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Let W � L be an irreducible affine Weyl group with Coxeter
complex Σ , where W denotes the associated finite Weyl group
and L the translation subgroup. The Steinberg torus is the Boolean
cell complex obtained by taking the quotient of Σ by the lattice L.
We show that the ordinary and flag h-polynomials of the Steinberg
torus (with the empty face deleted) are generating functions
over W for a descent-like statistic first studied by Cellini. We also
show that the ordinary h-polynomial has a nonnegative γ -vector,
and hence, symmetric and unimodal coefficients. In the classical
cases, we also provide expansions, identities, and generating
functions for the h-polynomials of Steinberg tori.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Overview

Let Sn denote the symmetric group of permutations of [n] := {1, . . . ,n}. For each w ∈ Sn , a descent
is an index i (1 � i < n) such that wi > wi+1. We let

d(w) := ∣∣{i ∈ [n − 1]: wi > wi+1
}∣∣

denote the number of descents in w . The corresponding generating function

An−1(t) :=
∑

w∈Sn

td(w) (1.1)
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is known as an Eulerian polynomial, although this definition differs from the classical one by a power
of t . Some interesting features of the Eulerian polynomials include the facts that they have symmetric
and unimodal coefficients and are known to have all real roots.

More generally, if W is any finite Coxeter group with simple reflections s1, . . . , sn (such as the
symmetric group Sn+1 with simple transpositions si = (i, i + 1)), then a descent in some w ∈ W may
be defined as an index i such that �(wsi) < �(w), where �(w) denotes the minimum length of an
expression for w as a product of simple reflections. Thus there is an analogous W -Eulerian polynomial

W (t) :=
∑

w∈W

td(w),

where d(w) is defined to be the number of descents in w . Note that as a Coxeter group, Sn is often
denoted An−1, so this notation is consistent with (1.1).

Like the classical Eulerian polynomials, the W -Eulerian polynomials are known to have symmetric
and unimodal coefficients. An elegant explanation of this fact may be based on a topological interpre-
tation of W (t) as the h-polynomial of the Coxeter complex of W . Since every (finite) Coxeter complex
is realizable as the boundary complex of a simplicial polytope, the symmetry and unimodality of the
coefficients of W (t) may thus be seen as a consequence of the g-theorem (e.g., see Section III.1
of [21]).

Recently, several authors (see for example [1,12,19,25]) have identified interesting classes of sim-
plicial complexes whose h-polynomials have expansions of the form

h(t) =
∑

0�i�n/2

γit
i(1 + t)n−2i,

where the coefficients γi are nonnegative. It is easy to see that each summand in this expansion has
symmetric and unimodal coefficients centered at n/2, and thus any h-polynomial with a nonnegative
“γ -vector” in this sense necessarily has symmetric and unimodal coefficients. In these terms, the
h-polynomials of all finite Coxeter complexes (i.e., the W -Eulerian polynomials) are known to have
nonnegative γ -vectors [25].

Another feature of γ -nonnegativity is that it is a necessary condition for a polynomial to have
all real roots, given that the polynomial has nonnegative symmetric coefficients. In this direction,
Brenti [2] has conjectured that the W -Eulerian polynomials have all real roots, a result that remains
unproved only for the groups W = Dn .

In this paper, we study a family of Eulerian-like polynomials associated to irreducible affine Weyl
groups. These “affine” Eulerian polynomials may be defined as generating functions for “affine de-
scents” over the corresponding finite Weyl group. An affine descent is similar to an ordinary descent
in a Weyl group, except that the reflection corresponding to the highest root may also contribute a
descent, depending on its effect on length.

The affine Eulerian polynomials have a number of interesting properties similar to those of the
ordinary W -Eulerian polynomials. In particular, we show that they have nonnegative γ -vectors (The-
orem 4.2), and conjecture that all of their roots are real. Perhaps the most interesting similarity is
that each affine Eulerian polynomial is the h-polynomial of a naturally associated relative cell com-
plex (Theorem 3.1).

To describe this complex, one should start with an irreducible affine Coxeter arrangement. Such
an arrangement induces a simplicial decomposition of the ambient space; by taking the quotient
of this space by the translation subgroup of the associated affine Weyl group, one obtains a torus
decomposed into simplicial cells. We refer to this cell complex as the Steinberg torus in recognition
of the work of Steinberg, who gave a beautiful proof of Bott’s formula for the Poincaré series of an
affine Weyl group by analyzing the action of the finite Weyl group on the homology of this complex
in two different ways (see Section 3 of [22]). In fact, Steinberg also allows the possibility of twisting
the entire construction by an automorphism, but we will not consider this variation here.

It is important to note that the Steinberg torus is not a simplicial complex (distinct cells may
share the same set of vertices), but it is at least a Boolean cell complex in the sense that all lower
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intervals in the partial ordering of cells are Boolean algebras.2 For further information about Boolean
complexes, see [20] and the references cited there.

For our purposes, it is essential to omit the empty cell of dimension −1 from the Steinberg torus;
we refer to the resulting relative complex as the reduced Steinberg torus. It is this complex whose
h-polynomial is the corresponding affine Eulerian polynomial; i.e., the generating function for affine
descents.

It is noteworthy that affine descents in finite Weyl groups were first introduced by Cellini [3] in
a construction of a variant of Solomon’s descent algebra, and developed further for the groups of
type A and C in several follow-up papers on “cyclic descents” by Cellini [4,5], Fulman [10,11], and
Petersen [17]. In very recent work, Lam and Postnikov [15] study a weighted count of affine descents
(the “circular descent number”) that coincides with an ordinary count only in the case of type A.

1.2. Organization

The paper is structured as follows. Section 2 introduces the necessary definitions, including details
of the construction of the Steinberg torus. In Section 3 we show that the affine Eulerian polynomials
are the h-polynomials of reduced Steinberg tori (Theorem 3.1). Although we do not know of any sim-
ple topological explanation for the nonnegativity of the h-vector,3 we do show that reduced Steinberg
tori are partitionable (Remark 3.6); this is a weak analogue of shellability that implies h-nonnegativity.

In Section 4, we present our second main result; namely, that the affine Eulerian polynomials
have nonnegative γ -vectors (Theorem 4.2). As a corollary, it follows that the h-vectors of reduced
Steinberg tori are symmetric and unimodal. In this section, we also present evidence supporting our
conjecture that all roots of affine Eulerian polynomials are real. The proof of Theorem 4.2 is case-by-
case, and relies on combinatorial expansions for the γ -vectors of affine Eulerian polynomials for the
classical Weyl groups that we provide in Section 5. In this latter section, we also provide combinatorial
expansions for the flag h-polynomials of reduced Steinberg tori, one of which suggests the possibility
that a natural class of (reduced) polyhedral tori may have nonnegative cd-indices (see Question 5.5).

In Section 6, we present three unexpected identities relating ordinary and affine Eulerian poly-
nomials (two new, one old), and use these to derive exponential generating functions for the affine
Eulerian polynomials for each classical series of Weyl groups.

2. Preliminaries

2.1. Finite and affine Weyl groups

We assume the reader is familiar with the basic theory of reflection groups. We follow the nota-
tional conventions of [14].

Let Φ be a crystallographic root system embedded in a real Euclidean space V with inner prod-
uct 〈· , ·〉. For any root β ∈ Φ , let Hβ := {λ ∈ V : 〈λ,β〉 = 0} be the hyperplane orthogonal to β and let
sβ denote the orthogonal reflection through Hβ . Fix a set of simple roots Δ = {α1, . . . ,αn} ⊂ Φ , and
let S = {s1, . . . , sn} denote the corresponding set of simple reflections. The latter generates a finite
Coxeter group W (a Weyl group).

Unless stated otherwise, we always assume that Φ and W are irreducible.
For convenience, we assume that Δ spans V .
Having fixed a choice of simple roots, every root β either belongs to the nonnegative span of the

simple roots and is designated positive, or else belongs to the nonpositive span of the simple roots
and is designated negative. We write β > 0 or β < 0 accordingly.

The affine Weyl group W̃ is generated by reflections sβ,k through the affine hyperplanes

Hβ,k := {
λ ∈ V : 〈λ,β〉 = k

}
(β ∈ Φ, k ∈ Z).

2 We thank V. Welker for bringing this to our attention.
3 However, Novik and Swartz have recently proved a lower bound for the h-vector of a Buchsbaum Boolean complex that, in

the case of reduced tori, implies nonnegativity—see Theorem 6.4 of [16].
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Alternatively, one may construct W̃ as the semidirect product W � ZΦ∨ , where ZΦ∨ denotes the
lattice generated by all co-roots β∨ = 2β/〈β,β〉 (β ∈ Φ), acting on V via translations.

Given that Φ is irreducible, it has a unique highest root α̃, and it is well known that W̃ is gener-
ated by S̃ := S ∪ {sα̃,1} and that (W̃ , S̃) is an irreducible Coxeter system.

Note that W̃ depends on the underlying root system Φ (not merely W ), so we are committing an
abuse of notation. For example, Bn and Cn are isomorphic as Coxeter systems, but the affine groups
B̃n and C̃n are not isomorphic as Coxeter systems for n � 3.

2.2. Coxeter complexes

The hyperplanes Hβ (β ∈ Φ) induce a partition of V into a complete W -symmetric fan of sim-
plicial cones. By intersecting this fan with the unit sphere in V , one obtains a topological realization
of the Coxeter complex Σ(W ). The action of W on chambers (maximal cones) in the fan is simply
transitive, and the choice of simple roots Δ is equivalent to designating a dominant chamber; namely,

C∅ := {
λ ∈ V : 〈λ,α〉 > 0 for all α ∈ Δ

}
.

The closure of the dominant chamber is a fundamental domain for the action of W on V , and thus
every cone in the fan has the form wC J (w ∈ W , J ⊆ [n]), where

C J := {
λ ∈ V : 〈λ,α j〉 = 0 for j ∈ J , 〈λ,α j〉 > 0 for j ∈ [n] \ J

}
.

Notice that the rays (1-dimensional cones) have the form wC J where J = [n] \ { j} for some j. If
we assign color j to all such rays, we obtain a balanced coloring of Σ(W ); i.e., every maximal face
(chamber) has exactly one vertex (extreme ray) of each color.

Similarly, the affine hyperplanes Hβ,k (β ∈ Φ , k ∈ Z) may be used to partition V into a W̃ -
symmetric simplicial complex that is isomorphic to the Coxeter complex Σ(W̃ ). By abuse of notation,
we will identify Σ(W̃ ) with this particular geometric realization. The action of W̃ on alcoves (maxi-
mal simplices) is simply transitive, and the fundamental alcove

A∅ := C∅ ∩ {
λ ∈ V : 〈λ, α̃〉 < 1

}
is tied to the choice of S̃ in the sense that the W̃ -stabilizer of every point in the closure of A∅
(a fundamental domain) is generated by a proper subset of S̃ . We index the faces of A∅ by subsets
of [0,n] := {0,1, . . . ,n} so that the J -th face is

A J :=
{

C J ∩ {λ ∈ V : 〈λ, α̃〉 < 1} if 0 /∈ J ,

C J\{0} ∩ {λ ∈ V : 〈λ, α̃〉 = 1} if 0 ∈ J .

Note that A J is the empty face when J = [0,n].
The Coxeter complexes for Ã2 and C̃2 are illustrated in Fig. 1.
Since the closure of A∅ is a fundamental domain for the action of W̃ , each cell in this complex

has the form μ + w A J (μ ∈ ZΦ∨ , w ∈ W , J ⊆ [0,n]). In particular, the vertices of Σ(W̃ ) are of the
form μ + w A{ j}c , where J c := [0,n] \ J . If we assign color j to each of the vertices μ + w A{ j}c , then
the vertices of the cell μ + w A J are assigned color-set J c (without repetitions), so this coloring is
balanced.

Remark 2.1. If Φ and W are reducible, then the affine hyperplanes Hβ,k may still be used to parti-
tion V into a cell complex, but the result is not a geometric realization of the Coxeter complex of W̃ .
Indeed, the cells of this complex are products of simplices, whereas the Coxeter complex of every
Coxeter system is simplicial.
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Fig. 1. Portions of the Coxeter complexes for Ã2 and C̃2.

2.3. Flag f -vectors and h-vectors

Let Σ be a finite set of simplices (or abstractly, a hypergraph) that is properly colored; i.e., the
vertices of Σ have been assigned colors from some index set, say [0,n], so that no simplex has two
vertices with the same color. The main examples we have in mind are balanced simplicial (or more
generally, Boolean) complexes.

A basic combinatorial invariant of Σ that carries significant algebraic and topological information
(e.g., see the discussion in Section III.4 of [21]) is the flag h-vector. The components of the flag h-vector
are the quantities

h J (Σ) :=
∑
I⊆ J

(−1)| J\I| f I (Σ)
(

J ⊆ [0,n]), (2.1)

where f I (Σ) denotes the number of simplices in Σ whose vertices have color-set I .
The quantities f J (Σ) for J ⊆ [0,n] are collectively referred to as the flag f -vector of Σ .
The corresponding generating functions

f (Σ; t0, . . . , tn) :=
∑

J⊆[0,n]
f J (Σ)

∏
j∈ J

t j,

h(Σ; t0, . . . , tn) :=
∑

J⊆[0,n]
h J (Σ)

∏
j∈ J

t j

are known as the flag f -polynomial and flag h-polynomial of Σ . The more familiar ordinary f -
polynomial and h-polynomial may be obtained via the specializations

f (Σ; t) := f (Σ; t, . . . , t) =
∑

J⊆[0,n]
f J (Σ)t| J |,

h(Σ; t) := h(Σ; t, . . . , t) =
∑

J⊆[0,n]
h J (Σ)t| J |.

The coefficients of these polynomials yield the (ordinary) f -vector and h-vector of Σ .
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Fig. 2. The Steinberg tori for Ã2 and C̃2.

Note that (2.1) implies

h(Σ; t0, . . . , tn) = (1 − t0) · · · (1 − tn) f

(
Σ; t0

1 − t0
, . . . ,

tn

1 − tn

)
, (2.2)

and hence h(Σ; t) = (1 − t)n+1 f (Σ; t/(1 − t)).

2.4. The Steinberg torus

As the translation subgroup of W̃ , the co-root lattice ZΦ∨ acts as a group of color-preserving
automorphisms of the affine Coxeter complex Σ(W̃ ). Letting T denote the n-torus V /ZΦ∨ , it follows
that the image of Σ(W̃ ) under the natural map V → T is a balanced Boolean complex, denoted
ΣT (W̃ ). That is,

ΣT (W̃ ) = Σ(W̃ )/ZΦ∨.

As explained in the introduction, we refer to ΣT (W̃ ) as the Steinberg torus. We also define the reduced
Steinberg torus, denoted Σ ′

T (W̃ ), to be the relative complex obtained by deleting the empty simplex
of dimension −1 from ΣT (W̃ ).

Note that these are finite complexes; there is one maximal cell w A∅ + ZΦ∨ for each w ∈ W .
There is an alternative way to construct the Steinberg torus that starts with the observation that

the 0-colored vertices in Σ(W̃ ) are the members of ZΦ∨ . Since every alcove A has a unique 0-
colored vertex, one may translate A via ZΦ∨ to a unique alcove that has the origin as a vertex; i.e.,
to one of the alcoves in the W -orbit of A∅ . The closure of this set of alcoves is the W -invariant
convex polytope

PΦ = {
λ ∈ V : −1 � 〈λ,β〉 � 1 for all β ∈ Φ

}
,

and the Steinberg torus is obtained by identifying the maximal opposite faces of PΦ .

Example 2.2. The Steinberg torus for Ã2 is a hexagon with opposite sides identified, decomposed into
six triangles, nine edges, and three vertices. See Fig. 2. It has flag f -polynomial

f
(
ΣT ( Ã2); t0, t1, t2

) = 1 + t0 + t1 + t2 + 3t0t1 + 3t0t2 + 3t1t2 + 6t0t1t2.

Using (2.2) to compute the flag h-polynomial, we find

h
(
ΣT ( Ã2); t0, t1, t2

) = 1 + 2t0t1 + 2t0t2 + 2t1t2 − t0t1t2.

On the other hand, the reduced Steinberg torus lacks the empty face, so its flag f -polynomial omits
the constant term and we find

h
(
Σ ′

T ( Ã2); t0, t1, t2
) = t0 + t1 + t2 + t0t1 + t0t2 + t1t2.
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Specializing, we see that the reduced Steinberg torus has ordinary f -polynomial 3t + 9t2 + 6t3, and
ordinary h-polynomial 3t + 3t2.

Example 2.3. The Steinberg torus for C̃2 (or the isomorphic B̃2) is a square with opposite sides iden-
tified, decomposed into eight triangles, twelve edges, and four vertices as in Fig. 2. The reduced
Steinberg torus has flag f -polynomial

f
(
Σ ′

T (C̃2); t0, t1, t2
) = t0 + t1 + 2t2 + 4t0t1 + 4t0t2 + 4t1t2 + 8t0t1t2,

and (again via (2.2)) flag h-polynomial

h
(
Σ ′

T (C̃2); t0, t1, t2
) = t0 + t1 + 2t2 + 2t0t1 + t0t2 + t1t2.

As in the previous example, it is easy to check that the ordinary and flag h-polynomials of the unre-
duced Steinberg torus have (some) negative coefficients.

2.5. Affine descents

We define a root β to be negative with respect to w ∈ W if wβ < 0. The positive roots that are
negative with respect to w are known as inversions. If �(w) denotes the minimum length of an expres-
sion for w as a product of simple reflections, then β is negative with respect to w if �(wsβ) < �(w)

(for β > 0) or �(wsβ) > �(w) (for β < 0).
A simple root that is negative with respect to w is said to be a (right) descent, and the descent set

of w , denoted D(w), records the corresponding set of indices. Thus,

D(w) = {
j ∈ [n]: wα j < 0

} = {
j ∈ [n]: �(ws j) < �(w)

}
.

We let d(w) := |D(w)| denote the number of descents in w .
As noted in the introduction, the W -Eulerian polynomial is the h-polynomial of the Coxeter com-

plex Σ(W ). That is,

W (t) =
∑

w∈W

td(w) = h
(
Σ(W ); t

)
.

More generally, the generating function for descent sets; namely,

W (t1, . . . , tn) :=
∑

w∈W

∏
j∈D(w)

t j

is the flag h-polynomial of Σ(W ) (e.g., see the discussion at the end of Section III.4 in [21]).
Extending these concepts, set α0 := −α̃ (the lowest root), and let s0 = sα̃ denote the corresponding

reflection in W . We define the affine descent set of w , denoted D̃(w), to be the set of indices of roots
in Δ0 := Δ ∪ {α0} that are negative with respect to w . Thus,

D̃(w) = {
j ∈ [0,n]: wα j < 0

} =
{

D(w) ∪ {0} if �(ws0) > �(w),

D(w) if �(ws0) < �(w).

We let d̃(w) := |D̃(w)| denote the number of affine descents in w .
Note that only the identity element of W has an empty descent set (but has an affine descent

at 0), and only the longest element w0 has a full descent set (i.e., D(w0) = [n]) but does not have an
affine descent at 0. Thus 1 � d̃(w) � n for all w ∈ W .
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3. Affine Eulerian polynomials

We let W̃ (t0, . . . , tn) and W̃ (t) denote the respective generating functions for affine descent sets
and numbers of affine descent sets; i.e.,

W̃ (t0, . . . , tn) :=
∑

w∈W

∏
j∈D̃(w)

t j, (3.1)

W̃ (t) := W̃ (t, . . . , t) =
∑

w∈W

td̃(w). (3.2)

We refer to these as multivariate and univariate affine Eulerian polynomials.

Theorem 3.1. If W̃ is an irreducible affine Weyl group, then the flag h-polynomial of the corresponding reduced
Steinberg torus is the multivariate W̃ -Eulerian polynomial; i.e.,

h
(
Σ ′

T (W̃ ); t0, . . . , tn
) = W̃ (t0, . . . , tn). (3.3)

In particular, for all J ⊆ [0,n], we have

f J
(
Σ ′

T (W̃ )
) = ∣∣{w ∈ W : D̃(w) ⊆ J

}∣∣, (3.4)

h J
(
Σ ′

T (W̃ )
) = ∣∣{w ∈ W : D̃(w) = J

}∣∣. (3.5)

Furthermore,

W̃ (t0, . . . , tn) =
∑

J�[0,n]

|W |
|W J |

∏
j∈ J

(1 − t j)
∏
j /∈ J

t j, (3.6)

where W J denotes the (not necessarily parabolic) subgroup of W generated by {s j: j ∈ J }.

Of course it follows immediately that the ordinary h-polynomial of the reduced Steinberg torus is
the corresponding univariate affine Eulerian polynomial; i.e.,

h
(
Σ ′

T (W̃ ); t
) = W̃ (t) =

∑
w∈W

td̃(w).

Corollary 3.2. The flag h-vector of the reduced Steinberg torus Σ ′
T (W̃ ) satisfies the generalized Dehn–

Sommerville equations; that is, for all J ⊆ [0,n], we have

h J
(
Σ ′

T (W̃ )
) = h J c

(
Σ ′

T (W̃ )
)
.

In particular, the W̃ -Eulerian polynomial is symmetric: W̃ (t) = tn+1W̃ (1/t).

Proof. Recall that the longest element w0 ∈ W is an involution that sends all positive roots to nega-
tive roots. It follows that a root β satisfies wβ < 0 if and only if w0 wβ > 0, and hence

D̃(w0 w) = [0,n] \ D̃(w),

for all w ∈ W . Now apply (3.5). �
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Remark 3.3. The unreduced Steinberg torus ΣT (W̃ ) has nearly the same flag f -vector as its reduced
counterpart, the only difference being f∅(ΣT (W̃ )) = 1 in place of f∅(Σ ′

T (W̃ ))= 0. However, as we
noted in Example 2.2, the h-polynomial need not have symmetric or nonnegative coefficients in the
unreduced case, and is therefore of less interest.

The following lemma is the key to our proof of Theorem 3.1.

Lemma 3.4. If {βi: i ∈ I} is a set of simple roots for a reflection subgroup W ′ of W , then every coset in W /W ′
has a unique member w such that wβi > 0 for all i ∈ I .

Proof. Fix a dominant point λ ∈ C∅ (i.e., 〈λ,α〉 > 0 for all roots α ∈ Δ), so that the W -orbit of λ is
generic and the map w �→ w−1λ is a bijection between W and the orbit W λ. Since

wβi > 0 ⇔ 〈λ, wβi〉 > 0 ⇔ 〈
w−1λ,βi

〉
> 0,

we see that w satisfies wβi > 0 for all i ∈ I if and only if w−1λ is dominant with respect to the
simple roots of W ′ . However, every W ′-orbit has a unique dominant member, and the image of the
coset wW ′ under the bijection is the W ′-orbit of w−1λ, so the result follows. �
Remark 3.5. In the above lemma, it is interesting to note that by choosing the simple roots of W ′
so that they are positive relative to Φ , one may deduce that every coset of every reflection subgroup
of W has a unique element of minimum length. This is a familiar fact for parabolic subgroups, but
the less familiar general case also follows from work of Dyer (see Corollary 3.4 of [8]).

Proof of Theorem 3.1. For each nonempty J ⊆ [0,n], the set of cells of the affine Coxeter complex
with color-set J is the W̃ -orbit of A J c . These are the cells of the form μ + w A J c (for μ ∈ ZΦ∨ ,
w ∈ W ), so

{
w A J c + ZΦ∨: w ∈ W

}
is the set of cells of the reduced Steinberg torus with color-set J . However, the W̃ -stabilizer of A J c

(or indeed, any subset of the closure of the fundamental alcove) is generated by the subset of S̃ that
fixes A J c . The W -image of this subgroup (i.e., the W -stabilizer of A J c + ZΦ∨) is W J c , the reflection
subgroup of W generated by {s j: j ∈ [0,n] \ J }, and therefore

f J
(
Σ ′

T (W̃ )
) = |W |/|W J c |. (3.7)

On the other hand, we have

{
w ∈ W : D̃(w) ⊆ J

} = {
w ∈ W : wα j > 0 for j ∈ [0,n] \ J

}
and every proper subset of Δ0 is the set of simple roots of some root subsystem of Φ (this amounts
to the fact that every proper subset of the extended Dynkin diagram, which records the geometry
of Δ0, is the Dynkin diagram of a finite root system), so Lemma 3.4 implies that {w ∈ W : D̃(w) ⊆ J }
is a set of coset representatives for W /W J c . Hence,

f J
(
Σ ′

T (W̃ )
) = |W |/|W J c | = ∣∣{w ∈ W : D̃(w) ⊆ J

}∣∣.
Noting that f J (Σ

′
T (W̃ )) = |{w ∈ W : D̃(w) ⊆ J }| = 0 when J = ∅, we obtain (3.4).

To complete the proof, note that (3.4) implies (3.5) and hence (3.3) via inclusion-exclusion. The
latter allows one to deduce (3.6) as a corollary of (2.2) and (3.7). �
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Table 1
Some affine Eulerian polynomials.

W W̃ (t)

B3 10t + 28t2 + 10t3

B4 24t + 168t2 + 168t3 + 24t4

B5 54t + 904t2 + 1924t3 + 904t4 + 54t5

B6 116t + 4452t2 + 18472t3 + 18472t4 + 4452t5 + 116t6

B7 242t + 20612t2 + 157294t3 + 288824t4 + 157294t5 + 20612t6 + 242t7

D4 16t + 80t2 + 80t3 + 16t4

D5 44t + 464t2 + 904t3 + 464t4 + 44t5

D6 104t + 2568t2 + 8848t3 + 8848t4 + 2568t5 + 104t6

D7 228t + 13192t2 + 79580t3 + 136560t4 + 79580t5 + 13192t6 + 228t7

E6 351t + 5427t2 + 20142t3 + 20142t4 + 5427t5 + 351t6

E7 4064t + 115728t2 + 710112t3 + 1243232t4 + 710112t5 + 115728t6 + 4064t7

E8 157200t + 9253680t2 + 87417360t3 + 251536560t4 + 251536560t5 + 87417360t6 + 9253680t7 + 157200t8

F4 72t + 504t2 + 504t3 + 72t4

G2 6t + 6t2

It is easy to compute the affine Eulerian polynomials for the groups of low rank via (3.6). Some
examples, including all of the exceptional groups, are listed in Table 1.

Remark 3.6. Given J � [0,n], it follows from Lemma 3.4 that each coset in W /W J has a unique
representative w such that D̃(w) ∩ J = ∅. Thus each cell of the reduced Steinberg torus has the form
F (w, J ) = w A J + ZΦ∨ for some unique pair (w, J ) with D̃(w) ∩ J = ∅. Moreover, the cells of the
form F (w,∗) are precisely the cells in the closure of F (w,∅) that have on their boundary the unique
cell with color-set D̃(w); namely, F (w, D̃(w)c). Thus the reduced Steinberg torus is “partitionable” in
the sense defined in Section III.2 of [21].

Remark 3.7. If W is an irreducible but non-crystallographic finite reflection group, such as H3 or H4,
then there is no corresponding affine Weyl group, and hence no Steinberg torus. The root system still
has a unique dominant root, so one could define fake affine Eulerian polynomials W fa(t0, . . . , tn) and
W fa(t) analogous to (3.1) and (3.2), using the anti-dominant root in the role of α0. For the groups H3
and H4, one obtains

H fa
3 (t) = 26t + 68t2 + 26t3,

H fa
4 (t) = 960t + 6240t2 + 6240t3 + 960t4.

Although these polynomials have symmetric and unimodal coefficients (and real roots), we do not
know if W fa(t) is the h-polynomial of some naturally associated Boolean complex.

Remark 3.8. More generally, given any subset of roots Ψ = {βi: i ∈ I} ⊂ Φ , one could define a gener-
alized descent set for w ∈ W by setting

DΨ (w) := {i ∈ I: wβi < 0},

whether or not Φ is crystallographic. Examining the proof of Theorem 3.1, one can see that the
generating function for these generalized descent sets would satisfy a formula similar to (3.6) if for
every J ⊆ I , either {β j: j ∈ J } is the set of simple roots of some finite root system (see Lemma 3.4),
or {w ∈ W : wβ j > 0 for all j ∈ J } is empty. Applying this criterion to pairs i, j ∈ I , this forces the
angle between βi and β j to be (1 − 1/m)π for some integer m � 2, or βi = −β j (i.e., m = ∞). Since
the matrix 〈βi, β j〉 is necessarily positive semidefinite, it follows from the theory of reflection groups
that (up to normalization) Ψ must be the simple roots of some root subsystem, or is an extension
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of the simple roots by the lowest root of some crystallographic root subsystem, or is an orthogonal
disjoint union of such sets (e.g., see Section 2.7 of [14]). In particular, the identity in (3.6) is not valid
for the fake affine Eulerian polynomials discussed in the previous remark.

4. Real roots, γ -vectors, and unimodality

The following is a companion to Brenti’s conjecture [2] that the roots of all (ordinary) Eulerian
polynomials W (t) are real.

Conjecture 4.1. The roots of all affine Eulerian polynomials W̃ (t) are real.

To complete a proof of this conjecture, we claim that it suffices to consider only the groups B̃n
and D̃n . Indeed, it follows from observations of Fulman [10,11] and Petersen [17] that Ãn(t) and C̃n(t)
are both multiples of An−1(t) (see also the discussion in Section 5 below). Thus the conjecture for
Ãn and C̃n follows from the fact that all roots of the classical Eulerian polynomials are known to be
real [13]. Furthermore, using the data in Table 1, it is easy to check that the conjecture holds for the
exceptional groups.

To collect supporting evidence for the remaining groups B̃n and D̃n , we have determined explicit
exponential generating functions for the corresponding affine Eulerian polynomials (see Proposi-
tion 6.4 below), and used these to verify the conjecture for n � 100. In a similar way, we have also
confirmed that all roots of Dn(t) are real (the only remaining open case of Brenti’s conjecture) for
n � 100.

A further supporting result involves γ -vectors in the sense of Brändén [1] and Gal [12]. To explain,
consider a polynomial satisfying h(t) = tmh(1/t). It is clear that such a polynomial has a unique
expansion of the form

h(t) =
∑

0�i�m/2

γit
i(1 + t)m−2i .

We call (γ0, γ1, . . .) the γ -vector of h(t).
It is elementary to show that if h(t) has symmetric, nonnegative coefficients and all real roots,

then it has a nonnegative γ -vector (see Lemma 4.1 of [1] or Section 1.4 of [25]).
Recall that W̃ (t) is symmetric (Corollary 3.2), so it has a γ -vector.

Theorem 4.2. The affine Eulerian polynomials W̃ (t) have nonnegative γ -vectors.

Proof. Given that we know Conjecture 4.1 holds for Ãn , C̃n , and the exceptional affine Weyl groups, it
suffices to prove this result for B̃n and D̃n . In these cases, we have explicit combinatorial expansions
for B̃n(t) and D̃n(t) in Corollaries 5.9 and 5.11 below that transparently imply the nonnegativity of
their γ -vectors. �

It would be interesting to have a conceptual (case-free) proof of this result.
Any polynomial with a nonnegative γ -vector has unimodal coefficients. Hence,

Corollary 4.3. The affine Eulerian polynomials have unimodal coefficients.

We remark that the γ -vectors of the Eulerian polynomials W (t) are also known to be nonnegative,
but the only existing proofs to date are case-by-case [6,25].

5. Combinatorial expansions and γ -nonnegativity

In this section, we provide combinatorial expansions for the affine Eulerian polynomials (both
multivariate and univariate) for the four infinite families of irreducible Weyl groups. As corollaries,
we will deduce the nonnegativity of the γ -vectors for these polynomials.
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5.1. Type A

Recall that the Weyl group An−1 may be identified with Sn , the symmetric group of permutations
of [n], and the corresponding root system is

{εi − ε j: 1 � i �= j � n},

where ε1, . . . , εn is the standard orthonormal basis of Rn . For the simple roots, we choose αi =
εi+1 − εi (1 � i < n). With respect to this choice, the simple reflection si transposes i and i + 1
(as a permutation) and interchanges εi and εi+1 (as a reflection acting on Rn).

The positive roots are εi − ε j for i > j, and the lowest root α0 = −α̃ is ε1 − εn .
We write permutations in one-line form w = w1 w2 · · · wn , where wi = w(i). In these terms, a root

εi − ε j is negative with respect to a permutation w if and only if w j > wi . In particular, D(w) =
{i ∈ [n − 1]: wi > wi+1} is the usual descent set of a permutation. Also, an extra “affine” descent
occurs at 0 if and only if wn > w1, so D̃(w) = {i ∈ [0,n − 1]: wi > wi+1}, using the convention
w0 = wn .

For example, D(25413) = {2,3} and D̃(25413) = {0,2,3}.

Proposition 5.1. For n � 2, we have

Ãn−1(t0, . . . , tn−1) =
n−1∑
j=0

t j An−2(t j+1, . . . , tn−1, t0, . . . , t j−2).

Proof. Let c = 23 · · ·n1 (an n-cycle in An−1), and note that one may obtain the affine descent set
of wc = w2 · · · wn w1 by a cyclic shift of the affine descent set of w ∈ An−1; i.e.,

D̃(wc) = {
i − 1: i ∈ D̃(w)

}
mod n.

Each coset of the cyclic subgroup 〈c〉 has a unique representative w such that wn = n, and this set
of representatives is in bijection with An−2. For each coset representative w , we have 0 ∈ D̃(w),
and the remaining affine descents coincide with the ordinary descents of the corresponding mem-
ber of An−2. Thus, the generating function for the affine descent sets of these coset representatives
is t0 An−2(t1, . . . , tn−2), and the generating function corresponding to elements of the form wc− j is
obtained by substituting ti → ti+ j (subscripts modulo n). �

It follows that the univariate affine Eulerian polynomials of type A are multiples of classical Eule-
rian polynomials, as noted previously by Fulman [10] and Petersen [17].

Corollary 5.2. For n � 1, we have Ãn(t) = (n + 1)t An−1(t).

5.2. Type C

The root system of the Weyl group Cn has the form

{±2εi: 1 � i � n} ∪ {±εi ± ε j: 1 � j < i � n},

and Cn acts as a group of permutations of {±ε1, . . . ,±εn}. More explicitly, if we identify ±i with ±εi ,
then Cn may be viewed as the group of permutations of ±[n] = {±1, . . . ,±n} such that w(−i) =
−w(i) for all i. The simple roots may be chosen so that α1 = 2ε1 and αi = εi − εi−1 for 2 � i � n.
With respect to this choice, the positive roots are 2εi for all i and εi ± ε j for all i > j, and the lowest
root α0 = −α̃ is −2εn .
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We write permutations w ∈ Cn in one-line form w = w1 · · · wn , where wi = w(i). In these terms,
one can check that roots of the form εi − ε j with i > j are negative with respect to w if and only
if w j > wi , whereas roots of the form 2εi are negative with respect to w if and only if wi < 0. In
particular, the ordinary descent set is D(w) = {i ∈ [n]: wi−1 > wi}, using the convention w0 = 0, and
0 is in the affine descent set D̃(w) when wn > 0.

For example, if w = 235̄1̄4 (bars indicate negative values), then D̃(w) = {0,3}.
In the following formula for the multivariate C̃n-Eulerian polynomial, it is more convenient to

use n + 1 in place of 0 to mark the extra affine descent, or equivalently, set t0 = tn+1. Note that by
specializing this extra variable (i.e., setting t0 = tn+1 = 1), we recover Stembridge’s formula for the
flag h-polynomial of the Coxeter complex Σ(Cn) [25, Proposition A.1].

Below, we use χ(·) as an indicator function: χ(S) = 1 if S is true; 0 if S is false.

Proposition 5.3. For n � 1, we have

C̃n(tn+1, t1, . . . , tn) =
∑
u∈Sn

n∏
i=1

(
t
χ(ui−1<ui)

i + t
χ(ui>ui+1)

i+1

)
,

using the convention u0 = un+1 = 0.

Proof. Following the proof of Proposition A.1 in [25], each member of Cn has the form w = σu, where
u ∈ Sn and σ = (σ1, . . . , σn) ∈ Zn

2 (meaning that wi = σiui ). Given that u0 = un+1 = 0 and that n + 1
replaces 0 in D̃(w), we see that for i = 1, . . . ,n + 1,

• if ui−1 < ui , then i ∈ D̃(w) ⇔ σi = −1,
• if ui−1 > ui , then i ∈ D̃(w) ⇔ σi−1 = +1.

Thus for each i ∈ [n + 1], there is a unique j (depending on u) such that the presence or absence of i
in D̃(w) is controlled by the value of σ j . More specifically, σ j controls the presence of j (if u j−1 < u j)
and j + 1 (if u j > u j+1), and nothing else. Furthermore, if we define

c j(u) := t
χ(u j−1<u j)

j + t
χ(u j>u j+1)

j+1 , (5.1)

then c j(u) records the sum of the weights of the effects of σ j = −1 and σ j = +1 on the affine descent
set of σu. Since the effects of σ1, . . . , σn are mutually independent, we conclude that

∑
σ∈Zn

2

∏
i∈D̃(σu)

ti = c1(u) · · · cn(u),

and the result follows by summing over u ∈ Sn . �
Remark 5.4. It is well known that the Coxeter complex Σ(Cn) is isomorphic to the barycentric
subdivision of an n-dimensional cube, and as explained in Remark A.3 of [25], one may recognize
Stembridge’s formula for the flag h-polynomial of Σ(Cn) as a disguised formula for the cd-index of
the n-cube. Similarly, the Steinberg torus ΣT (C̃n) may be constructed from the barycentric subdivi-
sion of an n-cube by identifying the opposite maximal faces of the cube (recall Example 2.3), and the
above formula may be reinterpreted as a nonnegative cd-index for the reduced complex.

The above remark suggests the possibility of a more general result. Given a tiling of Rn by lattice
translates of a convex polytope P , the quotient of Rn by the lattice may be viewed as an n-torus
decomposed into polyhedral cells. Lattice translates of the cells in the barycentric subdivision of P
may be identified, thereby yielding a “polytorus” with a well-defined flag h-vector, and our findings
here suggest that one should study the “reduced polytorus” obtained by deleting the empty face.
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Question 5.5. Does every reduced polytorus have a nonnegative cd-index?

It will be convenient for what follows to introduce three conventions for counting peaks in a
permutation u ∈ Sn; namely,

pk(u) := ∣∣{i ∈ [2,n − 1]: ui−1 < ui > ui+1
}∣∣,

lpk(u) := ∣∣{i ∈ [1,n − 1]: ui−1 < ui > ui+1
}∣∣,

epk(u) := ∣∣{i ∈ [1,n]: ui−1 < ui > ui+1
}∣∣,

again using the convention u0 = un+1 = 0. We refer to these quantities as the number of ordinary,
left, and extended peaks in u, respectively.

The following expansions show that C̃n(t), Cn(t), and An−1(t) have nonnegative γ -vectors. Part (b)
is due to Petersen [18, Proposition 4.15], and part (c) is equivalent to an identity due to Foata and
Schützenberger ([9, Théorème 5.6]; see also Remark 4.8 of [24]).

Corollary 5.6. For n � 1, we have

(a) C̃n(t) = (1/2)
∑

u∈Sn
(4t)epk(u)(1 + t)n+1−2 epk(u) ,

(b) Cn(t) = ∑
u∈Sn

(4t)lpk(u)(1 + t)n−2 lpk(u) ,

(c) An−1(t) = 2−(n−1)
∑

u∈Sn
(4t)pk(u)(1 + t)n−1−2 pk(u) .

Proof. (a) Proposition 5.3 implies that C̃n(tn+1, t1, . . . , tn) = ∑
u∈Sn

c1(u) · · · cn(u), where ci(u) is de-
fined as in (5.1). Specializing the variables so that ti → t for all i, one sees that

ci(u) →
⎧⎨
⎩

2t if ui−1 < ui > ui+1 (a peak),

2 if ui−1 > ui < ui+1 (a valley),

1 + t otherwise.

(5.2)

However, any sequence (0, u1, . . . , un,0) that begins with an increase and ends with a decrease must
have exactly one more peak than it has valleys, so the first possibility occurs epk(u) times, the second
epk(u) − 1 times, and the last n + 1 − 2 epk(u) times.

(b) We have Cn(t) = C̃n(1, t, . . . , t). The analysis is similar to (a), the only change being that cn(u)

now specializes to 1 + t or 2 according to whether un−1 < un . An equivalent way to obtain the
same result would be to use the rules in (5.2) but with un+1 = ∞. In these terms, the sequence
(0, u1, . . . , un,∞) has lpk(u) peaks each contributing factors of 2t , along with lpk(u) valleys each
contributing factors of 2, and the remaining n − 2 lpk(u) contributions are factors of 1 + t .

(c) A sum over w ∈ Cn may be viewed as 2n sums over permutations of n distinct objects
(first choose which subset of letters in [n] to negate). In this way, it is not hard to see that
C̃n(1, t, . . . , t,1) = 2n An−1(t). The analysis of this case is similar to (b), but now using the conven-
tion that u0 = un+1 = ∞. �

The following result was first obtained by Fulman (using the combinatorics of shuffling [11]) and
later by Petersen (using a variation of the theory of P -partitions [17]).

Corollary 5.7. For n � 1, we have

C̃n(t) = 2nt An−1(t).
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Proof #1. Comparing parts (a) and (c) of Corollary 5.6, it suffices to show that epk(u) − 1 and pk(u)

have the same distribution as u varies over Sn . To see this, recall from the proof of Corollary 5.6(a)
that every u ∈ Sn has exactly epk(u) − 1 valleys, and that these valleys occur in internal positions.
Thus epk(u) − 1 = pk(v), where vi = n + 1 − ui . �
Proof #2. It suffices to show that d̃(w) and d(u)+ 1 have the same probability distributions as w and
u vary uniformly over Cn and Sn , respectively. To see this, first consider

f i j(t) :=
∑

u∈Sn: ui= j

td̃(u),

so that Ãn−1(t) = f1 j(t) + · · · + fnj(t). Since d̃(u) is invariant under cyclic shifts (recall the proof of
Proposition 5.1), it follows that f1 j(t) = · · · = fnj(t), and hence f i j(t) = t An−2(t) (Corollary 5.2). Thus,
the distribution of d̃(u) as u ∈ Sn varies over all (n − 1)! permutations with a fixed value in one
position is the same as the distribution of d(v) + 1 over v ∈ Sn−1.

Now consider w ∈ Cn . If we fix in advance the set {w1, . . . , wn} (one of 2n equally likely possibili-
ties), one may view the word ŵ := w1 · · · wn0 as a permutation of n + 1 objects, and thus identify ŵ
as one of the n! members of An = Sn+1 with a fixed value in its last position. However, it is not hard
to see that ŵ (as a member of An) and w (as a member of Cn) have the same number of affine
descents. �
5.3. Type B

The Weyl group Bn is identical to Cn , but has a root system that is a rescaling of the Cn root
system; namely,

{±εi: 1 � i � n} ∪ {±εi ± ε j: 1 � j < i � n}.

We can likewise rescale the choice of simple roots; the only change is that α1 is now ε1. In this way,
the positive roots are (positive) rescalings of the positive roots for Cn , so ordinary descents in Bn and
Cn are the same. On the other hand, the lowest root α0 = −α̃ is now −εn−1 − εn , so 0 is in the affine
descent set of w ∈ Bn if and only if wn−1 + wn > 0.

For example, if w = 234̄51̄, then D̃(w) = {0,3,5}.

Proposition 5.8. For n � 2, we have

B̃n(t0, . . . , tn) =
∑
u∈Sn

b1(u) · · ·bn(u),

where bi(u) = ci(u) for i < n − 1 as defined in (5.1), and

bn−1(u) := t
χ(un−2<un−1)

n−1 + (t0tn)χ(un−1>un),

bn(u) := t
χ(un−1<un)
n + t

χ(un−1<un)

0 .

Proof. By factoring elements of Bn in the form w = σu (σ ∈ Zn
2, u ∈ Sn), the analysis proceeds as in

the proof of Proposition 5.3, except that

• if un−1 < un , then 0 ∈ D̃(w) ⇔ σn = +1,
• if un−1 > un , then 0 ∈ D̃(w) ⇔ σn−1 = +1.
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Thus for each i ∈ [0,n], there is still a unique j (depending on u) such that the presence or absence
of i in D̃(w) is controlled by the value of σ j . Hence,

∑
σ∈Zn

2

∏
i∈D̃(σu)

ti = (
b−

1 (u) + b+
1 (u)

) · · · (b−
n (u) + b+

n (u)
)
,

where b−
j (u) denotes the product of all ti such that σ j = −1 forces i ∈ D̃(σu), and b+

j (u) denotes
the analogous product when σ j = +1. These products are the same as their counterparts for Cn in
Proposition 5.3 except for those involving t0; namely, b+

n−1(u) and b+
n (u). In the latter, there should

be an extra factor of t0 only when un−1 < un , and in the former there should be an extra factor of t0
when un−1 > un . �
Corollary 5.9. For n � 2, we have

B̃n(t) =
∑
u∈Sn

φ(u)(4t)epk(u)(1 + t)n+1−2 epk(u),

where

φ(u) :=
⎧⎨
⎩

1 if un−2 > un−1 > un,

0 if un−2 > un > un−1,

1/2 otherwise.

In particular, B̃n(t) has a nonnegative γ -vector.

Given our convention that u0 = 0, one should understand that φ(u) = 1/2 for u ∈ S2.

Proof. Recall from the proof of Corollary 5.6(a) that if we specialize the variables so that ti → t for
all i, we obtain

c1(u) · · · cn(u) → (1/2)(4t)epk(u)(1 + t)n+1−2 epk(u). (5.3)

Comparing the definitions of bi(u) and ci(u), we see that

b1(u) · · ·bn(u)

c1(u) · · · cn(u)
= bn−1(u)bn(u)

cn−1(u)cn(u)
→

{
2(1 + t2)/(1 + t)2 if un−2 > un−1 > un,

1 otherwise.

Thus, b1(u) · · ·bn(u) usually specializes in the same way as in (5.3).
Now consider that transposing un−1 and un yields a bijection u ↔ u′ between permutations in Sn

that satisfy un−2 > un−1 > un and u′
n−2 > u′

n > u′
n−1. Furthermore, we have

b1(u′) · · ·bn(u′)
c1(u) · · · cn(u)

= bn−1(u′)bn(u′)
cn−1(u)cn(u)

→ 4t

(1 + t)2
.

Therefore, if we combine the terms indexed by u′ and u in these cases (and eliminate u′ from the
sum), the net contribution of u is (2(1 + t2) + 4t)/(1 + t)2 = 2 times (5.3). �



K. Dilks et al. / Advances in Applied Mathematics 42 (2009) 423–444 439
5.4. Type D

The Weyl group Dn is the subgroup of Bn consisting of signed permutations w = w1 · · · wn with
an even number of negative entries. It has a root system of the form

{±εi ± ε j: 1 � j < i � n},

and one can choose simple roots so that α1 = ε2 + ε1 and αi = εi − εi−1 for 2 � i � n. This choice is
compatible with our previous choices for Bn and Cn in the sense that a Dn root is positive if and only
if it is positive as a Bn or Cn root.

It is important to note that Dn is irreducible only for n � 3. In such cases, the lowest root α0 = −α̃
is −εn−1 − εn (the same as in Bn), and thus the affine descent set of w ∈ Dn consists of all i ∈ [2,n]
such that wi−1 > wi , together with 1 (if w1 + w2 < 0) and 0 (if wn−1 + wn > 0).

For example, if w = 34̄21̄5, then D̃(w) = {0,1,2,4}.
Note that by specializing t0 = 1 in the following, we recover Stembridge’s formula for the flag

h-polynomial of the Coxeter complex Σ(Dn) [25, Proposition A.4].

Proposition 5.10. For n � 4, we have

D̃n(t0, . . . , tn) = 1

2

∑
u∈Sn

d1(u) · · ·dn(u),

where di(u) = bi(u) for i > 2 as defined in Proposition 5.8, and

d1(u) := tχ(u1>u2)

1 + tχ(u1>u2)

2 ,

d2(u) := (t1t2)
χ(u1<u2) + tχ(u2>u3)

3 .

Proof. Following the proof of Proposition A.4 in [25], note that the definition of an affine descent set
in Dn makes sense for any signed permutation w ∈ Bn . Since replacing 1 with −1 or vice-versa in
w1 · · · wn does not change this set, it follows that

D̃n(t0, . . . , tn) = 1

2

∑
u∈Sn

∑
σ∈Zn

2

∏
i∈D̃(w)

ti .

The analysis of w = σu now proceeds as in the proof of Proposition 5.8, except that

• if u1 > u2, then 1 ∈ D̃(w) ⇔ σ1 = −1,
• if u1 < u2, then 1 ∈ D̃(w) ⇔ σ2 = −1.

Again it follows that for each i ∈ [0,n], there is a unique j (depending on u) such that the presence
or absence of i in D̃(w) is controlled by the value of σ j . Hence,

∑
σ∈Zn

2

∏
i∈D̃(w)

ti = (
d−

1 (u) + d+
1 (u)

) · · · (d−
n (u) + d+

n (u)
)
,

where d−
j (u) denotes the product of all ti such that σ j = −1 forces i ∈ D̃(σu), and d+

j (u) denotes
the analogous product when σ j = +1. These products are the same as their counterparts for Bn in
Proposition 5.8 except for those that involve t1; namely, d−

1 (u) and d−
2 (u). In the former, there should

be a factor of t1 only when u1 > u2, and in the latter, there should be an extra factor of t1 when
u1 < u2. �
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Specializing, we obtain nonnegative γ -expansions for both D̃n(t) and Dn(t), the latter of which is
due to Stembridge ([25, Corollary A.5]; compare also Theorem 6.9 in [6]).

Corollary 5.11. For n � 4, we have

(a) D̃n(t) = ∑
u∈Sn

φ(u)φ(u∗)(4t)epk(u)(1 + t)n+1−2 epk(u) ,

(b) Dn(t) = ∑
u∈Sn

φ(u∗)(4t)lpk(u)(1 + t)n−2 lpk(u) ,

where φ(u) is defined as in Corollary 5.9 and u∗ := un · · · u2u1 .

Proof. (a) Specializing the variables so that ti → t for all i, we obtain

d1(u) · · ·dn(u)

b1(u) · · ·bn(u)
= d1(u)d2(u)

b1(u)b2(u)
→

{
2(1 + t2)/(1 + t)2 if u1 < u2 < u3,

1 otherwise.

Now pair each permutation u ∈ Sn such that u1 < u2 < u3 with the permutation u′′ obtained by
switching u1 and u2. In such cases, we have

d1(u′′) · · ·dn(u′′)
b1(u) · · ·bn(u)

= d1(u′′)d2(u′′)
b1(u)b2(u)

→ 4t

(1 + t)2
,

so when the expansion in Proposition 5.10 is specialized, the terms indexed by u and u′′ such that
u1 < u2 < u3 may be combined into a single term with twice the b-weight of u, yielding

∑
u∈Sn

φ
(
u∗)b1(u) · · ·bn(u) → D̃n(t).

Now proceed as in the proof of Corollary 5.9, combining the terms indexed by u ∈ Sn such that
un−2 > un−1 > un with the terms indexed by the permutations u′ obtained by switching un−1 and un ,
and note that φ(u∗) = φ((u′)∗), even when n = 4.

(b) Similarly, we have Dn(t) = D̃n(1, t, . . . , t). Under this specialization, the effects on bi(u) and
di(u) are similar to the previous case; the only differences occur in the terms that involve t0; namely
bi(u) and di(u) for i = n − 1 and i = n. However, we have bi(u) = di(u) in these cases (even without
specialization), so the same reasoning as above implies

∑
u∈Sn

φ
(
u∗)b1(u) · · ·bn(u)|t0=1 → Dn(t).

Now observe that bi(u) = ci(u) for all i when t0 = 1, so the result follows by the reasoning in the
proof of Corollary 5.6(b). �
6. Identities and generating functions

6.1. Strange identities

Here we provide several unexpected identities (two new, one old) relating the ordinary and affine
Eulerian polynomials.

Proposition 6.1. For n � 2, we have

2C̃n(t) = B̃n(t) + 2ntCn−1(t).
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Proof. Given u ∈ Sn , let u↓ = u1 · · · un−1, a permutation of n − 1 distinct positive integers. Noting that
the definitions of peak numbers make sense for any sequence of positive integers, we see that the
distribution of lpk(u↓) as u varies over Sn is the same as n copies of the distribution of lpk(v) as
v varies over Sn−1. Thus Corollary 5.6(b) implies

2ntCn−1(t) = 2t
∑
u∈Sn

(4t)lpk(u↓)(1 + t)n−1−2 lpk(u↓).

Now recall that swapping un−1 and un provides a bijection between the permutations u ∈ Sn sat-
isfying φ(u) = 1 (i.e., un−2 > un−1 > un) with the permutations u′ satisfying φ(u′) = 0 (i.e., u′

n−2 >

u′
n > u′

n−1). Noting that lpk(u↓) = lpk(u′↓) for such pairs, we can achieve an equivalent result by
doubling the contribution of u′ and eliminating u, or simply modify the contribution of every permu-
tation u by the factor 2(1 − φ(u)). Thus,

2ntCn−1(t) =
∑
u∈Sn

(
1 − φ(u)

)
(4t)lpk(u↓)+1(1 + t)n−1−2 lpk(u↓). (6.1)

On the other hand, Corollaries 5.6(a) and 5.9 imply

2C̃n(t) − B̃n(t) =
∑
u∈Sn

(
1 − φ(u)

)
(4t)epk(u)(1 + t)n+1−2 epk(u).

Noting that epk(u) = lpk(u↓) + 1 whenever φ(u) �= 1, the result follows. �
Proposition 6.2. For n � 3, we have

B̃n(t) = D̃n(t) + 2nt Dn−1(t).

Proof. It is easy to check the case n = 3 (note that D2(t) = (1 + t)2), so we assume n � 4.
Following the argument we used to deduce (6.1) from Corollary 5.6(b), one may similarly use

Corollary 5.11(b) to show that

2nt Dn−1(t) =
∑
u∈Sn

(
1 − φ(u)

)
φ
(
u∗)(4t)lpk(u↓)+1(1 + t)n−1−2 lpk(u↓)

=
∑
u∈Sn

(
1 − φ(u)

)
φ
(
u∗)(4t)epk(u)(1 + t)n+1−2 epk(u),

again using the fact that epk(u) = lpk(u↓) + 1 when φ(u) �= 1. The only caveats are that one needs
to check that φ((u↓)∗) = φ(u∗) for all u ∈ Sn , and φ(u∗) = φ((u′)∗) when φ(u) = 1. One should also
check that the formula provided in Corollary 5.11(b) is valid for D3, since the argument given there is
not.

On the other hand, Corollaries 5.9 and 5.11(a) imply

B̃n(t) − D̃n(t) =
∑
u∈Sn

(
1 − φ

(
u∗))φ(u)(4t)epk(u)(1 + t)n+1−2 epk(u).

Comparing the two expansions and noting that epk(u∗) = epk(u), the result follows. �
The following identity is due to Stembridge (set l = 0 in [23, Lemma 9.1]).



442 K. Dilks et al. / Advances in Applied Mathematics 42 (2009) 423–444
Proposition 6.3. For n � 2, we have

Bn(t) = Cn(t) = Dn(t) + n2n−1t An−2(t).

Proof. It is easy to check the cases n = 2 and n = 3, so assume n � 4.
By the same reasoning we used in the proof of Proposition 6.1, Corollary 5.6(c) implies

n2n−1t An−2(t) = 2t
∑
u∈Sn

(4t)pk(↓u)(1 + t)n−2−2 pk(↓u),

where ↓u := u2 · · · un . Now consider that if φ(u∗) = 1 (i.e., u1 < u2 < u3) and u′′ is obtained from u
by switching u1 and u2 (hence φ((u′′)∗) = 0) then pk(↓u) = pk(↓u′′). It follows that we can create
an equivalent sum by modifying the contribution of every permutation u by the factor 2(1 − φ(u∗)),
yielding

n2n−1t An−2(t) =
∑
u∈Sn

(
1 − φ

(
u∗))(4t)pk(↓u)+1(1 + t)n−2−2 pk(↓u)

=
∑
u∈Sn

(
1 − φ

(
u∗))(4t)lpk(u)(1 + t)n−2 lpk(u),

using the fact that lpk(u) = pk(↓u) + 1 whenever φ(u∗) �= 1. On the other hand, it is clear from
Corollaries 5.6(b) and 5.11(b) that this sum is Cn(t) − Dn(t). �
6.2. Generating functions

First let us review the (known) generating functions for the Eulerian polynomials corresponding to
the Weyl groups An , Bn = Cn , and Dn:

A(t, z) := 1 +
∑
n�1

t An−1(t)
zn

n! = (1 − t)

1 − tez(1−t)
, (6.2)

B(t, z) = C(t, z) := 1 + (1 + t)z +
∑
n�2

Bn(t)
zn

n! = (1 − t)ez(1−t)

1 − te2z(1−t)
, (6.3)

D(t, z) := 1 + tz +
∑
n�2

Dn(t)
zn

n! = (1 − t)(ez(1−t) − z)

1 − te2z(1−t)
. (6.4)

The first of these is classical (e.g., see [7, p. 244]), and for proofs of the latter two see Theorem 3.4
and Corollary 4.9 in [2], but note that our initial terms for D(t, z), and hence the resulting closed
form, are slightly different from those in [2].

For small n, the values for An(t), Bn(t), Dn(t) implicit in the above expansions are

A−1(t) = 1/t, B0(t) = 1, B1(t) = 1 + t, D0(t) = 1, D1(t) = t.

In this way, Proposition 6.3 is valid even for n = 0 or 1, and immediately implies

B(t, z) = D(t, z) + z A(t,2z).

Thus (6.4) may be viewed as a corollary of (6.3) and Proposition 6.3.
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Turning to the affine Eulerian polynomials, let

Ã(t, z) := z +
∑
n�2

Ãn−1(t)
zn

n! ,

C̃(t, z) := 1 +
∑
n�1

C̃n(t)
zn

n! ,

B̃(t, z) := 2 + 2tz +
∑
n�2

B̃n(t)
zn

n! ,

D̃(t, z) := 2 + 4t
z2

2
+

∑
n�3

D̃n(t)
zn

n! .

Proposition 6.4. We have

Ã(t, z) = z(1 − t)

1 − tez(1−t)
, (6.5)

C̃(t, z) = 1 − t

1 − te2z(1−t)
, (6.6)

B̃(t, z) = 2(1 − t)(1 − tzez(1−t))

1 − te2z(1−t)
, (6.7)

D̃(t, z) = 2(1 − t)(1 + tz2 − 2tzez(1−t))

1 − te2z(1−t)
. (6.8)

Proof. Corollaries 5.2 and 5.7 immediately imply Ã(t, z) = z A(t, z) and C̃(t, z) = A(t,2z), so these
generating functions are consequences of (6.2). In the remaining two cases, the values implicit
for small n in the series defined above (namely, B̃0(t) = D̃0(t) = 2, C̃0(t) = 1, B̃1(t) = C̃1(t) = 2t ,
D̃1(t) = 0, and D̃2(t) = 4t) have been deliberately chosen so that Propositions 6.1 and 6.2 remain
valid for all n � 0, and thus respectively imply

2C̃(t, z) = B̃(t, z) + 2tzC(t, z),

B̃(t, z) = D̃(t, z) + 2tzD(t, z).

The first of these, together with (6.3) and (6.6), yields the formula claimed for B̃(t, z), and then the
second (with (6.4)) yields the formula claimed for D̃(t, z). �
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