4)^{2}}{16} \int_{B} \frac{\phi^{2}}{\left(|x|^{2}-\frac{N}{2(N-1)}|x|^{\frac{N}{2}+1}\right)\left(|x|^{2}-|x|^{\frac{N}{2}}\right)} \\
& +\frac{(N-1)(N-4)^{2}}{4} \int_{B} \frac{\phi^{2}}{|x|^{2}\left(|x|^{2}-|x|^{\frac{N}{2}}\right)} . \tag{30}
\end{align*}
$$

Proof. Let $\alpha:=\frac{N}{2(N-1)}$ and $V(r):=\frac{1}{r^{2}-\alpha r^{\frac{N}{2}+1}}$ and note that

$$
\frac{V_{r}}{V}=-\frac{2}{r}+\frac{\alpha(N-2)}{2} \frac{r^{\frac{N}{2}-2}}{1-\alpha r^{\frac{N}{2}-1}} \geqslant-\frac{2}{r}
$$

The function $y(r)=r^{-\frac{N}{2}+2}-1$ is decreasing and is then a positive super-solution on $(0,1)$ for the ODE

$$
y^{\prime \prime}+\left(\frac{N-1}{r}+\frac{V_{r}}{V}\right) y^{\prime}(r)+\frac{W_{1}(r)}{V(r)} y=0
$$

where

$$
W_{1}(r)=\frac{(N-4)^{2}}{4\left(r^{2}-r^{\frac{N}{2}}\right)\left(r^{2}-\alpha r^{\frac{N}{2}+1}\right)}
$$

Hence, by Theorem A. 1 we deduce

$$
\int_{B} \frac{|\nabla \phi|^{2}}{|x|^{2}-\alpha|x|^{\frac{N}{2}+1}} \geqslant\left(\frac{N-4}{2}\right)^{2} \int_{B} \frac{\phi^{2}}{\left(|x|^{2}-\alpha|x|^{\frac{N}{2}+1}\right)\left(|x|^{2}-|x|^{\frac{N}{2}}\right)}
$$

for all $\phi \in H^{2}(B) \cap H_{0}^{1}(B)$. Similarly, for $V(r)=\frac{1}{r^{2}}$ we have that

$$
\int_{B} \frac{|\nabla \phi|^{2}}{|x|^{2}} \geqslant\left(\frac{N-4}{2}\right)^{2} \int_{B} \frac{\phi^{2}}{|x|^{2}\left(|x|^{2}-|x|^{\frac{N}{2}}\right)}
$$

for all $\phi \in H^{2}(B) \cap H_{0}^{1}(B)$. Combining the above two inequalities with (21) we get (30).
Corollary A.5. Let $N \geqslant 7$ and B be the unit ball in \mathbb{R}^{N}. Then the following improved Hardy-Rellich inequality holds for all $\phi \in H^{2}(B) \cap H_{0}^{1}(B)$:

$$
\begin{equation*}
\int_{B}|\Delta u|^{2} \geqslant \int_{B} W(|x|) u^{2} \tag{31}
\end{equation*}
$$

where

$$
\begin{gather*}
W(r)=K(r)\left(\frac{(N-2)^{2}}{4\left(r^{2}-\frac{N}{2(N-1)} r^{\frac{N}{2}+1}\right)}+\frac{(N-1)}{r^{2}}\right), \tag{32}\\
K(r)=-\frac{\varphi^{\prime \prime}(r)+\frac{(n-3)}{r} \varphi^{\prime}(r)}{\varphi(r)},
\end{gather*}
$$

and

$$
\varphi(r)=r^{-\frac{N}{2}+2}+9 r^{-2}+10 r-20 .
$$

Proof. Let $\alpha:=\frac{N}{2(N-1)}$ and $V(r):=\frac{1}{r^{2}-\alpha r^{\frac{N}{2}+1}}$. Then φ is a sub-solution for the ODE

$$
y^{\prime \prime}+\left(\frac{N-1}{r}+\frac{V_{r}}{V}\right) y^{\prime}(r)+\frac{W_{2}(r)}{V(r)} y=0
$$

where

$$
W_{2}(r)=\frac{K(r)}{r^{2}-\alpha r^{\frac{N}{2}+1}} .
$$

Hence, by Theorem A. 1 we have

$$
\begin{equation*}
\int_{B} \frac{|\nabla u|^{2}}{|x|^{2}-\alpha|x|^{\frac{N}{2}+1}} \geqslant \int_{B} W_{2}(|x|) u^{2} \tag{33}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\int_{B} \frac{|\nabla u|^{2}}{|x|^{2}} \geqslant \int_{B} W_{3}(|x|) u^{2} \tag{34}
\end{equation*}
$$

where

$$
W_{3}(r)=\frac{K(r)}{r^{2}}
$$

Combining the above two inequalities with (22) we get improved Hardy-Rellich inequality (31).

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959) 623-727.
[2] T. Brau, A decomposition method with respect to dual cones and its application to higher order Sobolev spaces, preprint.
[3] C. Cowan, N. Ghoussoub, Regularity of the extremal solution in a MEMS model with advection, Methods Appl. Anal. 15 (3) (2008) 355-362.
[4] C. Cowan, P. Esposito, N. Ghoussoub, A. Moradifam, The critical dimension for a fourth order elliptic problem with singular nonlinearity, Arch. Ration. Mech. Anal., in press.
[5] M.G. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975) 207-218.
[6] J. Davila, L. Dupaigne, I. Guerra, M. Montenegro, Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal. 39 (2007) 565-592.
[7] P. Esposito, N. Ghoussoub, Y. Guo, Compactness along the branch of semi-stable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math. 60 (2008) 1731-1768.
[8] F. Gazzola, H.-Ch. Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, NoDEA Nonlinear Differential Equations Appl. 8 (2001) 35-44.
[9] N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal. 38 (2007) 1423-1449.
[10] N. Ghoussoub, Y. Guo, On the partial differential equations of electrostatic MEMS devices II: Dynamic case, NoDEA Nonlinear Differential Equations Appl. 15 (2008) 115-145.
[11] Y. Guo, On the partial differential equations of electrostatic MEMS devices III: Refined touchdown behavior, J. Differential Equations 244 (2008) 2277-2309.
[12] N. Ghoussoub, A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, submitted for publication.
[13] N. Ghoussoub, A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (37) (2008) 13746-13751.
[14] Z.M. Guo, J.C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math. 120 (2006) 193-209.
[15] Z.M. Guo, J.C. Wei, Symmetry of nonnegative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 963-994.
[16] Z.M. Guo, J.C. Wei, Infinitely many turning points for an elliptic problem with a singular nonlinearity, J. London Math. Soc. (2) 78 (2008) 21-35.
[17] Z. Gui, J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SIAM J. Math. Anal. 40 (2009) 20342054.
[18] F. Lin, Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. Roy. Soc. A(463) (2007) 13231337.
[19] J.-J. Moreau, Decomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci. Paris 255 (1962) 238-240.

[^0]: E-mail address: a.moradi@math.ubc.ca.
 1 This work is supported by a Killam Predoctoral Fellowship, and is part of the author's PhD dissertation in preparation under the supervision of N . Ghoussoub.

