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Abstract

The main results of [J. Math. Anal. Appl. 285 (2003) 436–443] are here generalized to the f
ing retarded integral inequalities:

um(t) � cm/(m−n) + m

m − n

α(t)∫
0

[
f (s)un(s)w

(
u(s)

) + g(s)un(s)
]
ds

and

um(t) � cm/(m−n) + m

m − n

α(t)∫
0

f (s)un(s)w
(
u(s)

)
ds + m

m − n

t∫
0

g(s)un(s)w
(
u(s)

)
ds,

wherem > n > 0 are constants andt ∈ R+ = [0,∞). The results given here can be applied to
global existence of solutions to differential equations with time delay.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Pachpatte [8] generalized an interesting integral inequality due to Ou-Iang [7]. Rec
Lipovan presented a retarded version of the Ou-Iang and Pachpatte inequalities. Som
results can be found in [1,3,6,9]. Let us first recall the main results of [5] in the follow

Theorem A. Let u, f andg be nonnegative continuous functions defined onR+ and letc
be a nonnegative constant. Moreover, letw ∈ C(R+,R+) be nondecreasing withw(u) > 0
on (0,∞) andα ∈ C1(R+,R+) be nondecreasing withα(t) � t onR+. If

u2(t) � c2 + 2

α(t)∫
0

[
f (s)u(s)w

(
u(s)

) + g(s)u(s)
]
ds, t ∈ R+, (1)

then for0 � t � t1,

u(t) � Ω−1

[
Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds

]
,

where

Ω(r) =
r∫

1

ds

w(s)
, r > 0, (∗)

Ω−1 is the inverse ofΩ , andt1 ∈ R+ is chosen so that

Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds ∈ Dom(Ω−1) for all 0� t � t1.

Theorem B. Let u, f andg be nonnegative continuous functions defined onR+ and letc
be a nonnegative constant. Moreover, letw ∈ C(R+,R+) be nondecreasing withw(u) > 0
on (0,∞) and

∫ ∞
1 (1/w(s)) ds = ∞. If α ∈ C1(R+,R+) is nondecreasing withα(t) � t

onR+ and

u2(t) � c2 + 2

α(t)∫
0

f (s)u(s)w
(
u(s)

)
ds + 2

t∫
0

g(s)u(s)w
(
u(s)

)
ds,

0 � t < T , (2)

then

u(t) � Ω−1

[
Ω(c)

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

]
, 0 � t < T ,

whereΩ : (0,∞) → (Ω(0),∞) defined by(∗) is aC1-diffeomorphism.
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B.
ing the
a

In this paper, we will consider the following general integral inequalities:

um(t) � cm/(m−n) + m

m − n

α(t)∫
0

[
f (s)un(s)w

(
u(s)

) + g(s)un(s)
]
ds (3)

and

um(t) � cm/(m−n) + m

m − n

α(t)∫
0

f (s)un(s)w
(
u(s)

)
ds

+ m

m − n

t∫
0

g(s)un(s)w
(
u(s)

)
ds, (4)

wherem > n > 0, c � 0 are constants,f,g,u,w,α are assumed as in Theorems A and
Our results generalize Theorems A and B, and can be used to give criteria ensur
global existence of solutions to the generalized Liénard equation with time delay and to
retarded Rayleigh type equation.

2. Main results

Theorem 2.1. Letu, f andg be nonnegative continuous functions defined onR+ and letc
be a nonnegative constant. Moreover, letw ∈ C(R+,R+) be nondecreasing withw(u) > 0
on (0,∞) andα ∈ C1(R+,R+) be nondecreasing withα(t) � t on R+. If (3) holds for
t ∈ R+, then for0 � t � ξ ,

u(t) �
{

Ω−1

[
Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds

]}1/(m−n)

, (5)

where

Ω(r) =
r∫

1

ds

w(s1/(m−n))
, r > 0, (6)

Ω−1 is the inverse ofΩ , andξ ∈ R+ is chosen so that

Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds ∈ Dom(Ω−1) for all 0� t � ξ.

Proof. Let us first assume thatc > 0. Set

z(t) = cm/(m−n) + m

m − n

α(t)∫ [
f (s)un(s)w

(
u(s)

) + g(s)un(s)
]
ds, t � 0, (7)
0
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and

p(t) = c +
α(t)∫
0

g(s) ds, t � 0. (8)

From (3) and (7), we have

z(0) = cm/(m−n), u(t) � z1/m(t), t � 0,

and

z′(t) = m

m − n

[
f

(
α(t)

)
un

(
α(t)

)
w

(
u
(
α(t)

)) + g
(
α(t)

)
un

(
α(t)

)]
α′(t)

� m

m − n
zn/m

(
α(t)

)[
f

(
α(t)

)
w

(
u
(
α(t)

)) + g
(
α(t)

)]
α′(t). (9)

Sinceα(t) � t andz(t) is nondecreasing, we obtain from (9),

m − n

m

z′(t)
zn/m(t)

�
[
f

(
α(t)

)
w

(
u
(
α(t)

)) + g
(
α(t)

)]
α′(t). (10)

Integrating (10) on[0, t], by (8) we obtain

z(m−n)/m(t) � c +
α(t)∫
0

g(s) ds +
α(t)∫
0

f (s)w
(
u(s)

)
ds

� p(t) +
α(t)∫
0

f (s)w
(
z1/m(s)

)
ds. (11)

Let T � ξ be an arbitrary number. From (11) we deduce that

z(m−n)/m(t) � p(T ) +
α(t)∫
0

f (s)w
(
z1/m(s)

)
ds, 0 � t � T . (12)

Set

v(t) = p(T ) +
α(t)∫
0

f (s)w
(
z1/m(s)

)
ds, 0� t � T ,

then we havev(0) = p(T ), z1/m(t) � v1/(m−n)(t) and

v′(t) = f
(
α(t)

)
w

(
z1/m

(
α(t)

))
α′(t) � f

(
α(t)

)
w

(
v1/(m−n)

(
α(t)

))
α′(t),

0 � t � T ,

i.e.,

v′(t)
1/(m−n)

� f
(
α(t)

)
α′(t). (13)
w(v (t))
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Integrating (13) on[0, t], we deduce

Ω
(
v(t)

)
� Ω

(
p(T )

) +
α(t)∫
0

f (s) ds, 0 � t � T .

Thus, from (12), we obtain

z(m−n)/m(t) � v(t) � Ω−1

(
Ω

(
p(T )

) +
α(t)∫
0

f (s) ds

)
, 0 � t � T ,

from which it follows that

z1/m(t) �
[
Ω−1

(
Ω

(
p(T )

) +
α(t)∫
0

f (s) ds

)]1/(m−n)

. (14)

Takingt = T in (14) and using the fact thatu(t) � z1/m(t) for t = T , we obtain

u(T ) �
[
Ω−1

(
Ω

(
p(T )

) +
α(T )∫
0

f (s) ds

)]1/(m−n)

.

SinceT � ξ is arbitrary and noting thatp(T ) = c + ∫ α(T )

0 g(s) ds, we have proved th
desired inequality (5).

The casec = 0 can be handled by repeating the above procedure withε > 0 and subse
quently lettingε → 0. This completes the proof of Theorem 2.1.�
Remark 1. Settingm = 2 andn = 1 in Theorem 2.1, we have Lipovan’s generalizat
[5, Theorem 1] of Pachpatte [8].

Remark 2. If
∞∫

1

ds

w(s1/(m−n))
= ∞,

thenΩ(∞) = ∞ and (6) is valid onR+, i.e., we can chooseξ = ∞.

If we let n = m − 1 in Theorem 2.1, then we have the following corollaries.

Corollary 2.1. Let the constantsm,c and the functionsu,f,g,w,α be defined as in The
orem2.1, and

um(t) � cm + m

α(t)∫
0

[
f (s)um−1(s)w

(
u(s)

) + g(s)um−1(s)
]
ds, (15)

then for0 � t � ξ ,
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nown

-

-

n

u(t) � Ω−1

[
Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds

]
, (16)

whereΩ(r) = ∫ r

1 (1/w(s)) ds for r > 0, Ω−1 is the inverse ofΩ , andξ ∈ R+ is chosen so
that

Ω

(
c +

α(t)∫
0

g(s) ds

)
+

α(t)∫
0

f (s) ds ∈ Dom(Ω−1) for all 0� t � ξ.

Remark 3. It is interesting to note that (1) and (15) provide the same bound on the unk
functionu(t), respectively.

Corollary 2.2. Let the constantsm,c and the functionsu,f,g,α be defined as in Theo
rem2.1, and

um(t) � cm + m

α(t)∫
0

[
f (s)um(s) + g(s)um−1(s)

]
ds, t � 0,

then

u(t) �
(

c +
α(t)∫
0

g(s) ds

)
exp

( α(t)∫
0

f (s) ds

)
, t � 0. (17)

Corollary 2.3. Let the constantsm,n, c and the functionsu,f,α be defined as in Theo
rem2.1, and

um(t) � cm/(m−n) + m

m − n

α(t)∫
0

f (s)un(s) ds, t � 0,

then

u(t) �
(

c +
α(t)∫
0

f (s) ds

)1/(m−n)

, t � 0. (18)

Remark 4. For m = 2, Corollary 2.2 reduces to Corollary 2 in [5]. Form = 2, n = 1 and
α(t) = t , Corollary 2.3 reduces to Ou-Iang’s inequality (see [7]).

Theorem 2.2. Let the constantsm,n, c and the functionsu,f,g,w,α be the same as i
Theorem2.1, and

∫ ∞
1 (1/w(s1/(m−n))) ds = ∞. If (4) holds fort � 0, then

u(t) �
{

Ω−1

[
Ω(c) +

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

]}1/(m−n)

, t � 0, (19)

whereΩ is defined by(6) andΩ−1 is the inverse ofΩ .
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roof
Proof. Similar to the proof of Theorem 2.1, let us first assume thatc > 0. By denoting the
right-hand side of (4) byz(t), the same steps as in the case of Theorem 2.1 lead to

m − n

m

z′(t)
zn/m(t)

� f
(
α(t)

)
w

(
z1/m

(
α(t)

))
α′(t) + g(t)w

(
z1/m(t)

)
.

Integrating the above inequality on[0, t], we obtain

z(m−n)/m(t) � c +
α(t)∫
0

f (s)w
(
z1/m(s)

)
ds +

t∫
0

g(s)w
(
z1/m(s)

)
ds.

Set

v(t) = c +
α(t)∫
0

f (s)w
(
z1/m(s)

)
ds +

t∫
0

g(s)w
(
z1/m(s)

)
ds,

then we havev(0) = c, z1/m(t) � v1/(m−n)(t) and

v′(t) = f
(
α(t)

)
w

(
z1/m

(
α(t)

))
α′(t) + g(t)w

(
z1/m(t)

)
� f

(
α(t)

)
w

(
v1/(m−n)(t)

)
α′(t) + g(t)w

(
z1/m(t)

)
, t � 0,

i.e.,

v′(t)
w(v1/(m−n)(t))

� f
(
α(t)

)
α′(t) + g(t), t � 0. (20)

Integrating (20) on[0, t], we deduce

Ω
(
v(t)

)
� Ω(c) +

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds, t � 0.

Noting thatΩ(∞) = ∞, we have

z(m−n)/m(t) � v(t) � Ω−1

(
Ω(c) +

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

)
, t � 0.

It follows that

z1/m(t) �
[
Ω−1

(
Ω(c) +

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

)]1/(m−n)

, t � 0.

Sinceu(t) � z1/m(t), we have proved the desired inequality (19). This completes the p
of Theorem 2.2. �
Remark 5. Let m = 2 andn = 1, then Theorem 2.2 reduces to Theorem 2 in [5].

If we let n = m − 1 in Theorem 2.2, then we have the following corollaries.
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Corollary 2.4. Let the constantsm,c and the functionsu,f,g,w,α be defined as in The
orem2.2, and

um(t) � cm + m

α(t)∫
0

f (s)um−1(s)w
(
u(s)

)
ds + m

t∫
0

g(s)um−1(s)w
(
u(s)

)
ds, (21)

then

u(t) � Ω−1

[
Ω(c) +

α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

]
, t � 0,

whereΩ = ∫ r

1 (1/w(s)) ds for r > 0 andΩ−1 is the inverse ofΩ .

Remark 6. It is interesting to note that (2) and (21) provide the same bound on the unk
functionu(t), respectively.

Corollary 2.5. Let the constantsm,c and the functionsu,f,g,α be defined as in Theo
rem2.2, and

um(t) � cm + m

α(t)∫
0

f (s)um(s) ds + m

t∫
0

g(s)um(s) ds,

then

u(t) � c exp

( α(t)∫
0

f (s) ds +
t∫

0

g(s) ds

)
, t � 0. (22)

3. Some applications

In this section we will show that our results are useful in proving the global exist
of solutions to certain differential equations with time delay. These applications are
as examples.

We first recall some basic facts. Consider the functional differential equation{
X′ = H(t,X(t),X(α(t))),

X(0) = X0,
(23)

with X0 ∈ Rn, H ∈ C(R+ × R2n,Rn), andα ∈ C1(R+,R+) satisfyingα(t) � t for t � 0.
A result in [4] guarantees that for everyX0 ∈ Rn, Eq. (23) has a solution. Without add
tional hypothesis onH , the uniqueness of solutions is not granted. However, every sol
of (23) has a maximal time of existenceT > 0 and ifT < ∞, then

lim sup
t→T

∥∥X(t)
∥∥

Rn = ∞.

We present now two applications of the results from Section 2.
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Example 1. Consider the generalized Liénard equation with time delay{
x ′ = y + F(x),

y ′ = G(t, x(t − τ (t))),
(24)

whereF ∈ C1(R,R), G ∈ C(R+ ×R,R), τ ∈ C1(R+,R+), andτ (t) � t onR+. If α(t) =
t − τ (t) is an increasing diffeomorphism ofR+ and∣∣F(x)

∣∣ � v
(|x|), x ∈ R, Gm(t, x) � f (t)|x|m−1v

(|x|), (t, x) ∈ R+ × R,

where m is an integer larger than 1,f, v ∈ C(R+,R+), v(t) > 0 for t > 0, and∫ ∞
1 (1/v(s)) ds = ∞, then all solutions of (24) have global existence.

Indeed, if(x(t), y(t)) is a solution of (24) defined on the maximal existence inte
[0, T ), let u(t) = [xm(t) + ym(t)]1/m for t ∈ [0, T ), then we have|x(t)| � u(t), |y(t)| �
u(t) for t ∈ [0, T ), and for 0� t < T ,

d

dt
um(t) = mxm−1(t)x ′(t) + mym−1(t)y ′(t)

� m
∣∣x(t)

∣∣m−1∣∣y(t)
∣∣ + m

∣∣x(t)
∣∣m−1∣∣F (

x(t)
)∣∣

+ m
∣∣y(t)

∣∣m−1∣∣G(
t, x

(
α(t)

))∣∣. (25)

Using the Hölder inequality, for any constantsa, b � 0, we can easily obtain

am−1b � (m − 1)am

m
+ bm

m
� am + bm.

Therefore, from (25) we have for 0� t < T ,

d

dt
um(t) � m

[
xm(t) + ym(t)

] + m
∣∣x(t)

∣∣m−1∣∣F (
x(t)

)∣∣
+ m

[
ym(t) + Gm

(
t, x

(
α(t)

))]
� 2mum(t) + mum−1(t)v

(
x(t)

) + mf (t)
∣∣x(

α(t)
)∣∣m−1

(s)v
(∣∣x(

α(t)
)∣∣)

� 2mum(t) + mum−1(t)v
(
u(t)

) + mf (t)um−1(s)
(
α(t)

)
v
(
u
(
α(t)

))
.

With w(u) =: 2u + v(u), an integration on[0, t] for t < T yields

um(t) � um(0) + m

t∫
0

um−1(s)w
(
u(s)

)
ds + m

t∫
0

f (s)um−1(α(s)
)
v
(
u
(
α(s)

))
ds

� um(0) + m

t∫
0

um−1(s)w
(
u(s)

)
ds + m

t∫
0

f (s)um−1(α(s)
)
w

(
u
(
α(s)

))
ds

= um(0) + m

t∫
0

um−1(s)(s)w
(
u(s)

)
ds

+ m

α(t)∫
f (α−1(r))

α′(α−1(r))
um−1(r)w

(
u(r)

)
ds
0
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rval
after performing the change of variablesr = α(s) at some intermediate step. Aboveα−1

is the inverse of the diffeomorphismα. Our hypotheses onv guarantee thatΩ(∞) =∫ ∞
1 (1/w(r)) dr = ∞ (see [2]). By Corollary 2.4 we have

u(t) � Ω−1

[
Ω

(
u(0)

) + t +
α(t)∫
0

f (α−1(r))

α′(α−1(r))
dr

]

= Ω−1

[
Ω

(
u(0)

) + t +
t∫

0

f (s) ds

]
, 0 � t < T ,

whereΩ−1 is the inverse ofΩ . This proves thatu(t) does not blow-up in finite time
Therefore,T = ∞, i.e., all solutions of (24) have global existence.

Example 2. Consider the Rayleigh equation with time delay{
x ′ = y,

y ′ = F(y) + G(x(α(t)),
(26)

whereF,G ∈ C(R,R), α ∈ C1(R+,R+) with α(t) � t for t � 0. If α is an increasing
diffeomorphism ofR+ and∣∣F(x)

∣∣ � v
(|x|), Gm(x) � |x|m−1v

(|x|), x ∈ R,

wherem is an integer larger than 1,v ∈ C(R+,R+) is nondecreasing,v(u) > 0 for u > 0
and

∫ ∞
1 (1/v(s)) ds = ∞, then all solutions of (26) have global existence.

In fact, if (x(t), y(t)) is a solution of (26) defined on the maximal existence inte
[0, T ), let u(t) = [xm(t) + ym(t)]1/m for t ∈ [0, T ), then we have for 0� t < T ,

d

dt
um(t) = mxm−1(t)x ′(t) + mym−1(t)y ′(t)

� m
∣∣x(t)

∣∣m−1∣∣y(t)
∣∣ + m

∣∣y(t)
∣∣m−1∣∣F (

y(t)
)∣∣ + m

∣∣y(t)
∣∣m−1∣∣G(

x
(
α(t)

))∣∣
� 2mum(t) + mum−1(t)v

(
u(t)

) + mum−1(α(t)
)
v
(
u
(
α(t)

))
.

Settingw(t) =: 2u + v(u) and integrating the above inequality on[0, t] for t < T , we
obtain

um(t) � um(0) + m

t∫
0

um−1(s)w
(
u(s)

)
ds + m

t∫
0

um−1(α(s)
)
v
(
u
(
α(s)

))
ds

� um(0) + m

t∫
0

um−1(s)w
(
u(s)

)
ds + m

t∫
0

um−1(α(s)
)
w

(
u
(
α(s)

))
ds

= um(0) + m

t∫
um−1(s)w

(
u(s)

)
ds
0
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5)

9–

s,
+ m

α(t)∫
0

1

α′(α−1(r))
um−1(r)w

(
u(r)

)
ds,

wherer = α(s). Similar to the discussion in Example 1, we obtain by Corollary 2.4,

u(t) � Ω−1

[
Ω

(
u(0)

) + t +
α(t)∫
0

1

α′(α−1(r))
dr

]

= Ω−1[Ω(
u(0)

) + 2t
]
, 0 � t < T ,

whereΩ is defined by (7) andΩ−1 is the inverse ofΩ . This proves thatu(t) does not
blow-up in finite time. Therefore,T = ∞, i.e., all solutions of (26) have global existenc
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