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Summary

Genes involved in intermediary and secondary metabolism
in fungi are frequently physically linked or clustered. For

example, in Aspergillus nidulans the entire pathway for the
production of sterigmatocystin (ST), a highly toxic

secondary metabolite and a precursor to the aflatoxins
(AF), is located in a w54 kb, 23 gene cluster. We discovered

that a complete ST gene cluster in Podospora anserina was
horizontally transferred from Aspergillus. Phylogenetic

analysis shows that most Podospora cluster genes are adja-
cent to or nested within Aspergillus cluster genes, although

the two genera belong to different taxonomic classes.
Furthermore, the Podospora cluster is highly conserved in

content, sequence, and microsynteny with the Aspergillus
ST/AF clusters and its intergenic regions contain 14 putative

binding sites for AflR, the transcription factor required for
activation of the ST/AF biosynthetic genes. Examination

of w52,000 Podospora expressed sequence tags identified
transcripts for 14 genes in the cluster, with several

expressed atmultiple life cycle stages. The presence of puta-
tive AflR-binding sites and the expression evidence for

several cluster genes, coupled with the recent independent

discovery of ST production in Podospora [1], suggest that
this HGT event probably resulted in a functional cluster.

Given the abundance of metabolic gene clusters in fungi,
our finding that one of the largest known metabolic gene

clusters moved intact between species suggests that such
transfers might have significantly contributed to fungal

metabolic diversity.

Results and Discussion

The overwhelming majority of documented horizontal gene
transfer (HGT) events in eukaryotes concerns the transfer of
single or a few genes from bacterial donors [2–4]. In contrast,
there are far fewer reports of eukaryote-to-eukaryote HGT
events. Typically, such events involve the transfer of a single
or a few genes between very distantly related organisms
belonging to different kingdoms [5, 6]. The small amount of
genetic material typically transferred between eukaryotes
and the large phylogenetic distances separating eukaryotic
donors and recipients raise questions as to whether larger
genetic fragments undergo HGT as well as whether such HGT
events also take place between more closely related species.

Genes involved in intermediary and secondary metabolism
make good candidates for HGT events between fungi. This is
so because genes participating in fungal metabolic pathways
are frequently physically clustered, raising the possibility of
wholesale pathway transfers in single events [7]. Several
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fungal metabolic clusters contain >15 genes and span tens
of kilobases [8–13]. One such large fungal gene cluster is
comprised of the genes required for the production of sterig-
matocystin (ST), a highly toxic, mutagenic and carcinogenic
secondary metabolite and the precursor to aflatoxins (AF)
[11, 14]. In Aspergillus nidulans, the ST gene cluster contains
23 genes dispersed across w54 kb [11], whereas the related
AF gene cluster in Aspergillus flavus is a w67 kb, 26 gene
cluster [13, 15]. Gene content is highly conserved between
the two clusters, whereas the gene order, orientation, and
sequence similarity are less conserved (Figure 1) [11, 16].
In a survey of 94 fungal genomes (see Experimental Proce-

dures), we noted the existence of an intact 24 gene, w57 kb
cluster in Podospora anserina with striking similarity to the
A. nidulans ST cluster (Figure 1). The P. anserina cluster is
nested within a very large contig and is thus unlikely to be
the product of contamination [17]. Furthermore, we did not
find any other similar clusters outside the Aspergillus lineage
(Figure S1, available online). Comparison of the two species’
clusters against the A. flavus AF cluster [13, 15] showed that
the gene order and orientation of the P. anserina and
A. nidulans clusters is extremely well-conserved, well above
what would be expected based on their genome-wide evolu-
tionary divergence, whereas the A. flavus AF cluster is more
divergent (Figure 1).
Sequence analysis of the P. anserina cluster genes showed

that all have intact open reading frames and appear similar in
length to A. nidulans ST cluster genes. The average amino
acid identity between P. anserina and A. nidulans gene cluster
orthologs is 63%, a value very similar to the 62% identity
observed between A. nidulans and A. flavus. This similarity in
identity percentages is surprising because the two genera
belong to distinct taxonomic classes; Podospora is a member
of the class Sordariomycetes, Aspergillus a member of the
class Eurotiomycetes, both within the phylum Ascomycota
[18, 19]. In contrast, the average amino acid identity in a data
set of 4915 orthologs inferred from a comparison of the three
species’ proteomes is 75% for A. nidulans-A. flavus, but only
53% for A. nidulans-P. anserina. The remarkable conservation
in microsynteny and sequence raised the possibility that the
P. anserina ST cluster originated via HGT from Aspergillus.
To test the hypothesis that the P. anserina ST cluster origi-

nated via HGT from Aspergillus, we conducted phylogenetic
analyses on all the homologs of A. nidulans ST cluster genes
identified across fungi (see Experimental Procedures). Under
the HGT hypothesis, the expectation is that P. anserina genes
would nest within Aspergillus or Eurotiomycetes in cluster
gene phylogenies and be in stark contrast to the species
phylogeny (Figures 2A and 2B). Phylogenetic analysis of 23
cluster genes revealed six distinct topological patterns (Fig-
ure 2C and Figure S2):

(1) six gene phylogenies support an adjacent-group rela-
tionship between the A. nidulans clan (A. nidulans and
Aspergillus. ochraceoroseus) and P. anserina (pattern
1 in Figure 2C),

(2) seven gene phylogenies support an adjacent-group
relationship between other Aspergillus species (i.e.,
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Figure 1. The P. anserina ST Gene Cluster Is Remarkably Similar to the A. nidulans ST Gene Cluster

(A) Microsynteny and sequence conservation between the ST/AF gene clusters from A. flavus, A. nidulans, and P. anserina. Alignment blocks correspond to

DNA fragments exhibiting significant similarity when the genomic regions comprising the gene clusters are compared with the discontinuous megablast

algorithm [30]. P. anserina genes with evidence of expression are indicated by arrows, whereas intergenic regions containing the consensus AflR-binding

motif identified in a de novo search by theMEME algorithm [54] are shownby asterisks. All the genomes used in this study are shown in Table S1 and all gene

clusters detected in Figure S1.

(B) The predicted consensus-binding motif for the transcription factor AflR identified by examination of the P. anserina intergenic regions. Error bars are

equal to twice the small sample correction e(n) for sequence logos [55].

(C) Plot of the difference in microsynteny conservation between P. anserina:A. nidulans and A. flavus:A. nidulans (shown on the y axis) for the ST cluster

and for each of the 100 randomly selected sets of 25 contiguous genes from the A. nidulans genome (shown on the x axis). See also Figure S1 and

Table S1.
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excluding species in theA. nidulans clan) andP. anserina
(pattern 2 in Figure 2C),

(3) one gene phylogeny supports an adjacent-group rela-
tionship between Aspergillus and P. anserina (pattern
3 in Figure 2C),

(4) five gene phylogenies support the monophyly of the
Aspergillus-Podospora clan but fail to resolve relation-
ships within the clan (pattern 4 in Figure 2C),

(5) three gene phylogenies support an adjacent-group rela-
tionship between the A. nidulans clan (A. nidulans and
A. ochraceoroseus) and P. anserina, but lack
sequences from other Aspergillus species (pattern 5 in
Figure 2C), and
(6) two gene phylogenies contain sequences uniquely
present in Aspergillus and P. anserina (pattern 6 in Fig-
ure 2C).

All gene phylogenies are consistent with the hypothesis that
P. anserina acquired its ST cluster via HGT from Aspergillus
(Figure 2). Furthermore, 9 out of 23 gene phylogenies rejected
a monophyletic Aspergillus clan (the remaining 14 genes were
uninformative; Table 1). Precisely determining the donor
lineage is challenging, given that single gene phylogenies are
often unreliable [20, 21]. For example, whereas six gene
phylogenies support an origin of the P. anserina ST cluster
from an A. nidulans relative after its divergence from other
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Figure 2. Cluster Gene Phylogenies Indicate that the P. anserina ST Cluster Was Acquired via HGT from Aspergillus

(A) Fungal species phylogeny [19]. Numbers of genomes from each lineage analyzed in this study are shown in parentheses.

(B) Phylogeny expected under the hypothesis that the P. anserina ST gene cluster originated via HGT from Aspergillus.

(C) The 23 cluster gene phylogenies correspond to six different patterns. The genes supporting each of the patterns are listed below each pattern. Single

asterisks (*) denote gene phylogenies where A. nidulans and A. ochraceoroseus do not form a clan. Double asterisks (**) denote gene phylogenies that

contain additional A. flavus and A. oryzae paralogs. The full single gene phylogenies, indicating sequences from ST/AF and related clusters [16, 56, 57],

are shown in Figure S2.
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Aspergillus species (pattern 1 in Figure 2), several other gene
phylogenies suggest that the cluster transferred from the
Aspergillus ancestor or from other Aspergillus lineages
(patterns 2 and 3; Figure 2).

Interestingly, our gene phylogenies also indicate that six
Mycosphaerella pini (anamorph: Dothistroma septosporum)
genes from three gene clusters required for the production
of the AF-related compound dothiostromin [22], and which
are homologs to ST cluster genes, were obtained via HGT.
The phylogenetic placement of all six genes is in conflict with
the expected position of M. pini genes based on the species
phylogeny and breaks up the Aspergillus sequence clan (Fig-
ure S2). This placement suggests that the M. pini genes prob-
ably originated from the same donor lineage as the P. anserina
cluster and that HGT events might have been frequent in the
evolution of ST cluster-related genes.

An alternative to the HGT hypothesis is that the ancestor of
Aspergillus and P. anserina contained a ST cluster that was
conserved in A. nidulans and P. anserina but evolved into an
AF cluster in the A. flavus lineage. This ‘‘vertical descent’’
hypothesis is highly unlikely for several reasons. For example,
it requires massive losses of clusters and their constituent
genes across Sordariomycetes (the 10,564 species-rich class
to which Podospora belongs [23], including 18 with draft
genome sequences; Table S1) and Eurotiomycetes (the 3,401
species-rich class to which Aspergillus belongs [23],
including >20 with draft genome sequences; Table S1) to
explain the presence of clusters only in Aspergillus and
Podospora. Furthermore, the hypothesis has difficulty ex-
plaining the remarkable microsynteny and sequence conser-
vation (Figure 1 and Figure S1) between the P. anserina and
A. nidulans ST clusters and the uniquely shared genes
between Eurotiomycetes and P. anserina, as well as the
several gene phylogenies that support an origin of the
P. anserina ST cluster from within Aspergillus (patterns 1 and
3 in Figure 2).
The A. nidulans ST cluster contains two regulatory genes,

AflR and AflJ (AflS in A. flavus) [24], and both of them appear



Table 1. Comparative Topology Tests Provide Support for the HGT of the Podospora ST Gene Cluster from Aspergillus

Gene LnL of Best Tree LnL of Pattern 1 LnL of Pattern 2 LnL of Pattern 3 LnL of Pattern 4

stcWa 211466.24 211466.24 211480.12 211480.13 211545.01

stcVa 221246.35 221252.62 221257.02 221260.71 221383.64

stcRa,b 232492.58 232494.70 232525.28 232522.89 232522.89

stcE 223927.73 223950.01 223946.01 223945.90 223946.33

stcQ 23338.08 23349.30 23338.08 23350.06 23338.08

aflJ 231989.07 231990.44 231995.39 231993.92 231995.43

stcGa,b 216810.37 216811.97 216810.37 216813.50 216844.76

stcIa 211370.46 211377.12 211370.46 211377.23 211409.22

stcSa,b 230703.50 230727.49 230703.97 230733.69 230844.03

stcLb 223210.18 223255.82 223210.18 223253.95 223210.18

stcFb 227471.52 227513.84 227471.57 227513.84 227471.57

stcU 28394.52 28432.60 28394.52 28396.83 28394.51

stcD 22734.30 22745.03 22734.80 22745.34 22735.85

stcK 220214.74 220231.88 220238.69 220214.74 220214.74

stcBa 239230.39 239423.43 239422.95 239428.10 239449.51

stcNa,b 247195.68 247316.03 247493.21 247568.19 247486.07

stcJa,b 246692.31 246699.85 246693.51 246692.31 246922.38

stcM 27773.96 27789.53 27782.63 27776.18 27786.17

stcC 216353.87 216354.61 216355.07 216354.07 216370.58

stcT 216203.34 216203.34 216206.21 216208.20 216213.14

Topology patterns 1–3 correspond to topology patterns 1–3 in Figure 2 and support HGT, whereas topology pattern 4 is the topology consistent with the

species phylogeny and assumes no HGT. Log-likelihood (LnL) scores in bold indicate topology patterns that are significantly worse than the optimal

topology. See also Table S2.
aGenes that reject the null hypothesis of no HGT.
bGenes that recovered the Aspergillus + Podospora clan in protein Log-Det phylogenetic analyses.
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conserved in P. anserina. Although relatively little is known
about the function of the AflJ protein, AflR is a well-character-
ized Zn2Cys6 transcription factor required for transcriptional
activation of the ST/AF biosynthetic genes [24–26]. In both
A. nidulans and A. flavus, AflR directly regulates the expres-
sion of several pathway genes through binding to the
consensus sequence 50–TCG(N5)CGA–30, an 11 bpmotif found
upstream of several ST/AF cluster genes [27, 28](Figure 1B).
To test for the presence of putative motifs in the P. anserina
cluster, we searched all intergenic regions with a de novo
DNA-binding motif prediction algorithm (see Experimental
Procedures). The most significant palindromic motif identified
in our search was 14 instances of the same motif previously
identified in A. nidulans and A. flavus [27, 28], suggesting
that AflR might also participate in the regulation of the
P. anserina pathway. This conservation is surprising given
that cis-regulatory elements are typically divergent in
sequence between fungi belonging to different classes [29]
and offers independent support for the HGT hypothesis.

To test whether genes in the P. anserina ST cluster are ex-
pressed, we searched a collection of 51,862 expressed
sequence tags (ESTs) generated from the sequencing of cDNA
libraries constructed at seven different stages of the
P. anserina life cycle [17]. Similarity searches [30] of the cluster
proteins against the EST collection identified transcripts for 14
of the 24 cluster genes (including for the AflR gene), with genes
showing evidence of expression at five of the seven life cycle
stages. It is not surprising that we did not detect expression of
all ST cluster genes in P. anserina because different genes in
secondary metabolic pathways, including in ST/AF pathways,
areexpressedatdifferent levels [11, 26]—in theAFpathwayvari-
ation in gene expression is also known between different fungal
strains [31]—and the small numbers of reads typically
sequenced in EST collections mean that they frequently miss
detecting genes expressed at lower levels. Thus, the expression
of several members of the gene cluster as well as one of their
regulators throughout the Podospora lifecycle, coupled with
the recent observation of ST production in Podospora [1],
suggests that this horizontally acquired cluster is most likely
responsible for ST production in Podospora.
Our data suggest that anw57 kb genomic region containing

the entire ST gene cluster horizontally transferred from Asper-
gillus to Podospora (Figures 1 and 2). Several recent studies
have reported transfers of gene clusters across fungi, but all
cases so far involve transfers of clusters composed from fewer
than half a dozen genes [32–36]. Novo and coworkers [37]
recently reported the transfer of a 65 kb region from
Zygosaccharomyces bailii to a Saccharomyces cerevisiae
commercial wine strain, whereas Ma and coworkers [38]
experimentally showed the transfer of entire chromosomes
between Fusarium strains, but in both cases the transferred
fragments were not metabolic gene clusters.
The ecological settings and molecular mechanisms under-

lying this HGT event remain obscure. In fungi, coincubation
of different isolates can result in the transfer of entire chromo-
somes [38], suggesting that niche overlap might be sufficient
to facilitate HGT events. Like Aspergillus [19, 39], Podospora
species occupy a similar opportunistic saprotroph niche
[17, 19], and secondary metabolites appear to be involved in
antagonistic interactions (including colonization of Aspergillus
sclerotia) between these lineages [40, 41], thus providing puta-
tive means and motive for HGT of metabolic gene clusters.
Transposable elements or other mobile genetic elements
such as plasmids and viruses could facilitate chromosomal re-
arrangement and integration of foreign genetic material
[38, 42, 43]. Unfortunately, any evidence for the molecular
mechanism responsible for this HGT in the currently available
genomes is limited to an A. nidulans transposable element
sequence (AN7830) found five genes away from the stcA end
of the ST cluster.
Fungi are remarkably diverse in their metabolism, capable of

catabolizing a wide variety of substrates as well as producing
a wide variety of secondary metabolites. Several of the path-
ways responsible for these activities form gene clusters. Our
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finding that one of the largest metabolic gene clusters moved
by HGT between fungi suggests that nonvertical transmission
of the numerous metabolic gene clusters present in fungal
genomes might have significantly contributed to the remark-
able metabolic diversity of fungi, including their ability to
produce highly toxic compounds. Finally, the increasing
number of reported HGT events between fungi adds support
to the notion that HGT-acquired DNA is a significant contrib-
utor to fungal genome remodeling [37, 38].

Experimental Procedures

Gene Cluster Identification

We analyzed the distribution, clustering, and phylogenies of all genes found

the A. nidulans sterigmatocystin (ST) gene cluster and the A. flavus aflatoxin

(AF) gene cluster. In microsynteny searches, we defined putative ST/AF

gene clusters as physically linked groups of genes, no onemember of which

is more than seven genes away from any gene that is also a member of the

ST/AF pathway [34]. We inferred homologous ST/AF clusters in a sample of

94 fungal genomeswhen greater than ten constituent genesweremicrosyn-

tenic (Table S1 and Figure S1), using a series of custom Perl scripts that rely

on BLAST similarity searches [30] and gene order data from publicly

available genome project assemblies or from http://fungalgenomes.org

(maintained by Jason Stajich). We detected the background distribution

of microsynteny conservation betweenA. nidulans andA. flavus/P. anserina

by analyzing one hundred randomly selected sets of 25 contiguous genes

(25 gene set) from A. nidulans. A. flavus/P. anserina orthologs of genes

belonging to these 25 gene sets were considered to have conserved micro-

synteny if they were found clustered with other A. flavus / P. anserina ortho-

logs from the same 25 gene set.

Phylogenetic Analysis

We combined fungal protein sequences with all similar sequences from all

domains of life retrieved from the GenBank nonredundant database using

BLASTP. We identified groups of homologous genes using OrthoMCL [44],

treating all sequences as within genome. We then aligned each homologous

genegroupusingMAFFTversion6.624 [45] andmanuallycurated the resulting

alignment. We inferred gene phylogenies using maximum likelihood (ML) in

RAxML version 7.2 [46] under a Jones-Taylor-Thorton plus GAMMA model

and Bayesian analysis in MrBayes version 3.1.2 [47, 48] under mixed protein

models. For theMLanalyses,weassessed robustnessof inferenceby running

500 bootstrap replicates. For the Bayesian analyses, we ran two independent

analyses using fourMarkovChainMonteCarlo chains (onecold and threehot)

for 1,000,000 generations. We sampled trees every 100 generations and

discardedthefirst2,000sampled treesasburn-in,bywhichpoint theposterior

distribution had already reached stationarity. We performed comparative

topology analyses using the Shimodaira-Hasegawa test [49], as implemented

in RAxML [46] (Table 1). To exclude the possibility that our inference of HGT

was due to compositional artifacts [50], we also performed protein log-deter-

minant (Log-Det) analyses (Table 1 and Table S2). We generated 100 boot-

strap replicates and converted them into distance matrices using the LDDist

ver. 1.4 alpha 10 software [51], after excluding 25% of the most rapidly

evolving sites and 50% of invariant sites and using four rate heterogeneity

categories. The resulting 100 distance matrices were analyzed with the

neighbor-joining algorithm as implemented in PAUP* 4.0b10 [52]. We then

constructed 70% majority rule consensus trees and manually inspected

them for retention of clans of interest. Because all our phylogenetic trees

are unrooted, we adopted the terminology proposed by Wilkinson

and coworkers [53] when discussing tree topology (e.g., cladew clan, sister

groupw adjacent group, more closely relatedw split from).

DNA-Binding Motif Prediction

For DNA-binding motif predictions, we used the MEME Suite (version 4.3.0)

motif-based sequence analysis tools [54]. We conducted de novo MEME

searches for palindromes on all intergenic regions immediately adjacent

to ST/AF gene open reading frames using motif position-specific scoring

matrices to search for similar sequences not found in the initial search using

the MAST algorithm (in the MEME Suite).

Expression Analysis

We retrieved the 51,862 P. anserina ESTs generated by Espagne et al. [17]

from GenBank. The ESTs were generated from seven different lifecycle
stages: 26,211 ESTs from mycelium grown for 48 hr, 8,323 from young peri-

thecia of less than 48 hr, 8,007 from perithecia older than 48 hr, 5,785 from

ascospores 20 hr after germination trigger, 1,230 from senescent mycelium,

1,171 from incompatible mycelium, and 1,135 from rapamycin-induced

mycelium. We considered all cluster proteins that had 100% identity hits

in similarity searches against the EST collection expressed at the lifecycle

stage the EST hit was generated from.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, two figures, and two tables and can be found with this article online

at doi:10.1016/j.cub.2010.12.020.
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