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Open access under the El
Diocleinae lectins are highly homologous in their primary structure which features metal binding sites
and a carbohydrate recognition domain (CRD). Differences in the biological activity of legume lectins
have been widely investigated using hemagglutination inhibition assays, isothermal titration microcal-
orimetry and co-crystallization with mono- and oligosaccharides. Here we report a new lectin crystal
structure (ConBr) extracted from seeds of Canavalia brasiliensis, predict dimannoside binding by docking,
identify the a-aminobutyric acid (Abu) binding pocket and compare the CRD of ConBr to that of homol-
ogous lectins. Based on the hypothesis that the carbohydrate affinity of lectins depends on CRD configu-
ration, the relationship between tridimensional structure and endothelial NO synthase activation was
used to clarify differences in biological activity. Our study established a correlation between the position
of CRD amino acid side chains and the stimulation of NO release from endothelium.

� 2011 Elsevier Inc. Open access under the Elsevier OA license.
1. Introduction carbohydrate binding site [6]. Thus, the mere substitution of
Lectins are ubiquitous proteins/glycoproteins binding specifi-
cally and reversibly to mono- or oligosaccharides [1]. They are
responsible for deciphering sugar codes through complex surface
interactions and play a central role in a number of biological pro-
cesses, such as infections, cell communication and cell growth
[2]. Specific carbohydrate recognition by proteins is mediated by
many interactions and is a complex process [3]. Legume lectins
are widely used as structural models for studying carbohydrate/
protein interactions due to their high sequence conservation in dif-
ferent organisms and wide range of carbohydrate specificities [4].
Seed lectins of the Diocleinae subtribe are highly homologous,
notwithstanding their distinct biological activities, such as the
stimulation of histamine secretion and nitric oxide production
[5]. A range of activities of Diocleinae lectins are associated with
minor changes in the amino acid sequence related mainly to the
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Pro202 for the residue Ser202 causes structural modifications in
the carbohydrate binding site of the Canavalia maritima lectin
(ConM), changing its affinity for disaccharides [7,8]. The relative
position of the carbohydrate binding site and the pH-dependent
dimer–tetramer equilibrium have also been shown to contribute
to these changes [9,10].

Originally, Sanz-Aparicio et al. determined the crystal structure
of the native Canavalia brasiliensis lectin (ConBr) at 3.0 Å resolution
and concluded that the structure of ConBr differed from that of
Canavalia ensiformis lectin (ConA) with regard to the relative orien-
tation of the carbohydrate binding site and the overall configura-
tion responsible for specific activities [11]. The authors also
hypothesized that ConBr and ConA have different carbohydrate
cross-linking characteristics [11]. Delatorre et al. [7] provided
new information on carbohydrate cross-linking, describing the
interaction of legume lectins with disaccharides. In addition, the
interaction patterns at the carbohydrate binding site were
described in a structural study of lectins complexed with dimanno-
sides [8], and a new binding site for a-aminobutyric acid (Abu)—
probably related to plant defense—was identified in a comprehen-
sive structural analysis of Canavalia gladiata lectin (CGL) [12].
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Table 1
Statistics of data collection, refinement and structure quality.

Parameter Value

Data collection
Space group I222
Unit cell parameters (Å)

A 68.3
B 73.0
C 99.5

Total reflections 339.768
Number of unique reflections 14.784
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Currently available information on the structure of ConM and
CGL allows us to hypothesize that lectin–carbohydrate affinity is
directly related to carbohydrate binding site design and that differ-
ent distances between specific amino acids result in different bio-
logical properties. In order to clarify the relationship between
ConBr, ConA and ConM, we analyzed the new crystal structure of
ConBr at 2.1 Å resolution and related the carbohydrate recognition
domain of each lectin to the respective level of biological activity—
in this case, the ability to activate the endothelium NO synthase
present in the smooth muscle of rat aorta.
Molecules per asymmetric unit Monomer
Resolution limits (Å) 58.9–1.8
Rmerge (%) 6.9 (19.6)a

Completeness (%) 99.2 (99.2)a

Multiplicity 6.7
(I)/r 6.9 (3.5)a

Molecular replacement
Correlation coefficient 69.4
Rfactor (%) 41.2

Refinement
Resolution range (Å) 36.510–2.1
Rfactor (%) 20.4
Rfree (%) 25.3
Number of residues in asymmetric unit 237
Number of water molecules 139

Temperature factor
Average B value for whole protein chain (Å2) 31

Ramachandran plot
Residues in most favored regions (%) 86.4
Residues in additional allowed regions (%) 13.6
Residues in generously allowed regions (%) 0

a Values in parentheses represent the high resolution shell.
2. Material and methods

2.1. Crystallization and data collection

ConBr was purified as described by Cavada et al. [13] and solu-
bilized in deionized water at a concentration of 12.5 mg ml�1 in all
crystallization experiments. Crystallization conditions for ConBr
were screened using the hanging-drop vapor diffusion method
with a commercially available crystallization solution (Hampton
Research Screens I and II, Hampton Research, Riverside, CA, USA)
at room temperature (293 K). Drops were prepared by mixing
2.0 lL sample solution and 2.0 lL reservoir solution, followed by
equilibration against 300 lL reservoir solution [14]. Small crystals
were obtained using crystallization condition No. 32 from the Crys-
tal Screen II kit (0.1 M sodium chloride, 0.1 M Hepes, pH 7.5, and
1.6 M ammonium sulfate). The initial crystallization condition
was optimized by increasing the concentration of sodium chloride,
ammonium sulfate and pH. The best crystals were obtained with
0.2 M NaCl, 0.1 M Hepes, pH 8.5, and 1.8 M ammonium sulfate.
Crystals suitable for X-ray diffraction grew in one week to maxi-
mum dimensions of approximately 0.4 � 0.5 � 0.4 mm.

X-ray diffraction data were collected at low temperature
(100 K) and a maximum resolution of 2.1 Å, using 30% glycerol as
cryoprotectant to avoid ice formation. The data were read at
1.42 Å wavelength at the MX1 beamline of the Laboratório Nacion-
al de Luz Síncrotron (LNLS, Campinas, Brazil) using a MARCCD 165
detector (MAR research) placed 90 mm from the crystal. A set of
360 images (0.5� oscillation) was recorded. Diffraction data were
indexed, integrated and scaled using MOSFLM [15] and SCALA
[16]. Crystals belongs to the orthorhombic space group I222 and
the Matthews coefficient of 2.43 Å3 Da�1 indicated the presence
of a monomer in the asymmetric unit [17].
2.2. Molecular replacement and refinement

The new ConBr crystal structure was determined by molecular
replacement using the program MolRep [18]. Coordinates of the
native ConBr structure (PDB Code 1AZD) [11] were used as search
model, with the best results indicating a correlation coefficient of
69.4% and an Rfactor of 41.2%. The Abu and glycerol coordinates
were obtained using the program PRODRG [19]. The initial struc-
tures were refined using REFMAC5 [20]. Some main chain loop re-
gions (68–70, 117–123, 148–151 and 202–205) were adjusted to
satisfy the electron density map, and 139 water molecules were
added to the model using Coot [21].

Two densities surrounding Arg228, observed at 5r on the
2fo � fc map (a region extensively available to the solvent surface),
were explained by two chloride ions. One of these was coordinated
with the nitrogen in side chain of Arg228 and the nitrogen atom of
Ala236; the other was coordinated with a water molecule and two
nitrogen atoms from the side chains of Arg228 and Asn14. A
restrained refinement was subsequently performed resulting in
20.4% Rfactor and 25.3% Rfree. An omit map contoured at 2r was
generated for a-aminobutyric acid (Abu) using the program CCP4
Omit [20]. The crystallography refinement statistics are shown in
Table 1.

2.3. Molecular docking and structure analysis

The solved ConBr structure was aligned with original native
ConBr (PDB Code 1AZD), ConM (PDB Code 2CWM) and ConA
(PDB Code 1JBC). Significant differences in primary structure and
structure characteristics, such as loops, amino acid side chain
availability, CRD configuration and distances between amino acids
were investigated and the volume of each CRD was calculated by
the program Q-SiteFinder [22]. The obtained data allowed group-
ing the lectins according to structural features and relate differ-
ences in structure to the level of biological activity.

Molecular docking was performed with MolDock—an interac-
tive molecular graphics program [23]. a-D-Mannosyl-1,2-methyl-
a-D-mannopyranoside was used to verify the carbohydrate binding
properties of ConBr. MolDock is based on a search algorithm com-
bining differential evolution with a cavity prediction algorithm.
The program takes hydrogen bond directionality into account as
an additional term in the docking scoring function. A re-ranking
procedure was added to increase docking accuracy [24].

The biological activity used to compare lectins was their ability
to induce in vitro relaxation of rat aortic rings, as previously
described by our group, using the same experimental setting
[6,27].

3. Results and discussion

3.1. Overall structure of ConBr

The new crystal structure of ConBr (PDB Code 3JU9) reveals
some differences from the previously deposited native ConBr



Table 2
Distances between Abu and the pocket amino acid residues at canonical dimmers
interface.

Abu atom Amino acid atoma Chaina Distance (Å)a

N1 HIS180 N1 A 2.7
O ALA125 N A 3.4
O ALA125 O A 3.4
OTX ASP139 OD2 B 2.6
O MET129 O B 3.4
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structure (PDB Code 1AZD) [11]. ConBr biological assemble is a tet-
ramer. The refined structure consists of a ConBr monomer, 139
water molecules, two chloride ions, a glycerol in the carbohydrate
recognition domain and a single Abu molecule in the hydrophobic
pocket. When the new structure is solved at 2.1 Å, its main chain
configuration is largely similar to that of the low-resolution native
ConBr (1AZD). However, highly unstable segments such as the
ConA-like conserved loop in region 117–123—commonly described
as a region of low electron density [24]—shows considerable
improvement on electron density maps. The most significant dif-
ferences between the native and the refined structure, including
changes in the position of amino acid residues, were observed in
loop regions 68–70, 117–123, 148–151 and 202–205.

The fo � fc map shows a density surrounding Leu115, Leu126
and Val179 corresponding to a non-protein amino acid (Abu) com-
monly co-purified with Diocleinae lectins, the coordinates of which
were previously described for C. gladiata lectin (CGL) by Delatorre
et al. [12]. The crystal structure of CGL (PDB Code 2D7F) features a
hydrophobic pocket which explains the interaction.

The Abu molecule is tightly bound through hydrophobic and
hydrophilic interactions in the ConBr crystal structure. The hydro-
phobic pocket (Fig. 1A) shows a region accessible to the solvent
surface, allowing hydrophilic interactions to occur. These hydro-
philic interactions (Fig. 1B) occur through hydrogen bonds be-
tween the nitrogen atom in Abu and the nitrogen atom in His180
(main chain), and between the oxygen atom in Abu and the oxygen
atom in Ala125 (main chain) or the nitrogen atom in Ala125 (pep-
tide bonds). Abu also interacts with two water molecules, involv-
ing oxygen and nitrogen at 2.76 and 2.86 Å, respectively. In
addition, Abu mediates the contacts between the components of
the canonical dimer, establishing hydrogen bonds with Asp139
and Met129 (Table 2). The interaction between Abu and ConBr is
shown in Fig. 1. An omit map contoured at 2r agreed with the
a-aminobutyric acid (Abu) coordinates.
Fig. 1. Abu binding pocket interactions. (A) Region of hydrophobic interaction and th
interactions between Abu and residues of the canonical dimer. (C) Omit map stereo vie
The residues Leu115, Leu125, Ala126 and Val179, which make
up the hydrophobic pocket, are conserved in legume lectins [12].
The interactions between ConBr and Abu increase structure stabil-
ity, producing a decrease in vibrational scattering and improving
electron density in loop extremities. Atom positions were less clear
in previous ConA structures due to the poor electron density of this
surface loop [25].

3.2. Three-dimensional CRD configuration and its influence on
endothelium NO synthase activation

Diocleinae lectins display a high degree of identity in their pri-
mary structures and share many biochemical and structural fea-
tures, the most characteristic of which is conserved regions.
Thus, the amino acid residues of the carbohydrate binding site
(Tyr12, Asn14, Leu99, Tyr100, Asp208 and Arg228), the metal bind-
ing site (Glu8, Asp10, Tyr12, Asn14, Asp19, His24, Val32, Ser34,
Asp208 and Arg228) and the hydrophobic cavity (Tyr54, Leu81,
Leu85, Val89, Val91, Phe111, Ser113, Val179, Ile181, Phe191,
Phe212 and Ile214) conserved in the primary structure of ConBr
are similarly conserved in many other Diocleinae lectins [5].

The high level of CRD conservation in Diocleinae lectins does
not seem to determine the specificity of carbohydrate interaction.
e ‘‘tie’’ formed to stabilize loop 117–123 promoted by Abu. (B) Main hydrophilic
w representation of a-aminobutyric acid (Abu) binding pocket.



Table 3
Distances (Å) between amino acid residues involved in interaction with
carbohydrates.

ConBr 3JU9 ConM 2CWM ConA 1JBC

Tyr12 CZ Gly227 CA 8.67 8.97 9.61
Leu99 CG Tyr12 CZ 6.85 7.64 9.6
Leu99 CG Asn14 ND2 9.11 9.08 10.29
Leu99 CG Arg228 CZ 11.86 11.16 10.53
Tyr100 CZ Tyr12 CZ 5.45 5.26 4.37
Tyr100 CZ Asn14 ND2 9.9 9.48 8.62
Tyr100 CZ Arg228 CZ 14.25 13.7 10.87

a This distances correspond to the residue atoms which are involved in interaction
with carbohydrate.

Fig. 3. Canavalia lectins induce relaxation in endothelized aortic rings precontract-
ed with phenylephrine (Phe). Data comparing the responses of CGL, ConBr, ConA
and ConM to control (100% Phe contraction). Values expressed as mean ± SEM;
⁄p < 0.05 versus control, #p < 0.05 versus ConBr and ConA. (Adapted from Assreuy
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Thus, ConM and ConA have different patterns of interaction with
dimannosides, despite containing the same amino acid residues
in the CRD. One possible determinant of this specificity is the sub-
stitution of Pro202 for Ser202, an amino acid residue proximal to
the CRD. This increases significantly the ConM carbohydrate-bind-
ing capacity by reducing the interference of His205 (which is closer
to Tyr100 than to Tyr12) [8]. When a dimannoside is introduced in
the ConBr carbohydrate binding domain by docking, the interac-
tions between the mannoses and the amino acids are formed
mainly by polar and van der Waals contacts, and the binding is
fully stabilized by hydrophobic interactions with Tyr12, Leu99
and Tyr100. Twelve H-bonds are formed between the dimannoside
and six amino acids of the carbohydrate binding domain (Leu99,
Tyr100, Ser168, Asp208, Thr226 and Arg228) (Fig. 2) and van der
Waals interactions are established between the dimannoside and
Tyr12, Leu99, Ala207 and Asp208 (Table 3).

The ability of ConA-like lectins (including ConBr and ConM) to
activate NO synthase is variable. According to some authors, ConM
is the most potent of the three [6,26,27]. The fact that these lectins
have a conserved CRD suggests that differences in biological activ-
ity are due to differences in spatial arrangement. Thus, whereas the
CRD structure of ConM and ConBr is very similar, the residues that
make up this cavity (Arg228-Asn14, Arg228-Tyr12, Tyr12-Tyr100,
Tyr12-Tyr14, Leu99-Tyr100 and Arg228-Leu99) are closer together
than Arg228-Tyr100 (Table 3), making the CRD narrower and dee-
per in both structures.

Although the level of NO synthase activation induced by ConBr
and ConA is similar, ConBr is geometrically more akin to ConM.
Delatorre and co-workers reported that a substitution of Pro202
modifies the configuration at loop 202–205, possibly explaining
the movement of Leu99 and Tyr100 [6,7]. However, though no
such substitution is visible in ConBr, the loop geometry is similar
to that of ConM. This loop configuration promotes a close interac-
tion between the Asp203 side chain and the Tyr100 main chain,
easing the steric hindrance in close contact with Tyr12. This is
made possible by a reduction in the distance between Gly227
Fig. 2. Superposition of the carbohydrate binding domain of ConBr (gray; PDB Code
3JU9) and ConA (cyan; PDB Code 1I3H) with a-D-mannosyl-1,2-methyl-a-D-
mannopyranoside introduced into the ConBr structure by docking. H-bonds are
represented in yellow with their respective distances in angstroms (Å). Labels
represent all amino acids involved in polar contacts and van der Waals interactions.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

et al. [27] and Gadelha et al. [6].)
and Tyr12, which influences the short ranges between other carbo-
hydrate residues and the carbohydrate binding pocket. ConBr and
ConM are very similar with regard to site design, whereas the site
in ConA is more open, associated with a reduced ability to induce
nitric oxide production.
Fig. 4. Carbohydrate recognition domain (CDR). Dashes show the distances (Å)
between CRD residues involved in geometrical changes of the pocket. In ConBr,
distances are shorter between Gly227-Tyr12, Leu99-Tyr12 and Leu99-Asn14 (red
dashes) and greater between the residues which characterize efficient inducers of
NO production. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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3.3. CRD volume and biological activity of ConBr

The configuration and reciprocal distances between the resi-
dues in the CRD of ConBr suggests this lectin would be a more po-
tent inducer of nitric oxide production than ConM, but in fact
ConBr was less efficient than ConA (Fig. 3). In this study, the vol-
ume of each CRD was calculated and associated with the geometry
of the amino acid side chains. The volumes obtained were
ConM = 135 Å3 (PDB Code 2CWM), ConA = 151 Å3 (PDB Code
1JBC) and ConBr = 105 Å3 (PDB Code 3JU9). Although ConBr and
ConM have a similar CRD configuration, CRD volume is much smal-
ler in the former, making it less efficient in stimulating NO syn-
thase activation of endothelial cells. The smaller size may be
explained by the extrapolation of ideal distances between Tyr100
and Arg228 and the very small distance between Leu99 and
Tyr12 in the carbohydrate binding site (Fig. 4, Table 3).

On the surface of endothelial cells are found complex signaling
carbohydrates which influence the recognition of lectins with dif-
ferent CRD volume. The number of interactions between the CRD
and the endothelial cell carbohydrate makes a significant differ-
ence in biological activity.

Some differences in biological activity may entail not only dif-
ferences in primary structure directly related to the specificity site,
but also differences in the configuration of the site and adjacent
loops. The new ConBr structure with improved resolution shows
how geometric parameters in the CRD can determine interactions
with carbohydrates and, consequently, biological activity. ConBr
and ConM use different strategies (a loop translocation and the
substitution of Pro202 for Ser202, respectively) to achieve the
same structural change in the CDR, characterized mainly by an
approximation between Tyr12 and Tyr100 and distancing of
Tyr100 from Arg228. This structural CRD design may be considered
the most important factor determining NO induction by Diocleinae
lectins, characterized by at least two configurations which promote
(ConM) or reduce (ConA) the NO-dependent inflammatory re-
sponse stimulated by these lectins. The lesser ability of ConBr to in-
duce nitric oxide production seems to be a result of its smaller CRD
volume—an essential feature in the assessment of biological activ-
ity. It is important to note that while our study assessed biological
activity using a model that explores the endothelial NO synthase,
experiments assessing other NO synthase isoforms might shed
light on this important issue. Potentially, there is much to be
learned about lectin activity by studying groups of lectins with
similar CRD configuration and volume.
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