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1. Introduction

Derived equivalences preserve many homological properties of algebras such as the number of
simple modules, the finiteness of global dimension and finitistic dimension, the algebraic K-theory and
Hochschild (co)homological groups (see [14,4,10,18,19,17]). Thus, in order to study some homological
properties of a given algebra, we can turn to the one which is derived equivalent to it.

Recently, Hu and Xi have exhibited derived equivalent endomorphism rings induced by D-split
sequences. We find that D-split sequences give a way to construct derived equivalences between
matrix subrings. In this paper, we will study the derived equivalences having a characteristic that one
of two rings has relatively simple structure.

As applications, we first investigate the global dimension of a matrix subring. By the definition of
global dimension, Kirkman and Kuzmanovich in [12] have calculated the global dimensions of some
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matrix subrings. Cowley extended some of their results by triangular decomposition [3]. As never
before, we investigate some cases by the method of derived equivalences.

Second, we study the finitistic dimension of a matrix subring. For a ring A, the finitistic dimensions
are defined as follows: l.Fin.dim(A) is the supremum of the projective dimensions of left A-modules
of finite projective dimensions, and fin.dim(A) is the supremum of the projective dimensions of
finitely generated left A-modules of finite projective dimensions. Kirkman, Kuzmanovich and Small
compute l.Fin.dim(A) for a noncommutative noetherian ring A in [13]. By derived equivalences, we
calculate l.Fin.dim(A) for a matrix subring A. This result is helpful to study the finitistic dimension
conjecture which states that for an Artin algebra A, fin.dim(A) is finite. This conjecture is still open.
We refer the reader to [20] on some new advances on this conjecture.

Little is known about whether the finitistic dimension conjecture holds for matrix subalgebras.
Note that the Artin algebra A and the matrix algebra Mn(A) are Morita equivalent. Thus, in order to
prove that fin.dim(A) is finite, it is equivalent to prove that fin.dim(Mn(A)) is finite. Our ideal in this
direction is to investigate the finitistic dimension of a matrix subalgebra. If the finitistic dimension of
A is finite, what could we say about the finitistic dimension of a matrix subalgebra?

In order to describe the main result precisely, we fix some notation.
Let A be a noetherian ring with identity. Let Ai (2 � i � n) be a family of subrings of A with

the same identity with A, and let Ii, Ii, j , 2 � i � n, 2 � j � n − 1 be ideals of A satisfying that

In ⊆ In−1 ⊆ · · · ⊆ I2, Ii ⊆ Ai , I j ⊆ Ii, j ,
∑i−1

l= j+1 Ii,l Il, j ⊆ Ii, j , i �= j, 2 � i � n, 2 � j � n − 1. In this way,
we can construct two rings

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I2 I3 · · · In−1 In

A A2 I3 · · · In−1 In

A I3,2 A3 · · · In−1 In

A I4,2 I4,3 A4 · · · In

...
...

. . .
. . .

. . .
...

A In,2 · · · · · · In,n−1 An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2/I2 0 · · · 0

I3,2/I2 A3/I3
. . .

...

I4,2/I2 I4,3/I3 A4/I4

...
...

...
. . .

In,2/I2 In,3/I3 In,4/I4 · · · An/In 0

A/I2 A/I3 A/I4 · · · A/In A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with identities. Unless other stated, throughout this paper, Λ and Σ are rings of this forms.
The main result in this paper is the following:

Theorem 1.1. The two rings Λ and Σ are derived equivalent.

As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 1.2.

(1) Let Λ be as in Theorem 1.1. Then

l.Fin.dim(A) − 1 � l.Fin.dim(Λ) � n +
n∑

i=2

l.Fin.dim(Ai/Ii) + l.Fin.dim(A).
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(2) Let Λ be as in Theorem 1.1. Then

max
{
l.gl.dim(Ai/Ii), l.gl.dim(A),2 � i � n

} − 1

� l.gl.dim(Λ) �
∑

i=2,3,...,n

l.gl.dim(A/Ii) + l.gl.dim(A) + n.

We define a class of algebras which are called general block extension of a ring with respect to
a decomposition of the identity. And we calculate their global dimensions and finitistic dimensions.
We also get a class of Harada algebras and a class of tiled triangular rings which satisfy the finitistic
dimension conjecture.

This paper is arranged as follows. In Section 2, we fix some notation and recall some definitions
and lemmas needed in this paper. In Section 3, the proof of the main result is given. In Section 4,
we give some applications of the main result. The definition of general block extension of a ring
with respect to a decomposition of the identity is proposed. We calculate their global dimensions and
finitistic dimensions. And we also get some classes of algebras which satisfy the finitistic dimension
conjecture. In Section 5, we display some examples to illustrate the applications.

2. Preliminaries

In this section, we shall recall some basic definitions and results needed in this paper.
Let A be a ring with identity. We denote by A-Mod the category of left A-modules and by A-mod

the category of all finitely generated left A-modules. Mod-A means the category of right A-modules.
Given an A-module M , we denote by proj.dim(M) the projective dimension of M . The left global
dimension of M , denoted by l.gl.dim(A), is the supremum of all proj.dim(M) with M ∈ A-Mod. By
add(M), we shall mean the full subcategory of A-Mod, whose objects are direct summands of finite
direct sums of copies of M . For two morphisms f : X → Y and g : Y → Z in A-Mod, the composition
of f and g is written as f g , which is a morphism from X to Z .

Let A be a ring with identity. A complex X• = (Xi,di
X ) of A-modules is a sequence of A-modules

and A-module homomorphisms di
X : Xi → Xi+1 such that di

X di+1
X = 0 for all i ∈ Z. A morphism

f • : X• → Y • between two complexes X• and Y • is a collection of homomorphisms f i : Xi → Y i

of A-modules such that f idi
Y = di

X f i+1. The morphism f • is said to be null-homotopic if there exists

a homomorphism hi : Xi → Y i−1 such that f i = di
X hi+1 + hidi−1

Y for all i ∈ Z. A complex X• is called
bounded below if Xi = 0 for all but finitely many i < 0, bounded above if Xi = 0 for all but finitely
many i > 0, and bounded if X• is bounded below and above. We denote by C (A) (resp., C (A-Mod))
the category of complexes of finitely generated (resp., all) A-modules. The homotopy category K (A)

is quotient category of C (A) modulo the ideals generated by null-homotopic morphisms. We denote
the derived category of A-mod by D(A) which is the quotient category of K (A) with respect to
the subcategory of K (A) consisting of all the acyclic complexes. The full subcategory of K (A) and
D(A) consisting of bounded complexes over A-mod is denoted by K b(A) and Db(A), respectively.
We denoted by C +(A) the category of complexes of bounded below, and by K +(A) the homotopy
category of C +(A). The full subcategory of D(A) consisting of bounded below complexes is denoted
by D+(A). Similarly, we have the category C −(A) of complexes bounded above, the homotopy cate-
gory K −(A) of C −(A) and the derived category D−(A) of C −(A). If we focus on the category of left
A-modules, then we have the homotopy category K (A-Mod) of C (A-Mod) and the derived category
D(A-Mod) of A-Mod.

The following result, due to Rickard (see [18, Theorem 6.4]), is Morita theorem of derived cate-
gories of rings.

Lemma 2.1. Let A and B be two rings. The following conditions are equivalent:

(1) K −(A-proj) and K −(B-proj) are equivalent as triangulated categories;
(2) Db(A-Mod) and Db(B-Mod) are equivalent as triangulated categories;
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(3) K b(A-Proj) and K b(B-Proj) are equivalent as triangulated categories;
(4) K b(A-proj) and K b(B-proj) are equivalent as triangulated categories;
(5) B is isomorphic to EndDb(A)(T •), where T • is a complex in K b(A-proj) satisfying:

(a) T • is self-orthogonal, that is, HomK b(A-proj)(T •, T •[i]) = 0 for all i �= 0,

(b) add(T •) generates K b(A-proj) as a triangulated category.

Two rings A and B are called derived equivalent if the above conditions (1)–(5) are satisfied. A com-
plex T • in K b(A-proj) as above is called a tilting complex over A. It is also equivalent to say that the
two rings A and B are derived equivalent if and only if there exists a complex X• in D(A-Mod),
isomorphic to a complex in K b(A-proj) which satisfies [Lemma 2.1(5), (a) and (b)], such that the two
rings B and EndD(A-Mod)(X•) are isomorphic. In particular, if the tilting complex T • is isomorphic to
a module T in Db(A), then T is called a tilting module.

In [9], Hu and Xi define the D-split sequences which occur in many situations, for instance,
Auslander–Reiten sequences.

Definition 2.2. (See [9, Definition 3.1].) Let C be an additive category and D a full subcategory of C .
A sequence

X
f−→ M

g−→ Y

in C is called a D-split sequence if

(1) M ∈D;
(2) f is a left D-approximation of X , and g is a right D-approximation of Y ;
(3) f is a kernel of g , and g is a cokernel of f .

A D-split sequence implies a derived equivalence between two endomorphism algebras. The fol-
lowing theorem reveals how to construct derived equivalences from D-split sequences.

Lemma 2.3. (See [9, Theorem 3.5].) Let C be an additive category and M an object in C . Suppose

X
f−→ M ′ g−→ Y

is an add(M)-split sequence in C . Then the endomorphism ring EndC(X ⊕ M) of X ⊕ M and the endomorphism
ring EndC(Y ⊕ M) of Y ⊕ M are derived equivalent.

3. Results and proofs

To prove our results, we first establish a fact.

Lemma 3.1. Let R be a ring with identity.

(1) Let M be a noetherian left R-module, and let f : M → M be a surjective homomorphism, then f is injec-
tive.

(2) Let M be an artinian left R-module, and let f : M → M be an injective homomorphism, then f is surjec-
tive.

Proof. We only prove the first part of the lemma. The second part of the lemma is similar. Set f k =
k︷ ︸︸ ︷

f · · · f . Note that Ker f k is a submodule of M and Ker f i is a submodule of Ker f i+1 for any i � 1.
Since M is a noetherian module, there exists i0 � 1, satisfying Ker f i0 = Ker f i0+1. Then we have the
following commutative diagram:
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0 Ker f i0

id

M

id

f i0

M

f

0

0 Ker f i0+1 M
f i0+1

M 0

By the snake lemma, we can get Ker f = 0. So f is injective. �
Now, let us prove the main result in this paper.

Proof of Theorem 1.1. Set Γ = Mn(A), the n × n matrix over A.
Denote by ei the matrix which has 1A in the (i, i)-th position and zeros elsewhere for 1 � i � n.

So e1, e2, . . . , en are piecewise orthogonal idempotents in Λ, such that 1Λ = e1 + e2 + · · · + en .
Since Λ is a subring of Γ with the same identity, the ring Γ can be considered as a Λ-module

just by restriction of the scalars of Γ to Λ.
Now, we consider the exact sequence

0 → Λ
λ−→ Γ

π−→ L → 0

in Λ-Mod, where λ is the inclusion map and L is the cokernel of λ. To show Theorem 1.1, we prove
the following statements.

(1) The sequence

0 → Λ
λ−→ Γ

π−→ L → 0

is an add(Λe1)-split sequence in Λ-Mod.
In fact, we shall check that all conditions in Definition 2.2 are satisfied.
Since the left Λ-module ΛΓ is a direct sum of some copies of Λe1, we have Γ ∈ add(Λe1). Clearly,

Λe1 is projective as a left Λ-module, then we have an exact sequence

0 → HomΛ(D,Λ)
(−,λ)−→ HomΛ(D,Γ )

(−,π)−→ HomΛ(D, L) → 0

for any D ∈ add(Λe1).
This means that the homomorphism π : ΛΓ → ΛL is a right add(Λe1)-approximation of ΛL. Now,

we prove that the homomorphism λ : ΛΛ → ΛΓ is a left add(Λe1)-approximation of Λ. In fact, every
left Λ-module homomorphism g : Λ → Λe1 is determined by g(1), the image of 1 under g . Similarly,
every left Γ -module homomorphism h : Γ → Γ e1 is determined by h(1), the image of 1 under h. Note
that Γ e1 and Λe1 are isomorphic as left Λ-modules, and a left Γ -module homomorphism is also a
left Λ-module homomorphism. So we assume that g1 : Γ → Λe1 is a left Λ-module homomorphism
which sends 1 to g(1). Then the homomorphism g1 satisfies g = λg1. Thus we have proved that the
homomorphism λ : ΛΛ → ΛΓ is a left add(Λe1)-approximation. Hence (1) is proved.

Note that Λei is included in Γ ei which is isomorphic to Λe1 as left Λ-modules. Then, for each
2 � i � n, the sequence

0 → Λei
λi−→ Λe1

πi−→ Li → 0 (∗)

where λi is inclusion map and Li is the cokernel of λi , is an add(Λe1)-split sequence.
By Lemma 2.3, the ring Λ and the endomorphism ring EndΛ(L2 ⊕ L3 ⊕ · · ·⊕ Ln ⊕Λe1) are derived

equivalent via a tilting module L2 ⊕ L3 ⊕ · · · ⊕ Ln ⊕ Λe1.
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(2) The ring Σ and the endomorphism ring EndΛ(L2 ⊕ L3 ⊕ · · · ⊕ Ln ⊕ Λe1) are isomorphic as
rings.

Indeed, we note that

EndΛ(L2 ⊕ L3 ⊕ · · · ⊕ Ln ⊕ Λe1) ∼=

⎛
⎜⎜⎜⎝

(L2, L2) (L2, L3) · · · (L2,Λe1)

(L3, L2) (L3, L3) (L3,Λe1)

...
. . .

...

(Λe1, L2) (Λe1, L3) · · · (Λe1,Λe1)

⎞
⎟⎟⎟⎠

as rings.
In the following, we calculate the endomorphism ring EndΛ(L2 ⊕ L3 ⊕ · · · ⊕ Ln ⊕ Λe1).
The morphism set HomΛ(Li,Λe1) = 0 for 2 � i � n. Applying the functor HomΛ(−,Λe1) to the

exact sequence 0 → Λei → Λe1 → Li → 0, we can get the following exact sequence

0 → HomΛ(Li,Λe1) → HomΛ(Λe1,Λe1) → HomΛ(Λei,Λe1) → 0

in Z-Mod for 2 � i � n.
Note that both of HomΛ(Λei,Λe1) and HomΛ(Λe1,Λe1) are isomorphic to A in A-Mod and A is

a noetherian ring. By Lemma 3.1, we have HomΛ(Li,Λe1) = 0 for 2 � i � n.
For simplicity, we denote the set eiΛe j by Λi j for 1 � i, j � n. The morphism μx denote the right

multiplication by x.
Let b be an element in Λi j for 2 � i, j � n. Since λi is the left Λe1-approximation of Λei , we have

a morphism μa : Λe1 → Λe1 such that λiμa = μbλ j where a is an element in A. Thus we can get
an element αb in HomΛ(Li, L j) such that πiαb = μaπ j . It follows from the commutativity of the left
square that a = b. For a given morphism μb , there is a unique αb satisfying πiαb = μbπ j . Note that
πiμb = μbπ j , we can get αb = μb .

0 Λei

μb

λi
Λe1

μa

πi
Li

αb

0

0 Λe j

λ j
Λe1

π j
L j 0

(∗)

where λi, λ j are the inclusion maps and Li, L j are the cokernels of λi and λ j , respectively.
Thus, we can define a set of maps from Λi j to HomΛ(Li, L j) for 2 � i, j � n.
Define

φi j : Λi j → HomΛ(Li, L j)

b 
→ αb

for 2 � i, j � n.
(a) The map φi j is well-defined.

0 Λei

μb

λi
Λe1

μb

πi
Li

si
αb

0

0 Λe j

λ j
Λe1

π j
L j 0
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Suppose that b = 0, we have λiμb = 0. It follows that there is a morphism si : Li → Λe1 such that
μb = πi si . Thus we have πiαb = μbπ j = πi siπ j . Since πi is surjective, we have αb = siπ j . Note that
HomΛ(Li,Λe1) = 0 for 2 � i � n, we obtain αb = 0. Hence φi j is well-defined.

(b) The morphism φi j is surjective.
Let α be an element in HomΛ(Li, L j). Note that Λe1 is projective module over Λ, thus there exists

a morphism μa : Λe1 → Λe1 such that μaπ j = πiα where a is an element in Λ11. Thus there is a
unique morphism μb : Λei → Λe j such that λiμa = μbλ j for b ∈ Λi j . So φi j is surjective.

(c) The description of Kerφi j , i.e., Kerφi j = I j for 2 � i, j � n.

0 Λei

μb

λi
Λe1

ti
μb

πi
Li

αb

0

0 Λe j

λ j
Λe1

π j
L j 0

Suppose that αb = 0. Then we have μbπ j = 0. So there is a morphism ti : Λe1 → Λe j such that
μb = tiλ j . Note that there exist c ∈ I j , d ∈ A such that ti = μc , λ j = μd . Thus, we have b = cd, i.e.,
b ∈ I j . Conversely, suppose that b is an element in I j , we have μbπ j = πiαb = 0. It follows that
αb = 0. Hence, Kerφi j = I j for 2 � i, j � n.

(d) φi j preserves addition and multiplication.
It is easy to prove that φi j preserves addition.
Now, we turn to prove that φi j preserves multiplication, i.e., φi j(b)φ jk(b′) = φik(bb′) for 2 � i, j � n

where b and b′ are elements of Λi j and Λ jk respectively.
It suffices to prove that αbb′ = αbαb′ . Since μbμb′ = μbb′ , we have λiμaa′ = λiμc where μc is a

morphism induced by μbb′ . Thus μaa′ − μc factorizes through πi . Note that HomΛ(Li,Λe1) = 0 for
2 � i � n, we have μaa′ = μc . Hence we get αbb′ = αbαb′ .

Now, we can define a map

φ = (φi j) : (e2 + · · · + en)Λ(e2 + · · · + en) →

⎛
⎜⎜⎝

(L2, L2) (L2, L3) · · · (L2, Ln)

(L3, L2) (L3, L3) (L3, Ln)
...

...
. . .

...

(Ln, L2) (Ln, L3) · · · (Ln, Ln)

⎞
⎟⎟⎠

(aij)i−1, j−1 
→ (
φi j(aij)

)
i−1, j−1

for 2 � i, j � n.
The map φi j is well-defined and surjective, so is the map φ. It follows from that φi j preserves

addition and multiplication for 2 � i, j � n that φ is a ring homomorphism. The kernel of φ is

⎛
⎜⎜⎝

I2 I3 · · · In

I2 I3 · · · In
...

...
...

I2 I3 · · · In

⎞
⎟⎟⎠ .

Thus, we have a ring isomorphism

φ :

⎛
⎜⎜⎜⎜⎜⎜⎝

A2/I2 0 · · · 0

I3,2/I2 A3/I3
. . .

...

I4,2/I2 I4,3/I3 A4/I4
...

...
...

. . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎝

(L2, L2) (L2, L3) · · · (L2, Ln)

(L3, L2) (L3, L3) (L3, Ln)
...

...
. . .

...

(Ln, L2) (Ln, L3) · · · (Ln, Ln)

⎞
⎟⎟⎠ .
In,2/I2 In,3/I3 In,4/I4 · · · An/In
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On the other hand, we have an algebra isomorphism ϕ2

ϕ2 : A → EndΛ(Λe1)

a 
→ ( fa : λe1 
→ λae1)

and an isomorphism of abelian groups ϕ3

ϕ3 : (A/I2, A/I3, . . . , A/In) → (
HomΛ(Λe1, L2),HomΛ(Λe1, L3), . . . ,HomΛ(Λe1, Ln)

)
(m1,m2, . . . ,mn) 
→ ( fm2 , fm3 , . . . , fmn)

where fmi : λe1 
→ λmie1 for 2 � i � n.
Now, set

ϕ =
(

φ 0

ϕ3 ϕ2

)
: Σ →

⎛
⎜⎜⎜⎝

EndΛ(L2) HomΛ(L2, L3) · · · HomΛ(L2,Λe1)

HomΛ(L3, L2) EndΛ(L3) HomΛ(L3,Λe1)

...
. . .

...

HomΛ(Λe1, L2) HomΛ(Λe1, L3) · · · EndΛ(Λe1)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r22 r23 · · · r2n 0

r32 r33 · · · r3n
...

...
...

. . .
...

rn2 rn3 · · · rnn 0

m2 m3 · · · mn a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠


→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ22(r22) φ23(r23) · · · φ2n(r2n) 0

φ32(r32) φ33(r33) · · · φ3n(r3n)
...

...
...

. . .
...

φn2(rn2) φn3(rn3) · · · φnn(rnn) 0

ϕ3(m2) ϕ3(m3) · · · ϕ3(mn) ϕ2(a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, the map ϕ is an isomorphism of abelian groups. And it is easy to check that ϕ is a ring
isomorphism. The proof is completed. �

As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 3.2. Let A be a noetherian ring with identity, and suppose that I2, I3, . . . , In are ideals of A.
(1) The two rings

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I2 I3 · · · · · · In

A A I3 · · · · · · In

A I2 A I4 · · · In

A I2 I3 A · · · In

...
...

...
. . .

...

A I2 I3 · · · In−1 In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A/I2 0 · · · 0

0 A/I3
. . .

...

...
. . . A/I4

. . .

0 · · · 0 A/In 0

A/I2 A/I3 A/I4 · · · A/In A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are derived equivalent.
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(2) The two rings

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I2 I3 · · · In−1 In

A A I3 · · · In−1 In

A A A · · · In−1 In

...
...

...
. . . In−1 In

...
...

... A In

A A A A . . . A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A/I2 0 · · · 0

A/I2 A/I3
. . .

A/I2 A/I3 A/I4
...

...
...

...
. . .

...
...

... A/In 0

A/I2 A/I3 A/I4 · · · A/In A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are derived equivalent.

4. Applications

In Section 3, we have constructed derived equivalences of matrix subrings. In this section, we
will give some applications of the main result. At first, we define a class of rings which are called
general block extension of a ring with respect to a decomposition of the identity. Then we calculate
the finitistic dimension of a general block extension of a ring with respect to a decomposition of
the identity. At last, we will consider the finiteness of finitistic dimension of a tiled triangular ring.
Proposition 4.14, will give a condition under which the finitistic dimension of a tiled triangular algebra
is finite.

The following lemmas, which are taken from [17,10], are useful for this section.

Lemma 4.1. (See [17, Theorem 1.1].) If two left coherent rings A and B are derived equivalent, and if T • is a
tilting complex over A with n+1 non-zero terms such that B ∼= End(T •), then fin.dim(A)−n � fin.dim(B) �
fin.dim(A) + n.

Remark. In Lemma 4.1, if we replace A and B by arbitrary ring with identity, then l.Fin.dim(A) − n �
l.Fin.dim(B) � l.Fin.dim(A) + n. The proof is similar.

Lemma 4.2. (See [10, Proposition 1.7].) Let A be a ring with identity, and let T • be a tilting complex over A
with End(T •) ∼= B. If T • has n + 1 non-zero terms, where n � 0, then the following statements hold:

(a) l.gl.dim(A) − n � l.gl.dim(B) � l.gl.dim(A) + n;
(b) inj.dim(A A) − n � inj.dim(B B) � inj.dim(A A) + n.

The following lemma about the estimation of global dimension and finitistic dimension can be
found in [5, Corollary 4.21, p. 70].

Lemma 4.3. (See [5].) Let R and S be rings. Let M be an S–R bimodule and Λ :=
(

R 0

M S

)
. Then the following

inequalities hold:

(1) l.Fin.dim(S) � l.Fin.dim(Λ) � 1 + l.Fin.dim(R) + l.Fin.dim(S).
(2) l.Fin.dim(Λ) � sup{pd(R A) � ∞ | A ∈ R-Mod satisfying TorA

i (M, A) = 0 for all i}. If M is flat as a
right-R-module, then l.Fin.dim(Λ) � l.Fin.dim(R).

(3) If proj.dim(S M) � ∞, then proj.dim(S M)+1 � l.Fin.dim(Λ)� max{l.Fin.dim(R)+proj.dim(S M)+1,

l.Fin.dim(S)}.
(4) max{l.gl.dim(R), lgl.dim(S),proj.dim(S M)+1} � l.gl.dim(Λ)� max{l.gl.dim(R)+proj.dim(S M)+1,

l.gl.dim(S)}.

The corresponding statements hold for the right homological dimensions over Λ.
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4.1. General block extension of a ring with respect to a decomposition of the identity

In this part, we will define a class of rings which contains hereditary orders, block extensions of
basic algebras.

Definition 4.4. Let A be a ring with identity 1A . And 1A = e1 + e2 + · · · + em is a decomposition of
the identity where ei is an idempotent. Then A can be represented as the following matrix form

A =

⎛
⎜⎜⎜⎝

e1 Ae1 e1 Ae2 · · · e1 Aem

e2 Ae1 e2 Ae2 · · · e2 Aem

...
...

. . .
...

em Ae1 em Ae2 · · · em Aem

⎞
⎟⎟⎟⎠ .

Set Ai = ei Aei and Aij = ei Ae j . Then Ai is the subring of A with identity element ei , and Aij is an
(Ai, A j)-bimodule.

Let n1,n2, . . . ,nm ∈N. For 1 � i, s � m, 1 � j � ni and 1 � t � ns , we define

P = A(n1,n2, . . . ,nm) =

⎛
⎜⎜⎜⎝

P (1,1) P (1,2) · · · P (1,m)

P (2,1) P (2,2) · · · P (2,m)

...
...

. . .
...

P (m,1) P (m,2) · · · P (m,m)

⎞
⎟⎟⎟⎠

which is contained in the ring EndA((Ae1)
n1 ⊕ · · · ⊕ (Aem)nm ) with the restrictions of the binary

operations of addition and multiplication of EndA((Ae1)
n1 ⊕ · · · ⊕ (Aem)nm ).

P (i, s) =

⎛
⎜⎜⎜⎝

Pi1,s1 Pi1,s2 · · · Pi1,sns

P i2,s1 Pi2,s2 · · · Pi2,sns

...
...

. . .
...

Pini ,s1 Pini ,s2 · · · · · · Pini ,sns

⎞
⎟⎟⎟⎠

ni×ns

satisfies that Pip,sq is an (Ai, As)-bimodule.
For P (i, s), there are three cases:
Case I: i = s.

P (i, s) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai Ii2 Ii3 · · · Ii(ni−1) Iini

Ai Bi2 Ii3 · · · Ii(ni−1) Iini

Ai Ii32 Bi3 · · · Ii(ni−1) Iini

Ai Ii42 Ii43 Bi4 · · · Iini

...
...

. . .
. . .

. . .
...

Ai Iini 2 · · · · · · Iini(ni−1) Bini

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Bil is the subring of Ai with the same identity, Iil and Iipq are ideals of Ai satisfying Iini ⊆
Ii(ni−1) ⊆ · · · ⊆ Ii2, Iil ⊆ Iipl, Iil ⊆ Bil for 2 � l � ni , p �= q, 3 � p � ni , 2 � q � ni − 1.
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Case II: i < s.

P (i, s) :=

⎛
⎜⎜⎜⎝

Ais P i1,s2 · · · Pi1,sns

Ais P i1,s2 · · · Pi1,sns

...
...

...
...

Ais P i1,s2 · · · Pi1,sns

⎞
⎟⎟⎟⎠ .

Case III: i > s.

P (i, s) :=

⎛
⎜⎜⎜⎝

Ais P i1,s2 · · · Pi1,sns

Ais P i2,s2 · · · Pi2,sns

...
...

. . .
...

Ais P ini ,s2 · · · Pini ,sns

⎞
⎟⎟⎟⎠ .

Suppose that
∑m

l=1 P (i, l)P (l, j) ⊆ P (i, j). Then P is a ring called general block extension of a ring
with respect to a decomposition of the identity.

General block extension of A with respect to a decomposition of the identity contains many classes
of subrings of Mn(A). In the following, we will give some examples.

Example. (1) In Definition 4.4, we assume that m = 1. Then

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I2 I3 · · · In−1 In

A A2 I3 · · · In−1 In

A I3,2 A3 · · · In−1 In

A I4,2 I4,3 A4 · · · In

...
...

. . .
. . .

. . .
...

A In,2 · · · · · · In,n−1 An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where A is a ring with identity, Ai is a subring of A with the same identity for 2 � i � n. Ii, Ii, j

are ideals of A for 2 � i � n, 2 � j � n − 1. In particular, set Ii = aΩ , A = Ai = Ω for 2 � i � n and
Ii, j = Ω for 2 � j < i � n, where Ω is a local R-order and a is a regular element in Ω . Then Ω/a · Ω
is local and P is a QH-order with associated ideal J = ω · P , where

ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

· · ·
0 0 · · · 1 0

0 0 0 · · · 1

a 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(2) In Definition 4.4, let A be a basic algebra, and let {e1, . . . , em} be a complete set of orthogonal
primitive idempotents of A.
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Set

P (i, s) =

⎛
⎜⎜⎝

Pi1,s1 Pi1,s2 · · · Pi1,sns

P i2,s1 Pi2,s2 · · · Pi2,sns

...
...

. . .
...

Pini ,s1 Pini ,s2 · · · Pini ,sns P ini ,sns

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ Ai · · · Ai

. . .
...

rad(Ai) Ai

⎞
⎠ (i = s)

⎛
⎝ Ais · · · Ais

...
...

Ais · · · Ais

⎞
⎠ (i �= s).

Then P is called the block extension of A which can be found in [16]. In particular, if A is a basic
QF-algebra, then P is a basic Harada algebra (see [16]).

Theorem 4.5. Let A be a noetherian ring with identity. Let P be a general block extension of A with respect to
a decomposition of the identity. Then

l.Fin.dim(A) − 1 � l.Fin.dim(P ) � l.Fin.dim(A) +
m∑

j=1

n j∑
i=2

l.Fin.dim(A j/I j,i) +
m∑

i=1

ni − m + 1.

Proof. Denote by e∑i
l=1 nl+ j the matrix which has 1Ai+1 in the (

∑i
l=1 nl + j,

∑i
l=1 nl + j)-th position

and zeros elsewhere for 1 � j � ni+1, 0 � i � m − 1. Thus e1, . . . , en1 , en1+1, . . . , en1+n2 , . . . , e∑m−1
l=1 nl+1,

. . . , e∑m
l=1 nl

are piecewise orthogonal idempotents in P such that 1P = e1 + · · · + e∑m
l=1 nl

.

Set Υ = EndP (

n1︷ ︸︸ ︷
Pe1 ⊕ · · · ⊕ Pe1 ⊕· · · ⊕

nm︷ ︸︸ ︷
Pe∑m−1

l=1 nl1
⊕ · · · ⊕ Pe∑m−1

l=1 nl1
).

Since P is a subring of Υ with the same identity, Υ can be viewed as a P -module by restriction
of the scalars of Υ to P . There is an exact sequence

0 → P
λ−→ Υ

π−→ L → 0

in P -Mod, where λ is the inclusion map and L is the cokernel of λ. Thus there is an exact sequence

0 → Pe∑i−1
l=1 nl+n j

λnin j−→ Pe∑i−1
l=1 nl+1

πnin j−→ Lnin j → 0

in P -Mod, where λnin j is the composite of the inclusion map Pe∑i−1
l=1 nl+n j

↪→ Υ e∑i−1
l=1 nl+n j

and the

isomorphism Υ e∑i−1
l=1 nl+n j

→ Pe∑i−1
l=1 nl+1 for 1 � i � m, 2 � j � m. By Theorem 2.3, two rings P and

EndP ((
⊕

i=1,...,m
j=2,...,m

Lnin j ) ⊕ (
⊕∑m

i=1 ni
i=1 Pei)) are derived equivalent.

Note that

EndP
(
(Ln12 ⊕ · · · ⊕ Ln1n1) ⊕ · · · ⊕ (Lnm1 ⊕ · · · ⊕ Lnmnm ) ⊕ (Pe∑m−1

l=1 nl+1 ⊕ · · · ⊕ Pe1)
)

∼=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

((Ln1 i, Ln1 j))2�i, j�n1 ((Ln1 i, Ln2 j)) 2�i�n1
2� j�n2

· · · ((Ln1 i, Lnm j)) 2�i�n1
2� j�nm

((Ln1 i, Pei)) 2�i�n1
1� j�m

((Ln2 i, Ln1 j)) 2�i�n2
2� j�n1

((Ln2 i, Ln2 i))2�i, j�n2 · · · ((Ln2 i, Lnm j)) 2�i�n2
2� j�nm

((Ln2 i, Pe j)) 2�i�n1
1� j�m

.

.

.
.
.
.

. . .
.
.
.

.

.

.

((Lnmi, Ln1 j)) 2�i�nm
2� j�n1

((Lnmi, Ln2 j)) 2�i�nm
2� j�n2

· · · ((Lnmi, Lnm j))2�i, j�nm ((Lnmi, Pe j)) 2�i�nm
1� j�m

((Pei, Ln1 j)) 1�i�nm ((Pei, Ln2 j)) 2�i�nm · · · ((Lnmi, Lnm j))2�i, j�nm ((Lnmi, Pe j)) 2�i�nm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2� j�n1 2� j�n2 1� j�m
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(1) HomP (Lnp i, Lnq j) = 0 for 2 � i � np , 2 � j � nq , 1 � p < q � m.
There is an exact sequence

0 → Pe∑p−1
l=1 nl+i

→ Pe∑p−1
l=1 nl+1

→ Lnp i → 0 (∗∗)

in P -Mod. Applying the functor HomP (−, Lnq j) to (∗∗), we get an exact sequence

0 → HomP (Lnp i, Lnq j) → HomP (Pe∑p−1
l=1 nl+1

, Lnq j) → HomP (Pe∑p−1
l=1 nl+i

, Lnq j) → 0.

By calculation, we have HomP (Pe∑p−1
l=1 nl+1

, Lnq j) = HomP (Pe∑p−1
l=1 nl+i

, Lqj) = 0. Thus,

HomP (Lnp i, Lnq j) = 0 for 2 � i � np , 2 � j � nq , 1 � p < q � m.
(2) HomP (Lnki, Lnk j) = 0 for 2 � i < j � nk , 1 � k � m.
Apply the functor HomP (−, Lnk j) to the exact sequence

0 → Pe∑k−1
j=1 n j+i → Pe∑k−1

j=1 n j+1 → Lnki → 0

in P -Mod. We have an exact sequence

0 → HomP (Lnki, Lnk j) → HomP (Pe∑k−1
j=1 n j+1, Lnk j) → HomP (Pe∑k−1

j=1 n j+i, Lnk j) → 0.

Note that HomP (Pe∑k−1
j=1 n j+1, Lnk j) and HomP (Pe∑k−1

j=1 n j+i, Lnk j) are both isomorphic to Ak/Ik, j in

Ak/Ik, j-Mod. It follows from Lemma 3.1 that HomP (Lnki, Lnk j) = 0 for 2 � i < j � nk , 1 � k � m.
Thus

EndP
(
(Ln12 ⊕ · · · ⊕ Ln1n1) ⊕ · · · ⊕ (Lnm1 ⊕ · · · ⊕ Lnmnm ) ⊕ (Pe∑m−1

l=1 nl+1 ⊕ · · · ⊕ Pe1)
)

∼=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Ln12, Ln12) 0 0 · · · 0

∗ . . .
. . .

. . .
.
.
.

(Ln1n1 , Ln1,n1 ) 0

. . . (Ln22, Ln22)
. . .

.

.

.
. . .

(Ln2n2 , Ln2nn )

. . . 0

∗ · · · ∗ EndA(Aem ⊕ · · · ⊕ Ae1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemmas 4.3 and 4.1, we can get the conclusion. �
Corollary 4.6. Let Λ be as in Theorem 1.1. Then

l.Fin.dim(A) − 1 � l.Fin.dim(Λ) � n +
n∑

i=2

l.Fin.dim(Ai/Ii) + l.Fin.dim(A).

Proof. It follows from Theorem 1.1 and Lemma 4.1. �
As a consequence of Theorem 4.5, we can get the following corollary. By this corollary, we can get

a class of algebras which have finite finitistic dimension.
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Corollary 4.7. Let Λ be as in Theorem 1.1 and suppose that A is an Artin algebra. Then:

(1) If fin.dim(A) < ∞ and fin.dim(A j/I j,i) < ∞ for 2 � i � n j , 1 � j � m, then fin.dim(P ) < ∞.
(2) If fin.dim(P ) < ∞, then fin.dim(A) < ∞.

In [16], K. Yamaura proved that any block extension of a basic QF-algebra is a basic left Harada
algebra. And for any basic left Harada algebra T , there exists a basic QF-algebra R such that T is
isomorphic to an upper staircase factor algebra of a block extension of R . By Theorem 4.5, we can
get that the finitistic dimension is finite for the block extension of a QF-algebra. Thus, the finitistic
dimension conjecture holds for the class of left Harada algebras.

Corollary 4.8. Suppose that R is a QF-algebra and P is the block extension of R. Then

fin.dim(P ) �
m∑

i=1

ni − m + 1 < ∞.

Proof. Note that fin.dim(R) = 0, fin.dim(A j/ rad A j) = 0 for 2 � i � n j , 1 � j � m. �
Proposition 4.9. Let Λ be as in Theorem 1.1. Then

max
{
l.gl.dim(Ai/Ii), l.gl.dim(A),2 � i � n

} − 1 � l.gl.dim(Λ)

�
∑

i=2,3,...,n

l.gl.dim(A/Ii) + l.gl.dim(A) + n.

Proof. By Theorem 1.1, we can get that the two rings Λ and Σ are derived equivalent via a tilting
module whose projective dimension is less or equal 1. It follows from 4.2 and Lemma 4.3. �
Corollary 4.10. Let A be a noetherian ring with identity, I2, I3, . . . , In ideals of A. Set

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I2 I3 · · · · · · In

A A I3 · · · · · · In

A I2 A I4 · · · In

A I2 I3 A · · · In

...
...

...
. . .

...

A I2 I3 · · · In−1 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then max{l.gl.dim(A/Ii) − 1, l.gl.dim(A) − 1,proj.dim(A Ii) + 1,2 � i � n} � l.gl.dim(Γ ) �
max{l.gl.dim(A/Ii) + proj.dim(A I j) + 3, l.gl.dim(A) + 1,2 � i, j � n}.

Proof. By Corollary 3.3(2) and Lemma 4.3, we can get the conclusion. �
4.2. Tiled triangular rings

Before we turn to the second topic, we recall the definition of recollement, given by Beilinson,
Bernstein and Deligne in their work on perverse sheaves.

Definition 4.11. (See [2].) Let D, D′ and D′′ be triangulated categories. Then a recollement of D
relative to D′ and D′′ , diagrammatically expressed by
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D′ D D′′

is given by six exact functors

i∗ = i! : D′ → D, j∗ = j! : D → D′′, i∗, i! : D → D′, j!, j∗ : D′′ → D,

which satisfy the following four conditions:

(R1) (i∗, i∗ = i!, i!) and ( j!, j∗ = j!, j∗) are adjoint triples, i.e., i∗ is left adjoint to i∗ which is left
adjoint to i! , etc.,

(R2) i! j∗ = 0,
(R3) i∗, j! and j∗ are full embeddings,
(R4) any object X in D determines distinguished triangles

i!i! X → X → j∗ j∗ X → Σ i!i! X and j! j! X → X → i∗i∗ X → Σ j! j! X

where the morphisms i!i! X → X , etc., are the adjunction morphisms.

Using the notion of recollement, Happel proved the following result. The next lemma is useful to
provide a class of algebras which have finite finitistic dimension.

Lemma 4.12. (See [7,8].) Let A be a finite-dimensional algebra and assume that Db(A) has a recollement
relative to Db(A′) and Db(A′′) for some finite-dimensional algebras A′ , A′′ . Then fin.dim(A) < ∞ if and only
if fin.dim(A′) < ∞ and fin.dim(A′′) < ∞.

The following lemma, showing how to construct a recollement, is useful in our proof.

Lemma 4.13. (See [15, Theorem 3].) Let A, B and C be algebras. The following assertions are equivalent:

(1) D−(A-Mod) is a recollement of D−(C-Mod) and D−(B-Mod).
(2) There are two objects P , Q ∈ D−(A-Mod) satisfying the following properties:

(a) There are isomorphism of algebras C ∼= HomD(A-Mod)(P , P ) and B ∼= HomD(A-Mod)(Q , Q ).
(b) P is exceptional and isomorphic in D(A-Mod) to a bounded complex of finitely generated projective

A-modules.
(c) For every set Λ and every non-zero integer i we have HomD(A-Mod)(Q , Q (Λ)[i]) = 0, the canoni-

cal isomorphism HomD(A-Mod)(Q , Q )(Λ) → HomD(A-Mod)(Q , Q (Λ)) is an isomorphism, and Q is
isomorphic in D(A-Mod) to a bounded complex of projective A-modules.

(d) HomD(A-Mod)(P , Q [i]) = 0 for all i ∈ Z.
(e) P ⊕ Q generates D(A-Mod).

Now, we turn to consider “tiled triangular ring,” i.e., rings of the form

� =

⎛
⎜⎜⎜⎜⎝

A I1,2 · · · I1,n

A A
...

...
. . . In−1,n

A · · · · · · A

⎞
⎟⎟⎟⎟⎠

for Ii j ideals of A.
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Now, let us prove the last result in this paper.

Proposition 4.14. Set

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I1,2 I1,3 · · · I1,n−1 I1,n

A A I2,3 · · · I2,n−1 I2,n

A A A · · · I3,n−1 I3,n

A A A A · · · I4,n

...
...

. . .
. . .

. . .
...

A A · · · · · · A A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose that Φ is an Artin algebra, Ii, j are ideals of A for 1 � i < j � n, proj.dim(A/Ii,i+1 Ii+1, j+1/Ii, j+1) <

∞ for 1 � i < j � n−1 and fin.dim(A/Ii,i+1)<∞, fin.dim(A) < ∞ for 1 � i � n−1. Then fin.dim(Φ)<∞.

Proof. Set Γ = Mn(A). The exact sequence

0 → Φ
λ−→ Γ

π−→ L → 0

in Φ-Mod is an add(Γ )-split sequence. By the method which is similar to the ones in Theorem 1.1,
we can prove that the two rings

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A I1,2 I1,3 · · · I1,n

A A I2,3
...

...
...

. . .
. . .

...
...

...
. . . In−1,n

A A A A A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A/I1,2 I2,3/I1,3 · · · I2,n/I1,n 0

A/I1,2 A/I1,3
...

...
...

. . .
...

A/I1,2 A/I1,3 · · · A/I1,n 0

A/I1,2 A/I1,3 · · · A/I1,n A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

are derived equivalent.
Set

Φn−1 =

⎛
⎜⎜⎜⎜⎜⎝

A/I1,2 I2,3/I1,3 · · · I2,n/I1,n

A/I1,2 A/I1,3
. . .

...

...
...

. . . In−1,n/I1,n

A/I1,2 A/I1,3 · · · A/I1,n

⎞
⎟⎟⎟⎟⎟⎠ .

For simplicity, we denote Φn by

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 J1,2 J1,3 · · · J1,n

... A2 J2,3
...

...
... A3

. . .
...

...
...

...
. . . Jn−1,n

A1 A2 A3 · · · An.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Claim. Suppose that proj.dim(A1 J1,k) < ∞, 2 � k � n and proj.dim(Ai/ J i−1,i J i, j/ J i−1, j) < ∞, 2 � i < j �
n − 1. Then fin.dim(Γ ) < ∞ if and only if fin.dim(A1) � ∞ and fin.dim(Ai/ J i−1,i) < ∞, for 2 � i � n.

Proof of Claim. Let e be an idempotent of Γ which has 1 in the (1,1)-th position and zeros else-
where. By easy computation,

Γ eΓ =

⎛
⎜⎜⎜⎝

A1 J1,2 J1,3 · · · J1,n

A1 J1,2 J1,3 · · · J1,n

...
...

...

A1 J1,2 J1,3 · · · J1,n

⎞
⎟⎟⎟⎠ .

Since Γ eΓ is projective as a right Γ -module, we have TorΓi (Γ/Γ eΓ,Γ/Γ eΓ ) = 0 for i > 0. Then
λ : Γ → Γ/Γ eΓ is a homological ring epimorphism [6, Definition 4.5]. By [15, Example 6], there is
recollement:

D(Mod−Γ/Γ eΓ ) i∗ D(Mod −Γ )

R HomΓ (Γ/Γ eΓ,−)

−⊗L
Γ Γ/Γ eΓ

j! TriaD(Γ -Mod)(Γ eΓ )

j∗

−⊗L
Γ Γ eΓ

where TriaD(Γ )(Γ eΓ ) is the smallest full triangulated subcategory of D(Mod−Γ ) containing Γ eΓ

and closed under small coproducts, i∗ is the inclusion functor, −⊗L
Γ Γ/Γ eΓ , is the left derived func-

tor of −⊗
Γ Γ/Γ eΓ , −⊗L

Γ Γ eΓ is the left derived functor of −⊗
Γ Γ eΓ and R HomΓ (Γ/Γ eΓ,−)

is the right derived functor of HomΓ (Γ/Γ eΓ,−).
Note that Γ/Γ eΓ has finite projective dimension as a right Γ -module. Then, by Lemma 4.13 and

[15, Corollary 3 and Example 6], there is a recollement:

D−(Mod −Γ/Γ eΓ ) i∗ D−(Mod −Γ )

R HomΓ (Γ/Γ eΓ,−)

−⊗L
Γ Γ/Γ eΓ

D−(C)

−⊗L
Γ Γ eΓ

where C is the dg algebra CdgΓ (iΓ eΓ, iΓ eΓ ) and iΓ eΓ is an injective resolution of the right Γ -
module Γ eΓ . Note that Γ eΓ is isomorphic to (eΓ )n as right Γ -module. By [11, Theorem 9.2], there
is a triangle equivalence between D−(C) and D−(Mod−H0(C)) = D−(Mod−eΓ e). Hence there is a
recollement:

D−(Mod −Γ/Γ eΓ ) i∗ D−(Mod −Γ )

R HomΓ (Γ/Γ eΓ,−)

−⊗L
Γ Γ/Γ eΓ

j! D−(Mod −eΓ e)
j∗

−⊗L
eΓ e eΓ

where i∗ is inclusion functor, j! = R HomΓ (eΓ,−) is the right derived functor of HomΓ (eΓ,−),
j∗ = R HomeΓ e(Γ e,−) is the right derived functor of HomeΓ e(Γ e,−), −⊗L

Γ Γ/Γ eΓ is the left
derived functor of −⊗

Γ Γ/Γ eΓ , −⊗L
eΓ e eΓ is the left derived functor of −⊗

eΓ e eΓ . Since
proj.dim(A1 J1,k) < ∞, 2 � k � n, we have that Γ eΓ have finite projective dimension as a left Γ -
module. Thus, the functors −⊗L

Γ Γ/Γ eΓ and −⊗L
eΓ e eΓ send complexes of bounded homology

to complexes of bounded homology. Note that eΓ and Γ/Γ eΓ have finite projective dimension as
right Γ -modules. Then the functors R HomΓ (eΓ,−) and R HomΓ (Γ/Γ eΓ,−) restrict to the functors
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Db(Mod−Γ ) → Db(Mod−eΓ e) and Db(Mod−Γ ) → Db(Mod−Γ/Γ eΓ ) respectively. Then, we can
get a recollement:

Db(Mod −Γ/Γ eΓ ) i∗ Db(Mod −Γ )

R HomΓ (Γ/Γ eΓ,−)

−⊗L
Γ Γ/Γ eΓ

j! Db(Mod −eΓ e)
j∗

−⊗L
eΓ e eΓ

. (∗)

Since Γ is an Artin algebra and the functors, appearing in (∗), take finitely generated modules to
finite generated modules, it follows that the following diagram is a recollement [1].

Db(Γ /Γ eΓ ) Db(Γ ) Db(eΓ e) .

By Lemma 4.12, fin.dim(Γ ) < ∞ if and only if fin.dim(A1) < ∞ and fin.dim(Γ/Γ eΓ ) < ∞. Let
Γn−1 denote Γ/Γ eΓ . By similar discussion, we can get fin.dim(Γ ) < ∞ if and only if fin.dim(A1) <

∞ and fin.dim(Ai/ J i−1,i) < ∞ for 2 � i � n. �
By Claim, fin.dim(Φn−1) < ∞ if and only if fin.dim(A/Ii,i+1) < ∞ for 1 � i � n − 1. By

Lemma 4.3, fin.dim(A) � fin.dim(Σ1) � fin.dim(A) + fin.dim(Φn−1) + 1. By Claim, fin.dim(A/Ii,i+1) <

∞, fin.dim(A) < ∞, 1 � i � n − 1 imply fin.dim(Σ1) < ∞. By Lemma 4.1, we can get that
fin.dim(Σ1) < ∞ implies fin.dim(Φ) < ∞. �

The following is a typical case of Theorem 4.14.

Corollary 4.15. Set

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A rad A I1,3 · · · I1,n

A A rad A
. . .

...

A A A
. . .

...
...

...
. . .

. . . In−2,n

...
...

. . . rad A

A A · · · A A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose that Φ is an Artin algebra, Ii, j is an ideal of A for i, j = 1,2, . . . ,n. If fin.dim(A) < ∞, then
fin.dim(Φ) < ∞.

Proof. Let Ii,i+1 = rad A for i = 1,2, . . . ,n − 1. �
5. Examples

In this section, we display several examples to illustrate our theorem.

Example 1. Let A be a noetherian ring with ideal I . Let Γ be the ring

Γ =

⎛
⎜⎜⎝

A I I2 I3

A A I2 I3

A I A I3

⎞
⎟⎟⎠ .
A I I A
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By Proposition 4.9, max{l.gl.dim(A), l.gl.dim(A/I), l.gl.dim(A/I2), l.gl.dim(A/I3)}−1 � l.gl.dim(Γ ) �
l.gl.dim(A) + l.gl.dim(A/I) + l.gl.dim(A/I2) + l.gl.dim(A/I3) + 4.

Example 2. Let A = k[x]/(xn) for n � 1, and I = rad(A). Let

Λ =

⎛
⎜⎜⎝

A I I2 I3

A A I I3

A A A I

A A A A

⎞
⎟⎟⎠ .

Since k[x]/(xn) is representation-finite, the finitistic dimension of k[x]/(xn) is finite. By Corol-
lary 4.15, fin.dim(Λ) < ∞.

Example 3. Let A be a k-algebra given by the following quiver

• β
α •

21 δ

with relations {α3 = βδ,αβ = 0, δα = 0}.
Then A can be represented as the following matrix form:

A =
(

k[α]/(α)4 kβ

kδ k[δβ]/(δβ)2

)
.

Suppose that P (3,2) is the block extension of A.

P (3,2) =

⎛
⎜⎜⎜⎜⎜⎝

k[α]/(α)4 k[α]/(α)4 k[α]/(α)4 kβ kβ

(α)/(α)4 k[α]/(α)4 k[α]/(α)4 kβ kβ

(α)/(α)4 (α)/(α)4 k[α]/(α)4 kβ kβ

kδ kδ kδ k[δβ]/(δβ)2 k[δβ]/(δβ)2

kδ kδ kδ (δβ)/(δβ)2 k[δβ]/(δβ)2

⎞
⎟⎟⎟⎟⎟⎠ .

P (3,2) can be described by the quiver

•

δ12

•

δ11

•
β12

β11

•
β21

•
δ21

with relations {e(α3) = β11δ11δ12β11δ11δ12β11 = β12δ21β21 = e(βδ), e(αβ) = β11δ11δ12β12 = 0, e(δα) =
β21δ11δ12β11 = 0}, where e is the extension map defined in [21]. By Corollary 4.8, we have
fin.dim P (3,2) � 4.
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