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Abstract

The main results of [J. Math. Anal. Appl. 285 (2003) 436—443] are here generalized to the follow-
ing retarded integral inequalities:
a(t)
W (1) < M 4 S / [f)u" (s)w(u(s)) + g(s)u" (s)]ds
m-—n 0
and
a(t) t
W (1) < M _m / Fu (w(uls))ds + _m / g u (Hw(u(s))ds,
m-—n 5 m-—n o

wherem > n > 0 are constants ande R4+ = [0, co). The results given here can be applied to the
global existence of solutions to differential equations with time delay.
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1. Introduction

Pachpatte [8] generalized an interesting integral inequality due to Ou-lang [7]. Recently,
Lipovan presented a retarded version of the Ou-lang and Pachpatte inequalities. Some other
results can be found in [1,3,6,9]. Let us first recall the main results of [5] in the following

Theorem A. Letu, f andg be nonnegative continuous functions definedkqgrand letc
be a nonnegative constant. Moreover,let C (R, R+) be nondecreasing witty () > 0
on (0, o0) anda € CL(R,, Ry) be nondecreasing withi(r) <t on R,.. If

a(t)
u%ggc?+2/Lﬂnmgw@@n+g@m@ﬂd& reRy, (1)
0
then forO<r <1,
a(t) a(t)
Mﬂ<91{9<u%/g®dﬁ4:/f®dﬁ,
0 0
where

[ d
SNH:/:JL,V>0, ()
w(s)
1
22~ Listhe inverse of2, andr; € R, is chosen so that
) (1)
.Q(c—i— / g(s)ds) + / f(s)ds e Dom(2~Y) forall 0<r <n.

0 0

Theorem B. Letu, f andg be nonnegative continuous functions definedkgnand letc
be a nonnegative constant. Moreover,let C(R,, R+) be nondecreasing wittr () > 0
on (0, o0) and ff°(1/w(s))ds =o00. If « € CY(R,, Ry) is nondecreasing with (1) < ¢
on R, and

a(t) t

u%ﬂ<C?+2/1ﬂﬂwﬂw@@»ds+2/g@M@ﬁMMﬂﬁh
0 0
0<r<T, (2)

then
a(t) t
Mﬂgﬂ‘{ﬂ@%/f@ﬁh+/@@ﬁh} 0<t<T
0 0
whereg2 : (0, o) — (£2(0), co) defined by(x) is a C1-diffeomorphism.
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In this paper, we will consider the following general integral inequalities:
a(t)
u" (1) < el f [f)u" (s w(uls)) + g(s)u" (5)]ds 3
m—n
0

and
a(t)
Wy < m/mem o M / Fu"()w(u(s))ds
m-—n
0

t
+L/g(s)u"(s)w(u(s)) ds, 4)
m-—n
0

wherem > n > 0, ¢ > 0 are constantsf, g, u, w, « are assumed as in Theorems A and B.
Our results generalize Theorems A and B, and can be used to give criteria ensuring the
global existence of solutions to the gereed Liénard equation with time delay and to a
retarded Rayleigh type equation.

2. Main results

Theorem 2.1. Letu, f andg be nonnegative continuous functions definedkgrand letc
be a nonnegative constant. Moreover,det C (R, R+) be nondecreasing witty (#) > 0
on (0,00) anda € C1(Ry, Ry) be nondecreasing with(r) < r on R... If (3) holds for
t € Ry, thenforO<r <¢,

alt) a(t) 1/(m—n)
u(t)<:91[9(0+/g(s)ds>+ / f(s)ds]} : (5)

0 0
where

r

.Q(r):/L r >0, (6)

w(sl/(mfn)) ’

2~ lis the inverse of2, andé¢ € R, is chosen so that

a () %)
Q<c+/g(s)ds)+/f(s)dseDom(Q1) forall 0<r <E&.

0 0

Proof. Let us first assume that> 0. Set
a(t)
Z2(t) = M/ 4 o / [f)u" (s)w(u(s)) + g(s)u"(s)]ds, =0, (7
m-—n
0
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and
)
pt)=c+ / g(s)ds, t=0. (8)
0
From (3) and (7), we have

2@ =" w@) <@, 120,
and
HMOES #[f(a(t))u"(a(t))w(u (a(0))) + g(a@®))u" (a(®))]e’ 1)
< mni =" (@) [ (@ ®)w(u(e®)) + g(@®)]' (). )

Sincea(r) <t andz(¢) is nondecreasing, we obtain from (9),

m—n @ _ [fa®)w(u(ex®)) + g(a(®)) ] ). (10)

m /M)
Integrating (10) onO0, ¢], by (8) we obtain
al(r) a(t)
ZmmIm gy e+ / g(s)ds + / fw(u(s))ds
0

0
a(r)
<p@) + / f(s)w(zl/m(s)) ds. (11)
0
Let T < & be an arbitrary number. From (11) we deduce that
a(t)
2" < p(T) + f Few(EY"(s)ds, 0<r<T. (12)
0
Set
()
v(r) = p(T) + / few(EY™s)ds, 0<t<T,
0

then we have (0) = p(T), z¥/™ () < v¥™" (1) and

V() = fa@®)w@Z™(@®))a @) < f(a@)w@ " (am))d @),
0<t«T,

V') /
iy S /@) ®. .
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Integrating (13) o0, ¢], we deduce
a(t)
Q(u(t))g.(z(p(T))+/f(s)ds, 0<r<T.
0
Thus, from (12), we obtain
)
z<’"">/’"(r><v(r><91(9(p<T))+ / f(s)ds>, 0<I<T,
0

from which it follows that

a(t)

m < [91(9 (p(D)) + /
0

1/(m—n)
f(s) ds) ] . (14)

Takingr = T in (14) and using the fact thatr) < zY/"(r) for r = T, we obtain
o(T)

1/(m—n)
u(T)<|:.Q_1<.Q(p(T))+ / f(s)ds>j| :
0

SinceT < £ is arbitrary and noting thap(7) = ¢ + /g‘m

desired inequality (5).
The case: = 0 can be handled by repeating the above procedureewitld and subse-
qguently lettinge — 0. This completes the proof of Theorem 2.10

g(s)ds, we have proved the

Remark 1. Settingm = 2 andn = 1 in Theorem 2.1, we have Lipovan’'s generalization
[5, Theorem 1] of Pachpatte [8].

Remark 2. If

8]

ds .
w(sL/ m=n)) =00,

1
then$2 (c0) = oo and (6) is valid onR 4, i.e., we can choosg= cc.

If we letn =m — 1 in Theorem 2.1, then we have the following corollaries.

Corollary 2.1. Let the constants:, ¢ and the functions, f, g, w, « be defined as in The-
orem2.1, and

a(t)
W) <M +m / [f)u" L Hw(us)) + g)u™1(s)]ds, (15)

then forO <r <§,
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a(t) a(t)
u(t)<!2l|:!2<c+/g(s)ds>+/f(s)ds:|, (16)
0

0

wheref2(r) = flr(l/w(s))ds forr > 0, 2~ Lis the inverse of2, and¢ € R, is chosen so
that

a(t) a(t)
.Q(c+/g(s)ds)+/f(s)dseDom(.Q_l) forall 0< s <E&.

0 0

Remark 3. Itis interesting to note that (1) and (15) provide the same bound on the unknown
functionu(z), respectively.

Corollary 2.2. Let the constants:, ¢ and the functions, f, g, « be defined as in Theo-
rem2.1, and

a(t)
W) <M +m / [f()u™(s) + g™ 1(s)]ds, >0,

then

a(t) a(t)
u(t) < <c+ / g(s) ds) exp(/ f(s) ds), t>0. a7
0

0

Corollary 2.3. Let the constants:, n, ¢ and the functiong, f, « be defined as in Theo-
rem2.1, and
a(t)

u™ (1) < M 4 _m / fHu"(s)ds, >0,
m—n
0
then

a(t) 1/(m—n)
u(t) < <C+ / f(s) ds) , t>=0. (18)
0

Remark 4. Form = 2, Corollary 2.2 reduces to Corollary 2 in [5]. Far=2,n = 1 and
a(t) =t, Corollary 2.3 reduces to Ou-lang’s inequality (see [7]).

Theorem 2.2. Let the constants:, n, ¢ and the functions, f, g, w, « be the same as in
Theoren?.1, and [ (1/w(sY™™~™)) ds = co. If (4) holds forz > 0, then

a(r) t 1/(m—n)
ut) < {9—1[9(6-” / f(s)ds+/g(s)ds]} , >0, (19)
0 0

wheres2 is defined by6) and 21 is the inverse of2.
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Proof. Similar to the proof of Theorem 2.1, let us first assume that0. By denoting the
right-hand side of (4) by(¢), the same steps as in the case of Theorem 2.1 lead to

m—n 7 (@)
m Z"/m(t)

Integrating the above inequality @8, 7], we obtain

< fla®)w(Z™(a@))e (1) + gOw(ZY™(@)).

a(t) t
5m””ﬂ0<c+x/f@ﬁ%fm@»ds+/g@w%fm@»d&
0 0
Set
13} t
v(t) =c+ / f(s)w(zl/m(s)) ds + / g(s)w(zl/m (s)) ds,
0 0
then we have (0) = ¢, /" (1) < v/~ (¢) and

V(1) = fa®)w(Z™(a@))e ) + gOw (Y™ 1))
< fa®)w@ " @) (1) + gOw (Y™ (1)), >0,

v (1)
w (/= (1))
Integrating (20) ono0, ¢], we deduce

< fla@®)a' @) +g(1), t=0. (20)

a(t) t

20m) <20+ [ fods+ [gds >0
0 0
Noting that$2 (co) = oo, we have

a(t) t
ZmIm @y <o) < .Ql<.Q(c) + / f(s)ds —i—/g(s)ds), t>0.
0 0
It follows that

a(t) t

1/(m—n)
2Ymn < |:.Q_l<.{2(c)+ / f(s)ds+/g(s)ds):| , t>0.
0 0

Sinceu(r) < z1/™(r), we have proved the desired inequality (19). This completes the proof
of Theorem 2.2. O

Remark 5. Letm = 2 andn = 1, then Theorem 2.2 reduces to Theorem 2 in [5].

If we letn =m — 1 in Theorem 2.2, then we have the following corollaries.
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Corollary 2.4. Let the constants:, ¢ and the functions, f, g, w, « be defined as in The-
orem2.2, and

a(t) t
W) <M +m / f(s)um_l(s)w(u(s))ds+m/g(s)u'"_l(s)w(u(s))ds, (21)
0 0
then

a(t) t
u(t)<!21|:!2(c)+ / f(s)ds+/g(s)ds], t>0,
0 0
wheref2 = flr(l/w(s))ds for r > 0and 21 is the inverse of2.

Remark 6. Itis interesting to note that (2) and (21) provide the same bound on the unknown
functionu(z), respectively.

Coroallary 2.5. Let the constants:, ¢ and the functions, f, g, « be defined as in Theo-
remz2.2, and

a(t) t

u"(t) <M+ m / fHu™(s)ds +m/g(s)um(s) ds,
0 0
then

a(t) t
u() < cGXp(/ f(s)ds + / g(s) ds), t>0. (22)
0 0

3. Some applications

In this section we will show that our results are useful in proving the global existence
of solutions to certain differential equations with time delay. These applications are given
as examples.

We first recall some basic facts. Considhe functional differential equation

{ X' =H(@, X(@), X(a))),

X (0) = Xo, (23)

with Xo € R", H € C(Ry x R%*, R"), anda € C1(R,, R, ) satisfyinga(r) < forr > 0.

A result in [4] guarantees that for evelp € R", Eq. (23) has a solution. Without addi-
tional hypothesis o/, the uniqueness of solutions is not granted. However, every solution
of (23) has a maximal time of existenZe> 0 and if T < oo, then

limsup| X (1) | . = cc.
t—>T

We present now two applications of the results from Section 2.
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Example 1. Consider the generalizedénard equation with time delay
x'=y+ F(x),
, 24

{y = G(t,x(t — T(1), 24)
whereF € CY(R,R),Ge C(Ry xR, R), 7 € CY(R,, Ry),andr(r) <tonR,.If a(t) =
t — t(¢) is an increasing diffeomorphism &, and

|F)| <wv(x]), xeR, G™(t,x) < fOIx" Mv(jx]), (,x) € Ry x R,
where m is an integer larger than 1f,v € C(R+, R4), v(t) > 0 for r > 0, and
floo(l/v(s)) ds = 0o, then all solutions of (24) have global existence.

Indeed, if (x(¢), y(¢)) is a solution of (24) defined on the maximal existence interval

[0, 7), letu(t) = [x™(r) + y"(t)]¥/™ for t € [0, T), then we havex(r)| < u(z), |y(t)| <
u(t)forr €0, T),andfor0<r < T,

ium(t)—mxm_l(t)x'(t)+m m—l(t) ,(l‘)
dr = y y

<mlx@]" 7y +m|x @) F (x@)]
+mly®|" G (1, x(«@))]- (25)
Using the Holder inequality, for any constantd > 0, we can easily obtain

(m —1a™ b™

amflb < +—< a™ —i—bm.
m

m
Therefore, from (25) we have forQr < T,

%u'"(r) <m[x™ (1) +y" O] +m|x )" | F(x0)))|
+m[y" () + G" (1, x(c(1)))]
< 2mu™ (t) + mu™ () (x (0)) + mf (0] x (e (1)) |’”‘1(s)v(|x(a(t)) )
<2mu™(t) + mum*l(t)v(u (t)) +mf@Ou"1(s) (ot(t))v(u (a(t))).
With w(u) =: 2u + v(u), an integration oifi0, ¢] for ¢ < T yields
t t

u'"(t)gu’"(O)+m/u’"—1(s)w(u(s))ds+m/f(s)u’"—l(a(s))v(u(a(s)))ds
0

0
t t

gum(O)—l—m/um*l(s)w(u(s)) ds—l—m/f(s)umfl(a(s))w(u(a(s)))ds
0 0
t
:u”‘(O)—i—m/um_l(s)(s)w(u(s)) ds
0
a(t) 1
f@™ @) -1

+m mu (r)w(u(r)) ds
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after performing the change of variables= «(s) at some intermediate step. Above?!
is the inverse of the diffeomorphism. Our hypotheses om guarantee thaf2 (co) =
[l°°(1/w(r)) dr = oo (see [2]). By Corollary 2.4 we have

— a(t)
- flat)
- 0

t
! .Q(u(O))+t+/f(s)dsj|, 0<r <T,
0

where 271 is the inverse of2. This proves that(r) does not blow-up in finite time.
Therefore,I = o0, i.e., all solutions of (24) have global existence.

Example 2. Consider the Rayleigh equation with time delay

x' =y,
26

{y/=F(y>+G<x(a(r)>, (26)
whereF, G € C(R, R), « € CY(R,, Ry) with a(r) <t for t > 0. If « is an increasing
diffeomorphism ofR and

|[Fo| <v(lxl), 6™ < Ix" to(xl), xeR,

wherem is an integer larger than 1, C(Ry, R;) is nondecreasingy(u) > 0 foru > 0
andffo(l/v(s)) ds = 00, then all solutions of (26) have global existence.

In fact, if (x(¢), y(z)) is a solution of (26) defined on the maximal existence interval
[0, 7), letu(t) = [x"(t) + y™ (+)]¥/™ for t € [0, T), then we have for & ¢ < T,

iu'" ) =mx™ " LO)x' @) + my" " 1(1)y' (1)
o7 = y y

<mlx@|" Ny +mly®" (@) +m|yO]" |G (x (@ @))]

< 2mu™ (t) + mu™ () v (u()) + mu™ @ (0)v(u(x®))).
Settingw(t) =: 2u + v(#) and integrating the above inequality 6@ ¢] for r < T, we
obtain

t t

u™ () <u™(0) +m/um_1(s)w(u(s)) ds +m/um_l(a(s))v(u(a(s)))ds

0 0
t t

gu’"(O)+mfu’"—1(s)w(u(s))ds+m/u’"—l(a(s))w(u(a(s)))ds
0 0
t

=u"(0) +m/um71(s)w(u(s)) ds
0
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a(t)
1 .
+m/ T Lryw(ur))ds,
0

wherer = «(s). Similar to the discussion in Example 1, we obtain by Corollary 2.4,
a(t)

-1
u(t) < 2 .Q(u(O))+t+0/mdr

=27 2uO)+2r], 0<r<T,

where2 is defined by (7) and2 1 is the inverse of2. This proves that(r) does not
blow-up in finite time. Thereforel = oo, i.e., all solutions of (26) have global existence.
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