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Abstract

The classical finite element convergence analysis relies on the following regularity condition: there exists a constant c independent
of the element K and the mesh such that hK/�K �c, where hK and �K are diameters of K and the biggest ball contained in K,
respectively. In this paper, we construct a new, nonconforming rectangular plate element by the double set parameter method. We
prove the convergence of this element without the above regularity condition. The key in our proof is to obtain the O(h2) consistency
error. We also prove the superconvergence of this element for narrow rectangular meshes. Results of our numerical tests agree well
with our analysis.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose � ⊂ Rn,Th is a family of subdivisions of �. {Th}={K1, . . . , KN }, �=⋃Ki∈Th
Ki, Ki is the element. The

convergence of the classical finite element requires that the mesh satisfies the following regularity [10] or nondegenerate
[4] condition: there exists a constant c independent of K ∈ Th and Th, such that

hK/�K �c, (1.1)

where hK is the diameter of K, �K is the diameter of the biggest ball contained in K. But recent research shows that
(1.1) is not a necessary condition for the convergence of the finite element methods, see for example [2,3,7,8,15,16,22].
Among them, Apel et al. have studied anisotropic Lagrange interpolations. Their fundamental results are of [2, Lemmas
3 and 4] or of [3, Lemmas 2.2 and 2.3], which give the conditions for which the following estimate holds:

|D�(u − Iu)|m,K �C|D�u|l,K , (1.2)
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where �=(�1, . . . , �n) is a multi-index, D�= �|�|
�x

�1
1 ···�x

�n
n

, |�|=∑n
i=1 �i , 0�m� l, and I is the finite element interpolation

operator. We call the above property (1.2) anisotropism of the element.
In [7] we introduced a general theorem for anisotropic interpolation, which yields a new criterion to obtain (1.2),

improving Apel’s result and which is easier to use. The research on anisotropic elements mainly concentrate on
conforming elements. For nonconforming elements, the consistency error should also be estimated. For classical
elements, the consistency error estimate still relies on (1.1). As far as we know, only few published articles discuss
nonconforming elements on anisotropic meshes.

The superconvergence of finite elements has been widely analyzed mathematically because of its practical importance
in engineering computations, the reader is referred to [5,11,21]. The term superconvergence also includes accelerated
convergence achieved by means of various recovery (or post-processing) techniques (refer to [14]). However, the studies
mainly concentrated on second order problems and conforming C0 elements. As for the superconvergence results of
nonconforming finite elements, there seem to be few articles except Wilson’s element for the second order problem
(refer to [5,6,18]). Meanwhile, the meshes are required to be regular (sometimes quasi-uniform, namely, satisfy (1.1)
and an inverse assumption).

In this paper, a new nonconforming rectangular plate element is presented, and its convergence is proved for
anisotropic meshes. In addition, we prove that its anisotropic consistence error is O(h2), which is the same order
as that of Adini’s nonconforming element on rectangular meshes (cf. [14]), however, the shape space of our element
is only exact for P2(K). Its natural superconvergence and global superconvergence are derived without the regularity
assumption (1.1). As far as the authors’ knowledge, this is the first time to find such properties for fourth order problems
on anisotropic meshes. Some numerical examples supporting our theoretical analysis are given.

2. Basic theory

Let K̂ be the reference element, shape function space P̂ be a polynomial space on K̂ , the dimension of P̂ be m, P̂ ′
be the dual space of P̂ . {p̂1, . . . , p̂m} ⊂ P̂ and {N̂1, . . . , N̂m} ⊂ P̂ ′ are a pair of dual basis for P̂ and P̂ ′, respectively,
i.e.,

N̂i(p̂j ) = �ij , 1� i, j �m.

Suppose the interpolation operator Î : Hk(K̂) → P̂ , k�1 is defined such that

N̂i(Î v̂) = N̂i(v̂), i = 1, . . . , m, ∀v̂ ∈ Hk(K̂). (2.1)

Obviously,

Î v̂ =
m∑

i=1

N̂i(v̂)p̂i (2.2)

and

Î v̂ = v̂, ∀v̂ ∈ P̂ . (2.3)

Suppose � = (�1, . . . , �n) is a multi-index, then D̂�P̂ is also a polynomial space on K̂ . Let

dim D̂�P̂ = r

and {q̂i}ri=1 be the set of basis functions of D̂�P̂ , suppose D̂�p̂i =∑r
j=1 �ij q̂j , 1� i�m, then D̂�Î v̂ can be expressed by

D̂�Î v̂
(2.2)=

m∑
i=1

N̂i(v̂)D�p̂i =
r∑

j=1

�j (v̂)q̂j , (2.4)

where

�j (v̂) =
m∑

i=1

�ij N̂i(v̂). (2.5)
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From (2.5) and (2.1) we have

�j (v̂) =
m∑

i=1

�ij N̂i(v̂) =
m∑

i=1

�ij N̂i(Î v̂) = �j (Î v̂). (2.6)

Theorem 2.1 (Chen et al. [7], Chen et al. [8]). Let � be a multi-index, Pl(K̂) ⊂ D̂�P̂ and Î : W |�|+l+1,p(K̂) → P̂

be the above finite element interpolation operator defined by (2.1), (2.2) and satisfy: Î ∈ L(W |�|+l+1,p(K̂), W |�|+m,q

(K̂))—the space of continuous linear mappings from (W |�|+l+1,p(K̂) intoW |�|+m,q(K̂)), andWl+1,p(K̂) ↪→ Wm,q(K̂).
If �j (v̂) of (2.5) can be expressed by

�j (v̂) = Fj (D̂
�v̂), 1�j �r , (2.7)

where

Fj ∈ (W l+1,p(K̂))′, 1�j �r . (2.8)

Then

|D̂�(v̂ − Î v̂)|
m,q,K̂

�C(Î , K̂)|D̂�v̂|
l+1,p,K̂

, ∀v̂ ∈ W |�|+l+1,p(K̂). (2.9)

Remark 2.1. In [2,3], Apel et al. show that one necessary condition for (2.9) to hold is

D̂�û = 0 ⇒ D̂�Î û = 0. (2.10)

(2.10) is useful to prove that the finite element interpolation does not have anisotropic behavior (1.2).

3. Anisotropic rectangular plate element with double set parameters

Let the reference element K̂ be a square in the (�, �) plane, and let its nodes be â1(−1, −1), â2(1, −1), â3(1, 1),
â4(−1, 1), its middle points of 4 sides be â5(0, −1), â6(1, 0), â7(0, 1), â8(−1, 0), and its 4 sides be l̂1 = â1â2, l̂2 =
â2â3, l̂3 = â3â4, l̂4 = â4â1.

The degrees of freedom are taken as

D(v̂) = (v̂1, v̂2, v̂3, v̂4, v̂5�, v̂6�, v̂7�, v̂8�)
	, (3.1)

where v̂i = v̂(âi ), 1� i�4 are function values at 4 nodes; v̂i� = �v̂

�� (âi), i = 5, 7, v̂i� = �v̂

�� (âi), i = 6, 8, are normal
derivatives at the middle points of 4 sides.

The shape function space is taken as

P̂ = P2(K̂)
⊕

span{�3, �3} = span{p̂1, . . . , p̂8}, (3.2)

where p̂1 = 1
4 (1−�)(1−�),p̂2 = 1

4 (1+�)(1−�), p̂3 = 1
4 (1+�)(1+�), p̂4 = 1

4 (1−�)(1+�), p̂5 =1−�2, p̂6 =1−�2,
p̂7 = �(1 − �2), p̂8 = �(1 − �2).

∀v̂ ∈ P̂ , suppose

v̂ =
8∑

i=1

�i p̂i . (3.3)

Substituting (3.3) into (3.2) we get

�i = v̂i , 1� i�4, �5 = 1
4 (v̂8� − v̂6�), �6 = 1

4 (v̂5� − v̂7�),

�7 = 1
8 (−v̂1 + v̂2 + v̂3 − v̂4 − 2v̂8� − 2v̂6�),

�8 = 1
8 (−v̂1 − v̂2 + v̂3 + v̂4 − 2v̂5� − 2v̂7�). (3.4)
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Using the “Double Set Parameter Method” [9], we take another set of nodal parameters:

Q(v̂) = (v̂1, v̂1�, v̂1�, . . . , v̂4, v̂4�, v̂4�)
	, (3.5)

i.e., the function values and the first order partial derivatives at 4 nodes, which are the real degrees of freedom.
Approximating the degrees of freedom D(v̂) by the linear combinations of nodal parameters Q(v̂) as follows:{

v̂i = v̂i , 1� i�4, v̂5� = 1
2 (v̂1� + v̂2�),

v̂6� = 1
2 (v̂2� + v̂3�), v̂7� = 1

2 (v̂3� + v̂4�), v̂8� = 1
2 (v̂1� + v̂4�).

(3.6)

For v̂ ∈ P̂ = P2(K̂) ∪ {�3, �3}, these discretizations are exact.
Substituting (3.6) into (3.4), we get the expressions of �i of (3.3) in Q(v̂):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�i = v̂i , 1� i�4,

�5 = 1
8 (v̂1� − v̂2� − v̂3� + v̂4�), �6 = 1

8 (v̂1� + v̂2� − v̂3� − v̂4�),

�7 = 1
8 (−v̂1 + v̂2 + v̂3 − v̂4 − v̂1� − v̂2� − v̂3� − v̂4�),

�8 = 1
8 (−v̂1 − v̂2 + v̂3 + v̂4 − v̂1� − v̂2� − v̂3� − v̂4�).

(3.7)

Let Th be a rectangle subdivision of �,
⋃

K∈Th
K =�. Suppose a general rectangle element K is on (x, y) plane with

center (xK, yK) and side lengths 2hK1 and 2hK2, respectively, its 4 nodes are: a1(xK − hK1, yK − hK2), a2(xK +
hK1, yK −hK2), a3(xK +hK1, yK +hK2), a4(xK −hK1, yK +hK2). The mapping from K̂ to K denoted by x=F(x̂) is

x = hK1� + xK, y = hK2� + yK . (3.8)

The shape function space on K is defined as

PK = {v = v̂ ◦ F−1
K ; v̂ ∈ P̂ is determined by (3.3), (3.7)}.

Let Î be the finite element interpolation operators deduced by P̂ , then

Î v̂ =
8∑

i=1

�i p̂i , ∀v̂ ∈ H 3(K̂), (3.9)

where the expressions of �1, . . . , �8 are (3.7).
From (3.3) and (3.7), it is easy to see that⎧⎪⎨⎪⎩

(Î v̂)i = v̂i , 1� i�4,

(Î v̂)5� = 1
2 (v̂1� + v̂2�), (Î v̂)6� = 1

2 (v̂2� + v̂3�),

(Î v̂)7� = 1
2 (v̂3� + v̂4�), (Î v̂)8� = 1

2 (v̂1� + v̂4�).

(3.10)

Define the interpolation on a general element K as

IKv = (Î v̂) ◦ F−1
K , ∀v ∈ H 3(K).

The relations of the nodal parameters on K̂ and K are

vi = v̂i , vix = v̂i�h
−1
K1, viy = v̂i�h

−1
K2, 1� i�4. (3.11)

From now on, the sign ĉ denotes a general constant which is independent of hK1/hK2 , h/hK, ∀K ∈ Th, here
h = maxK∈Th

hK , hK = max{hK1 , hK2}.

Theorem 3.1. The interpolation operator Î is anisotropic for the fourth order problem, that is to say, ∀�, |�| = 2,

‖D̂�(v̂ − Î v̂)‖0,K̂
� ĉ|D̂�v̂|1,K̂

, ∀v̂ ∈ H 3(K̂). (3.12)
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Proof. It is only needed to check the conditions of Theorem 2.1. Let � = (2, 0),

D̂�Î v̂
(3.9)=

8∑
i=1

�i

�2p̂i

��2
= −2�5 − 6��7, (3.13)

{−2, −6�} are the bases of D̂�P̂ = Span{1, �},

�5(v̂)
(3.7)= 1

8

(
−
∫ 1

−1

�2v̂

��2
(�, −1) d� −

∫ 1

−1

�2v̂

��2
(�, 1) d�

)
�F1(D̂

�v̂),

�7(v̂)
(3.7)= 1

16

[∫ 1

−1
d�

(∫ �

−1

�2v̂

��2
(�, −1) d� −

∫ 1

�

�2v̂

��2
(�, −1) d�

)

+
∫ 1

−1
d�

(∫ �

−1

�2v̂

��2
(�, 1) d� −

∫ 1

�

�2v̂

��2
(�, 1) d�

)]
�F2(D̂

�v̂). (3.14)

From the Hölder inequality and trace theorem [1], we have

|Fi(ŵ)|� ĉ|ŵ|0,�K̂
� ĉ‖ŵ‖1,K̂

, i = 1, 2. (3.15)

For � = (0, 2) and � = (1, 1) the same properties as � = (2, 0) hold. Hence (3.12) follows from (2.8). �

Remark 3.1. (1) If using classical forms, i.e., (3.4) for �i , (2.9) does not hold, so this 8 degrees of freedom rectangular
plate element (denoted by 8-2 element) is not anisotropic and (3.12) does not hold. In fact, for � = (2.0), let v̂ = ��2,
then D̂�v̂ = 0, but �5 = 0, �7 = 1

2 , D̂�Î v̂ = −2�5 − 6��7 = −3� = 0.

(2) For the initial 8 degrees of freedom rectangular plate element (denoted by 8-1 element), the degrees of freedom
are also (3.1), but the shape function space P̂ =P2(K̂)∪{�2�, ��2}. Under the regularity condition (1.1), its convergence
is correctly proven in [19]. It is easy to prove that this element does not satisfy (2.9). It should be pointed out that its
double set parameter form (denoted by 8-12-1 element) does not satisfy (2.9), either.

4. Anisotropic convergence of 8-12-2 element for the plate bending problems

Consider the plate bending problem [10]: Find u ∈ H 2
0 (�) such that

a(u, v) = (f, v), ∀v ∈ H 2
0 (�), (4.1)

where � is a rectangle domain, f ∈ L2(�) and

a(u, v) =
∫
�

A(u, v) dx dy, (f, v) =
∫
�

f v dx dy,

A(u, v) = �u�v + (1 − 	)(2uxyvxy − uxxvyy − uyyvxx),

H 2
0 (�) = {v ∈ H 2(�), v = �v

�n
= 0, on ��},

here n is the direction normal to the boundary ��, 	 is the Poisson ratio, 0 < 	 < 1
2 , uxy = �2u

�x�y
, etc.

The corresponding differential equation of (4.1) is⎧⎨⎩
�2u = f in �,

u = �u

�n
= 0 on ��.

(4.2)
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The finite element space Vh is defined as

Vh = {vh; vh|K = v̂ ◦ F−1
K , v̂ is defined by (3.3), (3.7), ∀K ∈ Th,

v(a) = vx(a) = vy(a) = 0, for all node a on ��}.
The discrete problem of (4.1) is: find uh ∈ Vh, such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (4.3)

where ah(uh, vh) = ∑
K∈Th

∫
K

A(uh, vh) dx dy.

Set

| · |h =
⎛⎝ ∑

K∈Th

| · |22,K

⎞⎠1/2

.

It is easy to prove that | · |h is a norm of Vh, so the discrete problem (4.2) has an unique solution by Lax–Milgram
Lemma [4].

Let u and uh be the solutions of (4.1) and (4.3), respectively, by Strang’s Lemma [4,10],

|u − uh|h � ĉ

(
inf

vh∈Vh

|u − vh|h + sup
wh∈Vh

|ah(u, wh) − (f, wh)|
|wh|h

)
. (4.4)

The finite element interpolation operator Ih : H 3(�) ∩ H 2
0 (�) → Vh is defined by

Ih|K�IK, ∀K ∈ Th.

Let � = (�1, �2), |�| = 2, h�
K = h

�1
K1h

�2
K2. Obviously, D̂�û = h�

KD�u, then

inf
vh∈Vh

|u − vh|h � |u − Ihu|h

=
⎛⎝ ∑

K∈Th

∑
|�|=2

h−2�
K (hK1hK2)‖D̂�(û − Î û)‖2

0,K̂

⎞⎠1/2

(3.12)

� ĉ

⎛⎝ ∑
K∈Th

∑
|�|=1

h
2�
K |D�u|22,K

⎞⎠1/2

. (4.5)

Now we are in a position to estimate the consistence error.
Let 
h be the piecewise bilinear interpolation operator on �, 
h|K = 
K, 
Kv = 
̂v̂ ◦ F−1

K , 
̂ is the bilinear
interpolation operator on K̂ . It is easy to see that 
̂ is anisotropic for |�| = 1, and from Theorem 2.1 we have

‖v − 
Kv‖0,K � ĉh2
K |v|2,K, |v − 
Kv|1,K � ĉhK |v|2,K, ∀v ∈ H 2(K). (4.6)

Obviously ∀wh ∈ Vh, 
hwh ∈ C0
0 (�), by Green’s Formula [10],

f (
hwh) =
∫
�

f 
hwh =
∫
�

�2u
hwh = −
∫
�

∇�u · ∇
hwh. (4.7)

The well-known result [12,18] gives

ah(u, wh) = −
∑

K∈Th

∫
K

∇�u · ∇wh + E1(u, wh) + E2(u, wh), (4.8)
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where⎧⎪⎪⎨⎪⎪⎩
E1(u, wh) = ∑

K∈Th

∫
�K

[�u − (1 − 	)uss]�wh

�n
ds,

E2(u, wh) = ∑
K∈Th

∫
�K

(1 − 	)usn

�wh

�s
ds,

(4.9)

where (·)s = �
�s

, (·)n = �
�n

, are the tangential and normal derivatives along element boundaries, respectively.
Combining (4.7) and (4.8) yields

ah(u, wh) − f (wh) = −
∑

K∈Th

[∫
K

∇�u · ∇(wh − 
Kwh) +
∫

K

f (wh − 
Kwh)

]
+ E1(u, wh) + E2(u, wh). (4.10)

From (4.6) we have∣∣∣∣∫
K

∇�u · ∇(wh − 
Kwh)

∣∣∣∣ � |�u|1,K |wh − 
Kwh|1,K

� ĉhK |�u|1,K |wh|2,K (4.11)

and ∣∣∣∣∫
K

f (wh − 
Kwh)

∣∣∣∣ �‖f ‖0,K‖wh − 
Kwh‖0,K

� ĉh2
K‖f ‖0,K |wh|2,K . (4.12)

By the definition of the element, it is easy to see that ∀li ∈ �K, wh ∈ Vh,
�wh

�n
|li ∈ P1(li),

�wh

�n
is continuous at the

middle point of li , so
∫
li

�wh

�n
is continuous between elements and is zero on ��. Set

Piw = 1

|li |
∫

li

w ds,

U1 = U3 = �u − (1 − 	)uxx and U2 = U4 = �u − (1 − 	)uyy , we have

E1(u, wh) =
∑

K∈Th

4∑
i=1

∫
li

Ui

(
�wh

�n
− Pi

�wh

�n

)
ds�

∑
K∈Th

4∑
i=1

Ii .

From the construction of the element we know that �2wh

�x�y
is a constant, hence by the skill in [13,17], we can get

I1 + I3 =
∫ xK+hK1

xK−hK1

(
w(x)

∫ yK+hK2

yK−hK2

�U1(x, y)

�y
dy

)
dx,

where

|w(x)| = 1

4hK1hK2

∣∣∣∣∫ xK+hK1

xK−hK1

(∫ x

t

∫ yK+hK2

yK−hK2

�2wh

�r�y
(r, y) dr dy

)
dt

∣∣∣∣
�
√

hK1

hK2
|wh|2,K , (4.13)

from which we have

|I1 + I3|�2hK1

(
|�u|1,K + (1 − 	)

∥∥∥∥ �

�x
(uxy)

∥∥∥∥
0,K

)
|wh|2,K .
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Similarly,

|I2 + I4|�2hK2

(
|�u|1,K + (1 − 	)

∥∥∥∥ �

�y
(uxy)

∥∥∥∥
0,K

)
|wh|2,K .

Hence

|E1(u, wh)|� ĉ

⎛⎝ ∑
K∈Th

(h2
K |�u|21,K +

∑
|�|=1

h2�
K |D�u|22,K)

⎞⎠1/2

|wh|h. (4.14)

In the same way, we get

|E2(u, wh)|�c

⎛⎝ ∑
K∈Th

∑
|�|=1

h2�
K |D�u|22,K

⎞⎠1/2

|wh|h. (4.15)

Substituting (4.11), (4.12), (4.14) and (4.15) into (4.10), we have

sup
wh∈Vh

|ah(u, wh) − f (wh)|
|wh|h

� ĉ

⎛⎝ ∑
K∈Th

⎛⎝h2
K |�u|21,K +

∑
|�|=1

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

|wh|h. (4.16)

A combination of (4.5) and (4.16) yields the main result of this section.

Theorem 4.1. Using rectangular 8-12-2 element to solve the plate bending problem, we have

|u − uh|h � ĉ

⎛⎝ ∑
K∈Th

⎛⎝h2
K |�u|21,K +

∑
|�|=1

h2�
K |D�u|22,K + h4

K‖f ‖2
0,K

⎞⎠⎞⎠1/2

, (4.17)

where u and uh are the solutions of (4.1) and (4.2), respectively.

Remark 4.1. (1) The classical method to estimate the consistence error [12] is directly based on (4.9), using coordinate
transformation, interpolation theory and trace theorem, through �K → �K̂ → K̂ → K , then (4.14) and (4.15)
are obtained. During �K → �K̂ → K̂ → K the factor hKi(hK1hK2)

−1/2, i = 1, 2 appears due to the Jacobian
determinants. This makes the constant in (4.14) and (4.15) dependent on hK/�K .

(2) Getting the consistence error O(h) by the classical method [12] should suppose u ∈ H 4(�), here we only suppose
u ∈ H 3(�), this argument came from [20].

5. Anisotropic superconvergence of 8-12-2 element

In this section, we discuss the superconvergence behavior of 8-12-2 element for the biharmonic equation with
anisotropic meshes.

We consider the following biharmonic equation⎧⎨⎩
�2u = f in �,

u = �u

�n
= 0 on ��.

(5.1)

Its weak form is taken as: find u ∈ H 2
0 (�) such that

ã(u, v) = (f, v), ∀v ∈ H 2
0 (�), (5.2)
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where

ã(u, v) =
∫
�
(uxxvxx + 2uxyvxy + uyyvyy) dx dy. (5.3)

Let Vh be the finite element space of 8-12-2 element, then the discrete problem of (5.2) is: find uh ∈ Vh such that

ãh(uh, vh) = (f, vh), ∀vh ∈ Vh, (5.4)

where ãh(uh, vh) =∑
K∈Th

∫
K

(uhxxvhxx + 2uhxyvhxy + uhyyvhyy) dx dy.

First we prove that the consistence error for (5.4) is O(h2). Similar to (4.20), we can easily prove that [12]: for any
wh ∈ Vh,

ãh(u, wh) − (f, wh) = Ẽ1(u, wh) + Ẽ2(u, wh) + Ẽ3(u, wh), (5.5)

where Ẽ1(u,wh)=∑K∈Th

∫
�K

uss
�wh

�n
ds, Ẽ2(u, wh)=∑K∈Th

∫
�K

usn
�wh

�s
ds, Ẽ3(u, wh)=∑K∈Th

∫
�K

−��u

�n
wh ds.

Put U = uss , then we have

Ẽ1(u, wh) =
∑

K∈Th

4∑
i=1

∫
li

(U − PiU)

(
�wh

�n
− Pi

�wh

�n

)
ds =

∑
K∈Th

4∑
i=1

Ĩi ,

where

Ĩ1 + Ĩ3 =
∫ xK+hK1

xK−hK1

[
−(U − P1U)

(
�wh

�y
− P1

�wh

�y

)
(x, yK − hK2)

+(U − P3U)

(
�wh

�y
− P3

�wh

�y

)
(x, yK + hK2)

]
dx

= 1

2hK1

∫ xK+hK1

xK−hK1

w(x)Q(x) dx, (5.6)

here

|Q(x)| =
∣∣∣∣∫ xK+hK1

xK−hK1

(∫ x

t

∫ yK+hK2

yK−hK2

�2U

�r�y
(r, y) dr dy

)
dt

∣∣∣∣
� ĉhK1

√
hK1hK2

∣∣∣∣�2u

�x2

∣∣∣∣
2,K

.

Substituting the above estimate and (4.13) into (5.6) yields

Ĩ1 + Ĩ3 � ĉh2
K1

∣∣∣∣�2u

�x2

∣∣∣∣
2,K

|wh|2,K .

Similarly,

Ĩ2 + Ĩ4 � ĉh2
K2

∣∣∣∣�2u

�y2

∣∣∣∣
2,K

|wh|2,K .

Then

|Ẽ1(u, wh)|� ĉ

⎛⎝ ∑
K∈Th

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

|wh|h. (5.7)

Following the same argument, we can prove

|Ẽ2(u, wh)|� ĉ

⎛⎝ ∑
K∈Th

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

|wh|h. (5.8)



S. Chen et al. / Journal of Computational and Applied Mathematics 220 (2008) 96–110 105

Similarly,

Ẽ3(u, wh) =
∑

K∈Th

4∑
i=1

∫
li

−��u

�n
(wh − 
Kwh) ds =

∑
K∈Th

4∑
i=1

Li ,

where

|L1 + L3| =
∣∣∣∣∫ xK+hK1

xK−hK1

(
��u

�y
(x, yK + hK2) − ��u

�y
(x, yK − hK2)

)
(wh − 
Kwh)(x, yK + hK2) dx

∣∣∣∣
� ĉh2

K |�u|2,K |wh|2,K .

As for L2 + L4, we have the same results, thus

|Ẽ3(u, wh)|� ĉ

⎛⎝ ∑
K∈Th

h4
K |�u|22,K

⎞⎠1/2

|wh|h. (5.9)

Then a collection of (5.7)–(5.9) and (5.5) gives

|̃ah(u, wh) − (f, wh)|

� ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

|wh|h. (5.10)

Remark 5.1. The well known nonconforming rectangular plate element with 12 node parameters is Adini’s C0 element
[12], but its consistence error is O(h2) only for uniform meshes, i.e., all the elements are equal and regular condition
(1.1) holds.

Now we prove the following anisotropic superclose result.

Theorem 5.1. Suppose u ∈ H 4(�), we have

|Ihu − uh|h � ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

. (5.11)

Proof. First we prove

|̃ah(u − Ihu, vh)|� ĉ

⎛⎝ ∑
K∈Th

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

|vh|h, ∀vh ∈ Vh. (5.12)

By the expression of ãh(·, ·), it is only need to prove the following three inequalities,

∫
K

(u − Ihu)xxvhxx dx dy� ĉ

⎛⎝∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

|vh|2,K , (5.13)

∫
K

(u − Ihu)yyvhyy dx dy� ĉ

⎛⎝∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

|vh|2,K , (5.14)

∫
K

(u − Ihu)xyvhxy dx dy = 0. (5.15)



106 S. Chen et al. / Journal of Computational and Applied Mathematics 220 (2008) 96–110

Firstly, by the scaling argument,∫
K

(u − Ihu)xxvhxx dx dy = h−4
K1(4hK1hK2)

∫
K̂

(û�� − (Î û)��)v̂h�� d� d�. (5.16)

Put ŵ = û��, then from (3.13) and (3.14), we have

û�� − (Î û)�� = ŵ − F1(ŵ) − F2(ŵ)��l(ŵ).

It is easy to see that

l(ŵ) = 0, ∀ŵ ∈ P1(K̂).

Thus by Bramble–Hilbert Lemma [4,10],

|l(ŵ)|� ĉ‖v̂h��‖0,K̂
|ŵ|2,K̂

= ĉ‖v̂h��‖0,K̂
|û��|2,K̂

� ĉh4
K1(4hK1hK2)

−1

⎛⎝∑
|�|=2

h2�
K ‖D�uxx‖2

0,K

⎞⎠1/2

|vh|2,K .

Substituting the above result into (5.16) implies (5.13).
Similarly, (5.14) can be proved.
Since vhxy is a constant on K, then

∫
K

(u − Ihu)xyvhxy dx dy = 0. Thus we can obtain (5.12).
Finally,

|Ihu − uh|2h = ãh(Ihu − uh, Ihu − uh)

= ãh(Ihu − u, Ihu − uh) + ãh(u, Ihu − uh) − (f, Ihu − uh)

(5.12)(5.10)

� ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

|Ihu − uh|h,

which completes the proof of the theorem. �

Now we will discuss the natural superconvergence results about the second order derivatives of 8-12-2 element.

Theorem 5.2. Under the assumption in Theorem 5.1, we have the following anisotropic superconvergence results at
the central points,⎛⎝ ∑

K∈Th

∑
|�|=2

|D�(u − uh)(xK, yK)|2hK1hK2

⎞⎠1/2

� ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

. (5.17)

Proof. First, we focus on � = (2, 0), due to the triangle inequality,

|D(2,0)(u − uh)(xK, yK)|2 �2(|D(2,0)(u − Ihu)(xK, yK)|2 + |D(2,0)(Ihu − uh)(xK, yK)|2). (5.18)

By the scaling technique,

|D(2,0)(u − Ihu)(xK, yK)| (3.8)= h−2
K1|D̂(2,0)(û − Î û)(0, 0)|

(3.13)(3.14)= h−2
K1 |̃l(D̂(2,0)û)|,

where l̃(ŵ) = ŵ(0, 0) + 2F1(ŵ).
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From (3.14) it can be easily checked that for all ŵ ∈ P1(K̂), l̃(ŵ) = 0, then

|̃l(ŵ)|� ĉ|ŵ|2,K̂
, ∀ŵ ∈ H 2(K̂)

and

|D(2,0)(u − Ihu)(xK, yK)| (3.8)(3.11)

� ĉ(hK1hK2)
−1/2

∑
|�|=2

h
�
K |D�u|2,K . (5.19)

Thanks to D̂(2,0)(Î û − ûh) ∈ P1(K̂) and the equivalent norms on the finite dimensional space, we have

|D(2,0)(Ihu − uh)(xK, yK)| (3.8)(3.11)

� ĉ(hK1hK2)
−1/2|Iu − uh|2,K. (5.20)

Substituting (5.19), (5.20) and (5.11) into (5.18), we obtain⎛⎝ ∑
K∈Th

|D(2,0)(u − uh)(xK, yK)|2hK1hK2

⎞⎠1/2

� ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

. (5.21)

Similarly, we can get the same results for � = (0.2) and � = (1, 1). Hence (5.17) holds. �

Furthermore, we can obtain the global superconvergence results of 8-12-2 element by virtue of a proper postprocessing
technique. For simplicity, we assume that the mesh Jh is obtained by dividing every element K of the coarser mesh
J3h into 9 congruent elements K1, K2, . . . , K9, the vertices of K1, K2, . . . , K9 are denote by Zij , i, j = 1, 2, 3, 4. We
consider the conventional bicubic Lagrange interpolation operator 
3

3h : H 2(K) −→ Q3(x, y) characterized by


3
3hu(Zij ) = u(Zij ), i, j = 1, 2, 3, 4,

where Q3(x, y) is the space of all polynomials which are of degree �3 with respect to x and y, respectively.
According to [2], we have

|
3
3hu − u|2,� � ĉ

⎛⎝ ∑
K∈Th

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠1/2

. (5.22)

Obviously,

|�i |� ĉ‖D̂�v̂‖2,K̂
� ĉ‖D̂�v̂‖0,K̂

, ∀v ∈ Vh,

where the inverse inequality [1] is used. Then

‖D�
3
3hv‖0,K = h−�

K hK1hK2‖D̂�
̂
3
v‖0,K̂

� ĉh−�
K hK1hK2

r∑
i=1

|�i |� ĉ‖D�v‖0,K, ∀v ∈ Vh.

Hence

‖
3
3hv‖h =

⎛⎝ ∑
K∈Th

∑
|�|=2

‖D�
3
3hv‖2

0,K

⎞⎠1/2

� ĉ‖v‖h, ∀v ∈ Vh. (5.23)

Then we can get the following superconvergence theorem following the standard technique, cf. [5,14].
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Theorem 5.3. Under the same assumptions as in Theorem 5.1, we have

|u − 
3
3huh|h � ĉ

⎛⎝ ∑
K∈Th

⎛⎝h4
K |�u|22,K +

∑
|�|=2

h2�
K |D�u|22,K

⎞⎠⎞⎠1/2

. (5.24)

6. Numerical experiments

In order to examine the numerical performance of the above element for anisotropic rectangular meshes, we carry
out numerical tests for the following two models:

Model 1. The classical unit square plate bending problem with clamped boundaries under a uniform load. The Poisson
ratio is chosen 	 = 0.3 and f = 1. The analytic value of deflection at the center is 0.00126532, the analytic value of
bending moment at the center is 0.022905. This experiment is used to investigate the convergence for the classical plate
bending problem under anisotropic meshes.

Model 2. A biharnomic differential equation with f chosen such that the exact solution of problem (4.2) is u(x, y) =
sin2(�x) sin2(�y). This experiment is used to investigate the convergence and superconvergence for an ordinary bihar-
monic problem under anisotropic meshes.

In order to obtain anisotropic meshes, the unit square �=[0, 1]× [0, 1] is subdivided in the following fashion: each
edge of � is divided into n segments with n + 1 points (1 − cos( i�

n
))/2, i = 0, 1, . . . , n

2 , (1 + sin( i�
n

− �
2 ))/2, i = n

2 +
1, . . . , n. The mesh obtained in this way for n=16 is illustrated in Fig. 1. The aspect ratio of this mesh is demonstrated
by Table 1.

For Model 1, Fig. 2 gives the deflection error and the moment error at the central point (i.e., |(u − uh)(
1
2 , 1

2 )|,
|(M − Mh)(

1
2 , 1

2 )|), which shows the anisotropic convergence of 8-12-2 element for model 1.

Fig. 1. The anisotropic mesh for the case n = 16.

Table 1
The aspect ratio of mesh 2

n × n 16 × 16 32 × 32 64 × 64 128 × 128

max
K∈Th

{hK/�K } 14.358751 28.786978 57.608674 115.234703

max
K∈Th

{h/hK } 10.53170 20.355408 40.735484 81.483240



S. Chen et al. / Journal of Computational and Applied Mathematics 220 (2008) 96–110 109

102 103 104 105
10−7

10−6

10−5

10−4

10−3

Numerber of elements

E
rr

o
rs

(u−uh)(0.5,0.5)

(M−Mh)(0.5,0.5)

1

1

Fig. 2. The errors for model 1.
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Fig. 3. The errors for model 2.

For Model 2, we compute the errors |u − uh|h/|u|h, |Ihu − uh|h/|u|h, S(u − uh)�(
∑

K∈Th

∑
|�|=2 |D�(u −

uh)(xK, yK)|2hK1hK2)
1/2/|u|h and |u − 
3

3huh|h/|u|h. The numerical results are listed in Fig. 3. These results agree
well with the theoretical analysis.
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