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Abstract

Let iy, p(2), (m, p) € Zy x Z4, be the Landau orthogonal basis of the Hilbert spaceLetC,
el dA(z)) wherel(z) is the usual Lebesgue measure on the complex plane. In this paper we give some
spectral properties of the Cauchy transform on the orthogonal complement of Bargmanmgp@rén
Ly(C, el dA(z)). In particular form fixed, we consider the orthogonal projection operator on the Hilbert
subspace spanned by, ,(z), p=0,1,2,..., and we give explicitly the sequence of singular values of

its composition with the Cauchy transform in(C, e‘mz d)\(z)). As application of these of the Cauchy
transform we get some identities for special functions which could be of independent interest.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the main results

Let du(z) = e~1?” dr(z) be the Gaussian density on the complex pléhe= {z = x + iy;
(x,y) € R%}, |z]2 = x2 4+ y2 anddA(z) = dx dy is the usual Lebesgue measure ®n= RZ.
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Then in [7] Dostanic has investigated some spectral properties of the Cauchy tragsfiefined
by

Cf()—— Zf(—)d W), f e La(C.du(2). (1.1)

C
Namely, the sequence of the singular valugeC) p € Z4, of the compact operataf in
L(C, du(z)) behaves whep — oo ass, (C) = f(1+o(1)) and that the sequence of singular

valuess,(PoC), p € Z, behaves whep — oo ass,(PoC) =o(e™ pLogv3y \where Py is the
orthogonal projection operator frofip(C, di(z)) onto the Bargmann space [5]:

Ao(C) ={f € L2(C.,du(z)), f entire onC}.

Now our main aim in this paper is to discuss some spectral properties of the Cauchy transform
C on the orthogonal complememg (©) of Bargmann spacdo(C) in L2(C, du(z)). This will
be possible by using the following Hilbertian orthogonal decompositiohgt, d . (z)) given

by
2(C.du() = P An(C) (1.2)

m€Z+

where the Hilbert subspaces, (C), m € Z.., are defined by
An(©) = {f € L2(C,dn(2)), A*Af =mf}. (1.3)
In (1.3) the operatord* and A are given respectively by* = —% +zandA = % so that

ara— -2 +i
= ozaz | oz
is a second order elliptic differential operator of Laplacian type.
Thus using the Hilbertian orthogonal decomposition (1.2) of the spa¢€, du.(z)), we will
be able to give, for every fixegh € Z, explicit formulae for the nonzero eigenvalugs ,

p=0,12 ..., of the positive operator

[P Cl = (PnC)*(PyC)

where P, is the orthogonal projection operator frof(C, du(z)) onto the spacet,, (C) in
L2(C,du(z)) by (1.3).
Indeed, the main results to which is aimed this paper can be stated as follows.

Theorem. Letm € Z, and m to be fixed. Let,, ,, p=0,1,2,..., be the sequence of nonzero
eigenvalues of the positive operator

[Py C| =/ (P C)*(Py,C)

where P, is the orthogonal projection operator frothy(C, du(z)) onto the spacet,, (C) in
Lo(C, du(z)) given by(1.3)and C is the Cauchy transform ih2(C, du(z)) as given in(1.1).
Then we have

(i) The eigenvalues,, ,, p=0,1,2,..., of | P, C| are given explicitly via the following for-
mula
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. . 1
()"m,p)z =VYm-1,p 2F1<_ mln(m - 13 p)a _mln(m - 17 p)3 |m —-1- pl + ls Z)

(1.4)
where
2min(m—1,
N g min(m p)3—(\m—l—p\+l) (max(m — 1, [7)!)2
nenp 3 m!pllm —1—p|!”’
2F1(w, B; v, x) stands for the usual Gauss hypergeometric function.
(i) FormeZyandp=0,1,2,...letg,, , be the functions of Hermite type defined®iy

LR p+2. 1P m=0,

m4+ gm—1+p _12 _
— (=DM e B m=12,....

Then for eaclp =0,1,2,..., the above functios,, ,(z) is an eigenvector of the operator
| P, C| with &, , as eigenvalue.

(1.5)

¢m,p(z) = {

Remark. (i) The usual Gauss hypergeometric functigfs(«, 8; y, x) andiFi(a, y, z), see [10]
or [11,12], are defined by

. T T+ kr(B+k)
2F1(aaﬂ7yvx)—r(a)r(ﬂ)l§) F()/+k) H’ |X|<1,
and
T =Ttk
1@ 5.2 = 1) kg TB+k k

whereTl'(-) is gamma function.
(i) For p > m — 1, the nonzero-eigenvalues, , of the operatod P,,C| are given simply
using (1.4) by

2m—1
G p)?= (2 " g2 (P)?
m.p 3 m!p!(p —m + 1)!

1
sz1<—m+1; —-m+1Lp—m+2 Z) (1.6)

Corollary (Asymptotic ofi,, , whenp — o). Letm € Z,, m fixed. Then the asymptotic be-
haviour of the eigenvalues,, , of the operator P,,C| is given explicitly by

A = — (i‘)m/ze—l’“’gﬁ _Tp+d (1.7)
P 2ymi\3 F(p—m+2)

Now we give an outline of the content of this paper. In Section 2, we recall the main properties
of the Landau basis,, ,(z) of Lo(C, du(z)) that are relevant for our purpose. Section 3 deals
with the action of the Cauchy transform in (1.1) on the Landau Hasis, (z)} of L2(C, du(2)).

In Section 4, we provide for fixea explicit formulae for the Schwartz kernel functions®fC

as well of(P,,C)*(P,,C) and we give the proof of main results stated in Section 1. Proceeding in
the same way, we deal with the Green transfornie(C, du(z)) and we state its main spectral
properties that correspond to the analog of what we have done for the Cauchy tragstarm
La(C,dp(2)).
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2. The Landau orthogonal basis i, (), (m, p) € Z x Z, of the Hilbert space
Ly(C,du(z))

In this section,we state some elementary properties of the polynomjalz), (m, p) €
Zy x Z., of Hermite type [15] that were given in the abstract through the formula
2 8m+[7 87|Z|2

azmazP
wherez = x + iy, (x, y) € R? Z—x—iy, = %[3‘1 la‘] and - a = [ax +igy ]

Namely the following proposition summarlze the propertles of these polynohy,a,l;{z) in

the following proposition that we will be using in this paper.

B, p(2) = (=1)" TP el 2.1)

Proposition 2.1. Lethy, ,(z), (m, p) € Z4 x Z, be the set of polynomials given by
+p
_ +p a2 0T e
hmp(2) = (D" P e T
Then the following statements hold

(i) Forfixed(m, p) € Z4 x Z, the polynomiah,, ,(z) can be expressed as

0
(@) hm,p(2) = A" (zP)  whereA* = Sy Z. (2.2)
B) B, p(2) = €, p 1F1(— MinGm, p); |m = p| +1; |z|?)|z|Im~Ple~itm—prarg:
(2.3)

min(n, p) '
wherez = z[¢/ % andc,, , = S mavtm. ).

(B)bis The polynomiald’,, ,(2)}m>0, p>0 form a complete orthogonal system of(C,
du(z)) and their normsﬂhm |l are given byl ,,|| =nam!pl.

(i) Let A= A*A where A* = -2 + 7 and A = % and for fixedm € Z, let 4,,(C) =
{f € L2(C,du(z)), A*Af = mf} then A,,(C) = spanh,, ,(z), p=0,1,2,...} in
L2(C, du(z)). Further the spacest,, (C) are pairwise orthogonal inL,(C, d,u(z)) and
we have the Hilbertian decompositi@n(C, du(z)) = D,,>0 4m (O).

(iii) For fixedm € Z, let P,,(z, w) be the integral Schwartz kernel of the orthogonal projection
operator P,, from L2(C, du(z)) on the Hilbert subspacei,,(C). ThenP,,(z, w) can be
expressed as

o hn,p D, p (W)

() Pp(z,w) =Y LI with [y, |7 = m!p!, (2.4)
= Il
1 Zw 2

©) Pz, w) = —e 1F1(=m; 1 |z — wl9). (2.4pis)

Remark 2.1. Our wording theh, ,'s as Landau basis di>(C, dj.(z)) comes from the fact that
operatorA in (ii) above can be intertwined to give rise to the usual Schrédinger opekiator
RR? in the presence of a constant magnetic field. Nankgig given by

=3l ) (5]

The above operatadt is called actually the Landau Hamiltonian for, in 1930 Landau was the

first to investigate many spectral properties of the operétan L»(R2, dA(z)).
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For instance the spectrusn H) of H in L2(R, dA(z)) is given by the discrete set

1
G(H)z{kn=§+n; neZ+}.

Proof of Proposition 2.1. The proof of(«) in (i) is easy to handle using induction argument
onm=0,1,2,.... For(p) in (i) we use the result ofw) i.e. k,, ,(z) = (A*)"(z”) and observ-
ing that the operator% andz are commuting we can use the binomial formula far)” =

(£ +2)™ as well as the fact that

AV I'(p+1) :
— Py=————"7P7) forj=0,1,2,....
(8z) =t g
Thus by applying the Leibnitz binomial formula to the operaaera% + z)™ we can write the
polynomialsh,, ,(z) = (A" (zP),i.e.hy, ,(2) = (—3% +2)™(z?), as follows:

mvp M!p!(—l)jzp_jzm_j

imp (@) = ;, ST —j + H(m — ))!

wherem v p = min(m, p).

Thus if p > m in the above, we can reindex the above summation by sdtting: — j and to
obtain in this case that we have

(—D"pl~ (D'mIT(p—m+1) |z*

m

But the last summation over is equal to the confluent hypergeometric functigfy (—m;
p —m + 1; |z|%). Hence the formula iti8) of (i) holds. Now to show tha¢g) holds also when
p < m, we reindex the above summationjirby setting this timek = p — j and we see clearly
that(8) holds.

Note that the formulae whep < m or p > m can be put together into a closed one formula.
Namely, for every(im, p) € Z+ x Z4 we have

(=1)"™"P(m A p)!
(Im — pD!

wherez = |z]¢/ 29 andm A p = max(m, p) andm v p = min(m, p).

The result of(Bpis) is classic.

(ii) Intissar et al. introduce in [3,4] the Hilbert subspacts(C) of L2(C, du(z)) and give a
precise description of the expansion of their elements in terms of the appropriate Fourier series
on C. As these spaces are realized as the null space of the oparator m1, m € Z, where

= 3% andA* = —Ba—z + z then we can deduce that, (C) = spanh,, ,(z), p=0,1,2,...}in
La(C,dp(2)).

Further the spaceag,, (C) are pairwise orthogonal ih(C, duu(z)) and we have the Hilbert
decomposition.>(C, du(z)) = @m>o A, (C). See [4] for more details.

(iii) For fixed m € Z+., let P, (z, w) be the integral Schwartz kernel of the orthogonal projec-
tion operatorP,, from L2(C, du(z)) on the Hilbert subspacs,, (C). Thenforf € L2(C, du(z))
we have

» f=1i<f 1 A*mz,,> 1 A
" ij:O T J/mip! J/mlp!

B, p(2) = WF1(=m vV p;im — p|+1; [z]%)|z|ImPlemitmmpIag: (2 5y
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and by using (i) we can deduce the explicit expressions oPihe, w) as

- -
hm,p(Dhm, p(w) :
Pp(z,w) = W With ||, 1% = wm!p!.
p=0 ’

But this series can be written in a closed form (see [4, (2.6)]) as

1 -
Pz, w) = —e*" WFi(-m; L jz—wf?). O

3. TheCauchy transform in L»(C, du(z)) and itsaction on the Landau basis of
L2(C,dp(z))

In this section, we recall the definition of Cauchy transforni.#{C, du(z)) as well as some
of their elementary properties in the Carleman—Schatten classes and we give a precise descriptior
of its action on the Landau badik,, ,(z)} of L2(C, du(z)).

3.1. Definition of Cauchy transform ibo(C, du(z)) and their properties in Schatten scale

Let begin by recalling that»(C, diu(z)) is the Hilbert space whose the elements are Lebesgue
measurable complex valued functiorf§z) on C that are square integrable with respect to
Gaussian density measuwl@ (z) = e 1 da(z), z = x + iy, |zI? = x2 + y? anddi(z) = dx dy
is Lebesgue measure @h=R?. That is

L2(C.du(2) == {f:cc -G If1? :=/e*'Z‘2 F@[*dp) < oo}.
C

Definition 3.1. The Cauchy transfornd’ in L2(C, du(z)) is defined as integral operator given
by

Cf(z):= %/ %e“s‘zdué) wheref € Lo(C,du(z)) andz € C.
C

In below we denote by (z, &) := %(z — &)~ 1 the Schwartz kernel function associated to the
above operato€ in L(C, du(z)) and we discuss some properties of the Cauchy transform in
the Schatten scale. For this, recall that a compact linear opefatara Hilbert spacéd is said
to belong to the Schatten ide®)[ H] for givenp > O if ||T||§ .= tracd(T*T)?/?] is finite. Then
with this, we have the following proposition.

Proposition 3.1. Let C be the Cauchy transform ifh2(C, duu(z)) as given in Definitior3.1
Then the Cauchy transfordi belongs toS,[L2(C, dju(z))] for everyp > 2. In particular C is
compact but not Hilbert—Schmidt.

This proposition can be deduced from Dostanic’s results [7]. However, it can also be obtained
by combination of Russo’s theorem [14] and our following Lemma 3.2. This lemma give explicit
informations on the kernel of Cauchy transform and the technique used in its proof can be useful
for others concrete kernels. The proof of this proposition will be preceded by two lemmas, the
firstis Russo’s theorem.
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Lemma 3.1 (Russo theorem [14]) et (X, d i) be a finite measure space and let

Tf(X)Z/T(x,y)f(y)du(y)

X

be an integral operator. Let < g < 2 and letp be the conjugate exponedt/p + 1/g = 1.
Suppose that

r/q
/</|T<x,y)|qdu(y>) dp(x) < 00

X X
and
r/q
f</|T(x,y>|"du(x)) du(y) < 0.
X X

Then, as an operator oh(X, du), T belongs to the Schatten ide$l[L2(X, du)].

Lemma3.2. LetN(z, w) := %(z — w)~1 the Schwartz kernel function associated to the Cauchy
transform inLo(C, du(z)).
Then for evend < ¢ < 2 we have

() [ocING@wldpw)=r1"4T(1-q/2)1F1(1—q/2,1, 1z12)e~1?. Here 1F1(a, b, x) is the
confluent hypergeometric function.
(i) sup.cc fcIN Gz w)l?du(w) <7101 - q/2).

Proof of Proposition 3.1. Note that|N(z, w)| is symmetric in(z, w). Thus the estimate (i) hold
also in replacing there by w. In particular forg = 1, the Schur lemma hold from which we
deduce that the Cauchy transforimis bounded operator (even a contractionLif(C, du(z)).
Further using (ii) of Lemma 3.2 combined with the fact that(¥6l du(z)) = =, it becomes
obvious that the assumptions of Lemma 3.1 hold. Hence the opé&rdietongs taS,, for every

p > 2. This complete the proof of Proposition 3.1

Proof of Lemma 3.2. For (i) we set =z + \/xw, x > 0, andw € S* = {w € C; |o| = 1}. Then
the integral ing considered in (i) can be written as an integradver]0, oo[ . Namely

J=nltell / e—qu@( / eV G0te0) da(a))) dx @)
0 s

where f, (x) = x~9/2 is integrable neat = 0 wheng < 2.
Now the integral over the circlg! can be easily evaluated and the result is

2\k
/ \/—(Zw-‘rZw)dU(w) 27 Z (xlljlz) _IO 2«/—|Z|)
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wherelp(z) is the Oth order modified Bessel function. Hence replacing this in (a) we see that for
fox) = x~4/2, we can integrate term by term to obtain in this case that for the Cauchy kernel
N(z,&) we have

X T(1—q/2+k) |z1%
f \N(z,@l"du(f):n”ez'z;) ( i'/ . )|Zk|! ' ®
J =

But the last series in (b) is equal il — ¢/2)1F1(1 — q/2, 1, |z|?) for everyq < 2. Henceforth
we get the desired formula (i), i.e.

/\N(z, | du(e) = 7T (L - q/2e 1R (L - ¢/2), L 12?). ©
C
Next we prove the estimate (ii) by using the integral representation [8, p. 196] given by
. 1
1Fi(e, vy, x) = W);)_a) / A —nrT e dr R(y) > R(w) > 0)
0

witha =1—¢/2,y = 1 andx = |z|?, we see that the confluent hypergeometric function involved
in (c) can be estimated, forQgq < 2, as

F1(1—q/2,1,121%) < ¢? for everyz e C.
Thus replacing this into (c) it follows at once that fpe [0, 2[ we have

sup [ [Nz, w)|?du(w) = sup [ [Nz w)|?duz) <7101 —q/2).
ZEC(C weC

Hence (ii) holds and the proof of Lemma 3.2 is completel
3.2. Action of Cauchy transform on the Landau basi& 5fC, d . (z))

In this section we establish explicit formula for the action of the Cauchy transtorom
the Landau basi$h.,, ,(z)} of Lo(C,du(z)). We give also explicit evaluations of the norms
of [Chu,p1(z) in the Hilbert spacd.>(C, du(z)). To begin we recall that hermitian elements
{hm,p(2)}, (m, p) € Zy x Z, of the Landau basis df>(C, dy.(z)) are given by the following
equivalent formulae:
gm+p

o P
81'”82178 z (3.1)

him,p(2) = (~1)" Pl
or
(=D)™Pn A p)!
(m = pI)!

WFL(=m Vv p; lm — pl+ 1 [z]?)|z|" Pl P A,
(3.2)
Note that formula (3.2) permits to exteng, ,(z) as functions inim, p) € Z x Z such that
for mp < 0, for instance whem > 0 andp < 0 by setting in this case (i.¢.€ Z_)
(=1)Pm!

e+ LD (215

hm,p(z) =

hm,p(Z) =
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In particular the functionsh, _1(z) = —(m%rl)lFl(l;m + 2,1z and h_1,,(z) =
hm.—1(z) will be used.
Now using the above notations we can state the following results.

Proposition 3.2. Let C the Cauchy transform if.2(C, du(z)) as defined in DefinitioB.1 Then
we have

(i) [Chm.ol(z) = —e““zhm,_l(z) foreverym e Z, .

(i) [Chmp)(@) = —e hyy p_1(2) @nd Chy p(2) = —e~ Iy, (2) Tor every (m. p) €
Zy X Ly

(iii) For fixedm € Z4 the systemiCh,, ,}, p=0,1, ..., is orthogonal inL>(C, du(z)).

(iv) Leta,” 4 ={Chp, p, h, 4) be the matrix elements of the Cauchy transfa@fwith respect to
the basigh.,, ,} in Lo(C, du(z)). Then the coefficients can be specified as follows

m,p 0 ifm—p+1#n—gq,
g = a1 (=" m 4 g)12=0*atD it =p4n—q—1

V) [IChm,plI? = TYm—1,p 2F1(—min@m — 1, p), min(m — 1, p); m — 1 — p| +1, §)

where

2min(m—1, 2
N g min(m p)3 (m—1—pl+1) (max(m — 1, p)!)
nenp 3 m'pllm—1—p|!~

Proof. (i) For p =0, we haver, o(z) =z then

é—m
[Chim0](2) = /- —dn(®).
By writing E%Z in series one may obtain
HE
hmo(z) = ="t / XMe~ dx = —e P, _1(2).
0

(i) For p > 1 andm € Z we see that

p=1 gm 2] 1
+m —[¢]
(Chim,p)(2) = /( n? 8§[§p18$m ]g d2n(§)

and by using the Green formulae [9, Chapter Ill, p. 319] or [13, Chapter 20, p. 433] we can
deduce that

[Chm.p) (@) = —e~ 1y p_1(2)
and also
[Clim 1) = — P 1, (2).

(i) By using the explicit expression of,, ,(z) in terms of the confluent hypergeometric
function 1F; as given in Proposition 2.1 and (ii) of this proposition, we deduce that the system
{Chp,p}is orthogonal inLo(C, du(z)).
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Iv) For (m, p) €e Z4 x Z4+ and(n, q) € Z4 X Z4 We seta,, ', = m.pshn.g). Then since
iv) For (m, p) € Z4 x Z d(n,q) e Z4 x Z = (Chm,p,hng). Th i

Chp,p(z) = —c*'ﬂzhm,,,_l(z) we can use Proposition 2.1 together with the notations therein to
see thatz,, %, can be written as
2
ap = —(e (A" (2P, (A" )
whereA* = Bd_z — z and whose adjoint il.2(C, du(z)) is given byA = 3z
Now using the fact thati (e 712 £ (2)) = e71?* (A £)(z) whereA = 2 — z together with the
fact thatA is commuting withA* we see that the coefficient§; ?, can be written as

d

ald = _(e—lz\Z(A*)m(A)”(z”_l), z9).

But observing thatA)" (z’~1) = (—1)"z"*tP~1 and using the definition of the generalized
Hermite polynomialsg:,, , in terms of the power oA* we end that we have

any = (=" e Ry 12, 29).
Next replacing,, »+,—1(z) by its expression in terms of the confluent hypergeometric func-
tion 1F1(a, ¢, x) and using polar coordinatesire C, sayz = /xe'?, x > 0 andd € [0, 27|, we
get at once that fogm, p) and(n, ¢) such thain —n — p + ¢ + 1 not zero we have,,%, = 0 and
for the valuesm, p, n, ¢) on the hyperplane d&* given by the equatiom —n — p+¢+1=0,
the coefficientsy,, %, are given by the following simplified integral:

o
iy =70 oyt [ aFa(mq + L0t d
0
where the constant
(=yminGnntp=1) (max(m, n + p — 1))!
lm —(n+p—1)|!
as in(p) of Proposition 2.1 and which for the case at handse-n — p+¢g +1=0t can be

simplified and we have,, , 4, 1= %.

Thus to get the precise value @f,%, whenm —n — p + g + 1 =0 we have to evaluate the
integral

Cm,n+pfl =

o0
I = / 1F1(—m,q + 1,)6))6‘1672)6 dx.
0

But this easy to handle for it is a classical integral in special functibisthen given by terms
of the Gauss hypergeometric functigfi (a, b, ¢, x),

I = 27(q+l)q!2F1(—m, g+1q+1; %)

Further knowing thab Fy1(a,c,c,x) = (1 — x)7%, |x| < 1, and applying this to the above
Gauss hypergeometric function involvediitwe get, finally,

I = q!z—(m-i-q+l)_
That is the coefficients,,?, are given by

afni) :n(_l)m+n+l(m +q)!2—(m+q+1)



410 A. Intissar, A. Intissar / J. Math. Anal. Appl. 313 (2006) 400-418

if (m, p,n,q) satisfym —n — p +¢q + 1=0. The proof of (iv) is complete.
(v) We begin by recalling the following integral formula (see [8, p. 708])
o0
J= / e x"L1Fi(a, ¢, kx)1F1(d’, ¢, k'x) dx can be evaluated to be equal to
0

/ , kk'
=T(OATICA —k) (A — k)™ LF ‘e —mmMm—— ). 3.3
J=T(c) =k~ )2 1(a,a,c, (A_k)()\_k/)> (3.3)
Now by using Proposition 3.1 we deduce that
1Chm pl|? = | Chip |1 = / e 3 1,5 @)| M (2). (3.4)
C

According to the explicit expression bf,_1 ,(z) in terms of the confluent hypergeometric func-
tion 1F; as given in Proposition 2.1, we know that

1.5 ()] = lem—1,p | 1F2(=MinGm — 1, p); Im — 1= p| +1; [z1?)[z]" 2!
where
(=DMinem—=1.p) (max(m — 1, D))!
|m —1— pl! .

Cm—1,p =

Hence by replacing this into the integral (3.4) we can perform a polar coordinates change
of variable to see that we can apply formula (3.3) with- 3, a =a’ = —min(m — 1, p), c =
|m —1— p|+1andk =k’ = 1 and from which we obtain the desired formula as stated in (v) of
this proposition. O

Remark 3.1. We can apply also the formula (3.3) to give explicit evaluations of the matrix
elements(Chy,, p, hy 4) Of the Cauchy transfornd” with respect to the Landau badis,, ,} of
L2(C, du(2)).

Now, as a consequence of the method of the proof of Proposition 3.2 we have

Corollary 3.1. Letm € Z, andq € Z — {0} be given. Then the following identity on the con-
fluent hypergeometric functions hoids

m a/

_ 9
Z —[1F1(-m, g+ 1. x)] = .

; F1(—m,q,x) (3.5)
s 0x

for every real number e R .

Sketch of the proof of identity (3.5). That as now stated the identity (3.5) can be shown us-
ing induction orm and some recursion formula holds for 1@ (a, ¢; x). However, to identity

(3.5) as stated above we were led to it in a natural manner by computing in two different ways
Chu,p(z) = —e"z‘zhm,p_l(z) as stated in Proposition 3.2(i). On the other hand, by expanding
% into geometrical series, say

1 | X%edm i<l

=& | - Xogm Al Il
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and using the explicit formula af,, ,(¢) in terms of the confluent hypergeometric functigf
as stated in(8) of Proposition 2.1 we can see easily tlt#,, ,(z) can be represented by the
integral(p — 1> m) given as follows:

o0
Chm,p(2) = —Cm,pzpfmfl / e “1F1(—m,p—m+1,x)dx
|z12
where the constard,, , is given in(g8) of Proposition 2.1 fop > m + 1 by
=D"p! (D" m+q)!
T m—pll q!
Further usingn integration by parts in the integral

Cm,P

, p=m-+gq.

o0
/e_xlFl(—m,p —m+1x)dx, p=m-+gq,
|z[?

with the fact that

Chy,p(z) = —e_lzlzhm,,,_l(z)
=" (p - D!

T m—p+1l!
and making simplification we get the desired result:

mo i g
(Z E) [1F1(—m.q+1,0)] = o

j=0
form > 0 andg > 1 (integers.

WFi(=m, lm — p+1]+1,z%)z7 1

lFl(_m9 q7x)
q

4. Expansion of the kernel functions of the operators P,,C and (P,,C)*(P,,C) and proof
of themain result as stated in the introduction

In this section, we consider the product of the orthogonal projection operatet, @),
m =0, 2, ... with the Cauchy transform.
Namely, for f € L2(C, du(z)), let

Py f(2) = / Py (z, w) f(w) dp(w)
C
with kernel function

Pm(Z,U)):ZM

S il

and

Cfa)= / N(z, w) f(w)dp(w)
C
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L

with kernel functionV (z, w) = % we consider the product

PuCf(2) = / Nyn (2, w) f () dp(w).
C

It is clear (by standard calculations) that the kernel functgi(z, w) of the operator?,,C is
given by the integral

Nz, ) = f Pz EIN(E w) dp(®) (a.1)
C

and the kernel functiom,, (z, w) of the operatof P,,C)* P,,C is given by the integral

By (z, w) :/N,;(z, E)Nm(E, w)du(é). (4.2)

Henceforth, the first aim of this section is to decompdsg(z, w) and B, (z, w) into an or-
thogonal expansion which will be suitable for handling the eigenvalues and eigenvectors of the
operato P,,C| = /(P C)* P, C.

We start with the following proposition.

Proposition 4.1. For fixedm =0, 1, 2, ... let N, (z, w) be the Schwartz kernel ihy(C, du(z))
of the operator P,,C and B,,(z, w) the Schwartz kernel iL2(C,du(z)) of the operator
(P, C)* P, C. Then the integral kernel function$,, (z, w) and B,,(z, w) can be expanded into
the following"biorthogonal’ series inL2(C, d i (z)):

(i) For m > 0, the kernelV,, (z, w) has the following expression formula

Np(z,w) = Z ﬁ —|w\2hm 1 p(w) (43)

In particular, form = 0 we have

o0

1 ) _

No(z, w) = — E (p+1)!zpe W R (L p + 2 [w]?)wP T (4.4)
p=0

(iiy For m = 0, the kernelB,, (z, w) is given by

—lzI? Hom— lwl? hmi
B, (2. w) = Z e 1, p||(;)epl|2 1 p(w) (4.5)
p=0 "

Before to give the proof of this proposition, we mention in following remark that the series
(4.3)—(4.5) can be written into closed explicit form.
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Remark 4.1.

(1) Form > 0 the kernel functionv,, (z, w) can be written into following closed explicit form
(o) Form =0 we have

1 .
_ w(z—w)
No(z, w) = TP [1—e ]-
(B) Form > 1 we have
Np(z, w) = _e—\w\ A*( mfl(sz))
m

1 a
ST
- E(g — w)eP )

T

L [2Fam, L~z —wi) + (m — DaFaom, 2, |z — wl?)
p .
(4.4pis)
(2) Form > 1 the kernel functiorB,, (z, w) can be given into closed explicit form and we have
e~ (2P +wP)
Bm (Zv w) = Pm—l(Z, w)

_ 2 2
=P+l

PR (-m+ 1,1 |z - wl?). (4.5pis)
mi
Proof of Proposition 4.1. (i) Let

Puf(@ = [ Pucow) fw)dnw) with Py = 3 2 D0l

2
J = iyl
and

) . 1
Cf(Z)=/N(Z,w)f(w)du(w) with kernel functionVN (z, w) =
C

T aiz—w)’
then

Pme(Z)=/Nm(z,w)f(w)d,u(w) with Nm(z,w)=me(Z,€)N($,w)du($)-
C

C
Now using expression (2.4) d, (z, w) and an integration term by term we deduce that

m, hm
Non G, w)—/Z ﬂizz,i,,||5(€)N@’w)d’“‘@)

o — o[ mp @)
:ZL(Z; / N(s,wmm,,,(@du(s):—Z[ ”’(Z)ZChm,Aw)}
=l p J L Am pll
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and as in (ii) of Proposition 3.2, we have

Chim p(2) = —e““zhm_l,p(z) for every(m, p) € Zy x Z.,,
then we obtain

N _ o fin,p(2) WP
m(Z, w) = Z T ”26 m—1,p(W).
p=0"""P

Form = 0 we use the fact that

h_1,(w) =h, _1(w), IAm,pl?>=7m!p! and

1 _
hp—1(w) = —T1 1F1(1; p+ 23 121%) (w)P L

to deduce that

. ho »(z) 2 S ho,(2) 2
Nozw) =) == " hoyp(w) = ) = 1= " hpa(w)

p=0 p=0
> 1 2
=-> e F (L, p + 25 Jw|P)wP T

= (p+1)!

(ii) The kernel functionB,, (z, w) of the operatol P,,C)* P,,C is given by the integral (4.2)
with

Nip(z,w) = np @) ot

s 1P, p 112
and
o —lz?p,
- e ~1,p(2) ————
Ny(zow) =Y ——=P =2k, (w)
=0 Am,pl
ie.

Bm(z,w)=/N;l(Z,§)Nm($,w)du(é)
C

we deduce that

e P 1 (2) 2\ B i (5)
e — ) —— _ 2
Bu(z.w) = f ) RIS 5 3 QUSRS ey ey PICS)
Z p=0 ”hmp” k=0 ”hm,k”
X -l X WP
_ e mfl,p(z) e hin—1,6(w) —_—
=y e > T B &), p (B) A (€).
»p=0 m,p k=0 m, e
By using the orthogonality off,,, ,}, we deduce that
o0 ,|w|2h4 o0 -~ /7
_1,12 e m—l,p(w) Chm—l,p+l(Z)Chm,p(w)
Bu(zow)=Y e hy_g (00— — =
! ;) e 1m 12 ,,Zzo 1 p 2

where|| iy, 1> =7m!p!. O
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Therefore forn > 1, we can use (2.6) to deduce that we have

Corollary 4.1. Letm € Z,, m to be fixed andp = 0,1, 2, ..., let ¢,,,, be the functions of
Hermite type defined of by

. p (D) AL p 42,1227, m=0, (4.6)
)= m— .
o —(=pmrr a?n_lgiz I m=12...

Then for eachp = 0,1,2,... the above functiom,, ,(z) is an eigenvector of the operator
(PnC)*(P,C) where P,, is the orthogonal projection operator from2(C, du(z)) onto the
spaceA,,(C) as defined in(1.3) and C is the Cauchy transform iLo(C, du(z)) as given
in (1.1). This eigenvector is associated ,tq; as eigenvalue fo(P,,C)*(P,,C) where,u’;‘ is
given explicitly via the following formula

. . 1
Wy = Ym—-1,p -zFl(— min(m — 1, p); —minGm — 1, p); jm — 1 — p| + 1; Z) 4.7
where
S g 2min(m_l’p)3—(|m—1—p|+1) (max(m — 1, p)!)Z
neer 3 m!pllm —1— p|!

andzFi(a, B; v, x) stands for the usual Gauss hypergeometric function.
Proof. For f in Ly(C, du(z)), we have

(PuC)* (PuC) £ (2) = / Bun (2o w) f (w) du(w).
C
In particular

(PnC)*(PuC)e iy 1 ,(2) = / B (2o w)e Py _a () dpu(w)

C
/Z Chin—14+1(2) Chy k (w) kW) iz, him—1,p(w)dp(w).

I m k112
C
By using the orthogonality of the systefa—<*4,, 1 ,(z)}, p=0,1,2, ..., i.e. of the system
{Chm,p}, p=0,1,2,..., we deduce that
N IChm,p|I? 2
(PuC)* (PO e hy1 ()} = ﬁ{ T 1, @)}
hm P

Consequently the eigenvalues of operdt®y, C)*(P,,C) are given by
IChm,p 2

1B, plIZ

m

Wy = (4.8)

AS ||l plI? = 7m!p! and

. . 1
1ChmpI2 =7 Y15 2F1<— min(m — 1, p), —minGm — 1, p): lm — 1~ p| + 1, Z)
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(see Proposition 3.2(v)) where

2min(m—1, 2
(2™ 1 i (MaXon — 1, p)Y)
Ym—-1,p = 3
P m!pllm —1— p|!

3
we deduce that

: . 1
Wy =¥Vm-1,p 2F1<— min(m — 1, p), min(m — 1, p); |m — 1— p| +1, Z) (4.9)

with y,,_1,, as above in (4.7). O

Now by using the above proposition, the systea‘ﬁk'zhm,l,p(z)}, p=0,12 ..., can be
written in this form:
—[2f2 ety 0" q
e hm—l,p(Z) =(-1 We form>1andp=0,1,2,.

and

e Ph g () =— e PR (L p+2: 121927t form=0andp=0,1,2,....

p+1

Remark 4.2. (i) For m = 1 the nonzero eigenvalues of operat#,, C)*(P,,C) are given by
3p+l’ p = 0, and of multiplicity one.
(ii) To establish the asymptotic behaviourdf whenp — oo we recall that

. : 1
Wy = Ym—1,p ~2F1(— min(m — 1, p); —min(m — 1, p); Im —1—p|+ 1L Z)

where
S g 2min(m_l’p)37(|mflfp|+l) (maX(m _ 1’ p)')z
"R TS miplm —1— p|!
and agn is fixed we have fop >m — 1

. . 1
2F1<— min(m — 1, p); —min(m — 1, p); |m — 1 — p| + 1, Z)

1
=2F1<—m+1; -m+1p—m+2; Z)

— k
= Z [(=m + 1)i]? <—> —1 whenp — occ.
k!(p —m + 2)x

Now by using the above polynomial formulae we deduce that
1/4\" 'p+1
m~ =2 —plog3 -~ . 4.10
Hp 4(3) ¢ m!l'(p—m+2)’ p=oe ( )

(iii) From (4.10) we deduce the corollary given in the introduction.
(iv) It is well known that the spectral theory of the Cauchy transform and its product with
Bergman'’s projection on a bounded domain has been fully studied, see, for example, [1,2,6].
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(v) Proceeding in the same way what we have done for the Cauchy transform in this work, we
state the main spectral properties of the Green transforih08, du.(z)), i.e. the logarithmic
transform given by

1
Gf (@)=~ / Loglz — €12 f (&) du(E). (4.11)
C

We give the final proposition whose proof should be omitted.
Proposition 4.2.

() LetG(z,w) = % Log|z — &|2 the Schwartz kernel function associated to the operatim
L»(C,du(z)) then we have

oo

/\G(z, w)|? dpu(w) = nl=ap—l? / Io(2v/x |z])|Logx|?e* dx for everyg >0,
C 0

hereIp(z) stands the modified Bessel function of index zero.

(i) LetG be the Green transform ihz(C, du(z)) as given in4.11)thenG belongs to Schatten
spaceS,[L>(C, du(z))] for all p > 1. In particular G is a Hilbert—-Schmidt operator.

(iii) The functiondGh,, ,1(z) that characterise the action of the operat6ron Landau basis
{hm,p} are given explicitly by
(@) (Ghool(z) = e [£° Io(2y/x |z]) Logxe™ dx.
(b) [Gh, pl(z) = e*‘“zhm_l,p_l(z) for (m, p) > (0,0) where(m, p) > (0, 0) stands for

lexicographic order.

(iv) Let a,’ﬁ;f’,, = (Ghp,p, hyq) be the matrix coefficients elements of the Green transfGrm

with respect to the basif,, , € L2(C, du(z))}. Then the coefficients can be specified as

follows
0 ifm—p#n—gq,
ng __
Gm.p = { (=) (m+q— 127D ifm=p+n—q.

(v) The square norms @h,, , are given by

Gl pII?
. . 1
=¥Ym-1,p-1 2F1(— minm — 1, p — 1), min(m — 1, p — 1); |m — p| + 1, Z)

where

B g 2min(milypil)3—|m—p|—l ((max(m — 1, p— l))y)z
Ym—-1,p-1= 3 .

(vi) Let f e La(C,du(z)) and
P f(2) = / P (z, w) f(w) dp(w)

C
the orthogonal projection operator df2(C, du(z)) on A, (C) with kernel function

lm — pl!

o]

b, p (2D hom, p(w)
Pm(z,w)=2%, m=0,1,2,....
p=0 P
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Then we consider the product of the orthogonal projection oper&@prwith the Green
transformG to obtain

PnGf(z) = / Gm(z, w) f(w) dpu(w)

C
where
00 =
R p(Z)e lwl hm—1 p—l(w)
Gz, w) = : . , m=0,12....
" pz_o W, 12
(vii) For p >m — 1, the nonzero-eigenvalues, , of the operatol P, G| are given by
2(m—2)
2= (2) g-md P!
mp 3 (m—DWp—m+2)!

1
X 2F1<—m; —m;p—m+3; Z)
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