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1. Introduction

Derived equivalences preserve many homological properties of algebras such as the number of
simple modules, the finiteness of global dimension and finitistic dimension, the algebraic K-theory and
Hochschild (co)homological groups (see [14,4,10,18,19,17]). Thus, in order to study some homological
properties of a given algebra, we can turn to the one which is derived equivalent to it.

Recently, Hu and Xi have exhibited derived equivalent endomorphism rings induced by D-split
sequences. We find that D-split sequences give a way to construct derived equivalences between
matrix subrings. In this paper, we will study the derived equivalences having a characteristic that one
of two rings has relatively simple structure.

As applications, we first investigate the global dimension of a matrix subring. By the definition of
global dimension, Kirkman and Kuzmanovich in [12] have calculated the global dimensions of some
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matrix subrings. Cowley extended some of their results by triangular decomposition [3]. As never
before, we investigate some cases by the method of derived equivalences.

Second, we study the finitistic dimension of a matrix subring. For a ring A, the finitistic dimensions
are defined as follows: I.Fin.dim(A) is the supremum of the projective dimensions of left A-modules
of finite projective dimensions, and fin.dim(A) is the supremum of the projective dimensions of
finitely generated left A-modules of finite projective dimensions. Kirkman, Kuzmanovich and Small
compute [.Fin.dim(A) for a noncommutative noetherian ring A in [13]. By derived equivalences, we
calculate [.Fin.dim(A) for a matrix subring A. This result is helpful to study the finitistic dimension
conjecture which states that for an Artin algebra A, fin.dim(A) is finite. This conjecture is still open.
We refer the reader to [20] on some new advances on this conjecture.

Little is known about whether the finitistic dimension conjecture holds for matrix subalgebras.
Note that the Artin algebra A and the matrix algebra Mj(A) are Morita equivalent. Thus, in order to
prove that fin.dim(A) is finite, it is equivalent to prove that fin.dim(My(A)) is finite. Our ideal in this
direction is to investigate the finitistic dimension of a matrix subalgebra. If the finitistic dimension of
A is finite, what could we say about the finitistic dimension of a matrix subalgebra?

In order to describe the main result precisely, we fix some notation.

Let A be a noetherian ring with identity. Let A; (2 <i < n) be a family of subrings of A with
the same identity with A, and let I;,[;j, 2<i<n, 2<j<n-—1 be ideals of A satisfying that
InClh1 S-S, [ S A, I C 1, Z;;}H L jSlij,i#j,2<i<n, 2<j<n—1. In this way,

we can construct two rings

A [2 13 Infl In
A Az 13 In—l In
A I3p A3 - Inq1 I
A=14 Iyo Is3 Ag In and
A Ina o o Inno1 A
A/l 0 0
I32/12  As/l3
Iya/Iy 1a3/13 Ag/l4
E:
In,2/12 In,3/13 In,4/14 An/In 0
All, AJls  AJls - All, A

with identities. Unless other stated, throughout this paper, A and X are rings of this forms.
The main result in this paper is the following:

Theorem 1.1. The two rings A and X are derived equivalent.
As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 1.2.

(1) Let A be as in Theorem 1.1. Then

n
LFindim(A) — 1 < LFindim(A) <n+ ) LFindim(A;/I;) + LFin.dim(A).
i=2
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(2) Let A be as in Theorem 1.1. Then

max{l.gl.dim(A;/I;),l.gl.dim(A),2 <i<n} —1

<lgldim(A)< > Lgldim(A/I;) + Lgldim(A) + n.
i=2,3,...,n

We define a class of algebras which are called general block extension of a ring with respect to
a decomposition of the identity. And we calculate their global dimensions and finitistic dimensions.
We also get a class of Harada algebras and a class of tiled triangular rings which satisfy the finitistic
dimension conjecture.

This paper is arranged as follows. In Section 2, we fix some notation and recall some definitions
and lemmas needed in this paper. In Section 3, the proof of the main result is given. In Section 4,
we give some applications of the main result. The definition of general block extension of a ring
with respect to a decomposition of the identity is proposed. We calculate their global dimensions and
finitistic dimensions. And we also get some classes of algebras which satisfy the finitistic dimension
conjecture. In Section 5, we display some examples to illustrate the applications.

2. Preliminaries

In this section, we shall recall some basic definitions and results needed in this paper.

Let A be a ring with identity. We denote by A-Mod the category of left A-modules and by A-mod
the category of all finitely generated left A-modules. Mod-A means the category of right A-modules.
Given an A-module M, we denote by proj.dim(M) the projective dimension of M. The left global
dimension of M, denoted by l.gl.dim(A), is the supremum of all proj.dim(M) with M € A-Mod. By
add(M), we shall mean the full subcategory of A-Mod, whose objects are direct summands of finite
direct sums of copies of M. For two morphisms f:X — Y and g:Y — Z in A-Mod, the composition
of f and g is written as fg, which is a morphism from X to Z.

Let A be a ring with identity. A complex X°® = (Xi,dl')() of A-modules is a sequence of A-modules
and A-module homomorphisms di : X! — X+ such that did"! =0 for all i € Z. A morphism
f*:X*— Y* between two complexes X* and Y* is a collection of homomorphisms fi: X! — Yi
of A-modules such that fidg( = dg(f”l. The morphism f* is said to be null-homotopic if there exists
a homomorphism h' : X! — Yi=1 such that f' =dih’*! +hid," for all i € Z. A complex X* is called
bounded below if X! =0 for all but finitely many i < 0, bounded above if X! =0 for all but finitely
many i > 0, and bounded if X® is bounded below and above. We denote by %’(A) (resp., € (A-Mod))
the category of complexes of finitely generated (resp., all) A-modules. The homotopy category %7 (A)
is quotient category of % (A) modulo the ideals generated by null-homotopic morphisms. We denote
the derived category of A-mod by Z(A) which is the quotient category of .# (A) with respect to
the subcategory of J# (A) consisting of all the acyclic complexes. The full subcategory of J# (A) and
9(A) consisting of bounded complexes over A-mod is denoted by .#?(A) and 2°(A), respectively.
We denoted by ¢ (A) the category of complexes of bounded below, and by .# " (A) the homotopy
category of €T (A). The full subcategory of Z(A) consisting of bounded below complexes is denoted
by 27 (A). Similarly, we have the category 4~ (A) of complexes bounded above, the homotopy cate-
gory # ~(A) of ¥~ (A) and the derived category 2~ (A) of €~ (A). If we focus on the category of left
A-modules, then we have the homotopy category .# (A-Mod) of € (A-Mod) and the derived category
2(A-Mod) of A-Mod.

The following result, due to Rickard (see [18, Theorem 6.4]), is Morita theorem of derived cate-
gories of rings.

Lemma 2.1. Let A and B be two rings. The following conditions are equivalent:

(1) 2~ (A-proj) and 2% ~ (B-proj) are equivalent as triangulated categories;
(2) 2%(A-Mod) and 2P (B-Mod) are equivalent as triangulated categories;
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(3) S#b(A-Proj) and %P (B-Proj) are equivalent as triangulated categories;

(4) P (A-proj) and ¢ (B-proj) are equivalent as triangulated categories;

(5) B isisomorphic to Endgp 4, (T*), where T* is a complex in b (A-proj) satisfying:
(a) T* is self-orthogonal, that is, Hom jb 4_proj (T*, T*[i]) =0 foralli#0,
(b) add(T*) generates .%#?(A-proj) as a triangulated category.

Two rings A and B are called derived equivalent if the above conditions (1)-(5) are satisfied. A com-
plex T* in KP(A-proj) as above is called a tilting complex over A. It is also equivalent to say that the
two rings A and B are derived equivalent if and only if there exists a complex X* in D(A-Mod),
isomorphic to a complex in K?(A-proj) which satisfies [Lemma 2.1(5), (a) and (b)], such that the two
rings B and Endpa-mod)(X*®) are isomorphic. In particular, if the tilting complex T* is isomorphic to
a module T in D?(A), then T is called a tilting module.

In [9], Hu and Xi define the D-split sequences which occur in many situations, for instance,
Auslander-Reiten sequences.

Definition 2.2. (See [9, Definition 3.1].) Let C be an additive category and D a full subcategory of C.
A sequence

in C is called a D-split sequence if

(1) MeD;
(2) f is a left D-approximation of X, and g is a right D-approximation of Y;
(3) f is a kernel of g, and g is a cokernel of f.

A D-split sequence implies a derived equivalence between two endomorphism algebras. The fol-
lowing theorem reveals how to construct derived equivalences from D-split sequences.

Lemma 2.3. (See [9, Theorem 3.5].) Let C be an additive category and M an object in C. Suppose

x-LwmwSty

is an add(M)-split sequence in C. Then the endomorphism ring End¢c (X @ M) of X ® M and the endomorphism
ring Ende (Y @ M) of Y @ M are derived equivalent.

3. Results and proofs

To prove our results, we first establish a fact.

Lemma 3.1. Let R be a ring with identity.

(1) Let M be a noetherian left R-module, and let f : M — M be a surjective homomorphism, then f is injec-
tive.

(2) Let M be an artinian left R-module, and let f : M — M be an injective homomorphism, then f is surjec-
tive.

Proof. We only prove the first part of the lemma. The second part of the lemma is similar. Set f¥ =
k

—— . .

f--- f. Note that Ker f¥ is a submodule of M and Ker f' is a submodule of Ker fi+1 for any i > 1.
Since M is a noetherian module, there exists ig > 1, satisfying Ker fio = Ker fio+1, Then we have the
following commutative diagram:
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) io
0 —— Ker fio MM 0
id id f
. fi0+1
0 —— Ker flo+1 M M 0

By the snake lemma, we can get Ker f =0. So f is injective. O
Now, let us prove the main result in this paper.

Proof of Theorem 1.1. Set I" = M,,(A), the n x n matrix over A.

Denote by e; the matrix which has 14 in the (i, i)-th position and zeros elsewhere for 1 <i <n.
So e1,e,...,e, are piecewise orthogonal idempotents in A, such that 14, =e1 +ey+---+ep.

Since A is a subring of I with the same identity, the ring I" can be considered as a A-module
just by restriction of the scalars of I" to A.

Now, we consider the exact sequence

0>A-5Tr 5150

in A-Mod, where A is the inclusion map and L is the cokernel of 1. To show Theorem 1.1, we prove
the following statements.
(1) The sequence

0—>AL>FL>L—>O

is an add(Aeq)-split sequence in A-Mod.

In fact, we shall check that all conditions in Definition 2.2 are satisfied.

Since the left A-module 4I" is a direct sum of some copies of Aei, we have I € add(Aey). Clearly,
Aeq is projective as a left A-module, then we have an exact sequence

0 — Hom(D. A) =% Hom,(D. ") =% Hom (D, L) — 0

for any D € add(Aeq).

This means that the homomorphism 7 : ,I" — 4L is a right add(Aeq)-approximation of 4L. Now,
we prove that the homomorphism A: 4 A — A" is a left add(Aeq)-approximation of A. In fact, every
left A-module homomorphism g: A — Aeq is determined by g(1), the image of 1 under g. Similarly,
every left I"'-module homomorphism h: I — I'eq is determined by h(1), the image of 1 under h. Note
that I"'e; and Aeq are isomorphic as left A-modules, and a left I'-module homomorphism is also a
left A-module homomorphism. So we assume that g : I" — Aeq is a left A-module homomorphism
which sends 1 to g(1). Then the homomorphism g; satisfies g = Ag;. Thus we have proved that the
homomorphism A: 4 A — 4T is a left add(Aeq)-approximation. Hence (1) is proved.

Note that Ae; is included in I'e; which is isomorphic to Ae; as left A-modules. Then, for each
2 <i<n, the sequence

0— Ae; 2> Ae; 5 L —0 (%)

where ; is inclusion map and L; is the cokernel of 2;, is an add(Aeq)-split sequence.
By Lemma 2.3, the ring A and the endomorphism ring Ends (L, ® L3 @ --- @ L, ® Aeq) are derived
equivalent via a tilting module Ly ® L3 @ --- @ L, @ Ae;.
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(2) The ring ¥ and the endomorphism ring Ends(L, ® L3 & --- & L, & Aeq) are isomorphic as
rings.
Indeed, we note that

(L2, L) (L2, L3) .- (L2, Aeq)
(L3, L2) (L3, L3) (L3, Aeq)
End (L ®L3@--- DLy D Aeq) = ) )
(Ae1,Ly) (Aeq,L3) --- (Aeq, Aey)

as rings.

In the following, we calculate the endomorphism ring End (L, ® L3 & --- & L, ® Aeq).

The morphism set Hom 4 (L;, Ae1) =0 for 2 <i < n. Applying the functor Hom, (—, Aeq) to the
exact sequence 0 — Ae; — Ae1 — Lj — 0, we can get the following exact sequence

0 — Hom(Lj, Ae1) —> Homy(Aeq, Aeq1) — Hom 4 (Aej, Aeq) — 0

in Z-Mod for 2 <i<n.

Note that both of Hom 4 (Ae;, Aeq) and Hom 4 (Aeq, Aeq) are isomorphic to A in A-Mod and A is
a noetherian ring. By Lemma 3.1, we have Hom 4 (L;j, Ae1) =0 for 2 <i<n.

For simplicity, we denote the set e;Aej by A;; for 1 <i, j <n. The morphism jx denote the right
multiplication by x.

Let b be an element in A;j for 2 <1i, j <n. Since ; is the left Aej-approximation of Ae;, we have
a morphism fq : Aey — Aeq such that Ajuq = upA; where a is an element in A. Thus we can get
an element ¢, in Homy (L, Lj) such that miap = pe7;j. It follows from the commutativity of the left
square that a =b. For a given morphism p;, there is a unique o, satisfying mjop = pp7j. Note that
Tilp = UpTTj, We Can get ap = Up.

Ai 7T
0 Aej Aeq L; 0
| I
Mbl Ha | ap | (%)
Aj ¥ T \
0 Aej Aeq Lj 0

where 1;, A; are the inclusion maps and L;, L; are the cokernels of ; and A;, respectively.
Thus, we can define a set of maps from A;j to Homu(L;, Lj) for 2 <i, j<n.
Define

¢ij : Ajj — Homy (Li, Lj)
bl—)Otb

for 2 <i,j<n.
(a) The map ¢;; is well-defined.

Ai i

0 Ae; Aeq L 0

S s
1
Mbl Mbl //“bl
Aj # T
. L;

J
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Suppose that b =0, we have A;u, = 0. It follows that there is a morphism s; : L; — Ae; such that
Mp = 7;s;. Thus we have mja, = wpmj = 7;si7;. Since 7; is surjective, we have ap = s;7;. Note that
Hom 4 (Li, Ae1) =0 for 2 <i<n, we obtain a = 0. Hence ¢;; is well-defined.

(b) The morphism ¢;; is surjective.

Let o be an element in Hom (L;, Lj). Note that Aeq is projective module over A, thus there exists
a morphism g : Ae; — Aeq such that uqmj = mja where a is an element in Aqq. Thus there is a
unique morphism pup : Ae; — Aej such that Ajuq = uphj for b € Ajj. So ¢;j is surjective.

(c) The description of Ker ¢;j, i.e., Ker¢; =1I; for 2 <i, j<n.

Ai TTi
0 Ae; Aeq L; 0
ti -
Mbl 7 H«bl @ l
L2 7
0 Aej Ae1 Lj 0

Suppose that «, = 0. Then we have pupm; = 0. So there is a morphism t; : Ae; — Ae; such that
Mp =tiAj. Note that there exist ¢ € I, d € A such that t; = p¢, Aj = pugq. Thus, we have b =cd, ie,
b e I;. Conversely, suppose that b is an element in Ij, we have wu,m; = i = 0. It follows that
ap = 0. Hence, Ker¢;; =1I; for 2 <i, j <n.

(d) ¢i; preserves addition and multiplication.

It is easy to prove that ¢;; preserves addition.

Now, we turn to prove that ¢;; preserves multiplication, i.e., ¢;j(b)@jk(b") = ¢i(bb") for 2 <i, j<n
where b and b" are elements of A;; and A j respectively.

It suffices to prove that apy = apoyy. Since wppy = Wpy, we have Ajflgy = Ajltc Where . is a
morphism induced by pp. Thus gy — e factorizes through ;. Note that Homy (Li, Aeq) =0 for
2 <i<n, we have gy = . Hence we get appy = aptyy.

Now, we can define a map

(La, Ly) (L, L3) -+ (La,Lp)
L3, L L3, L L3, Ly
=)t e Al tey — [ 1P
(Ln.Ly) (Unls) - (LyiLn)

@ij)i-1,j—1+ (¢ij(aij))i_17j_1

for 2 <i,j<n.
The map ¢;; is well-defined and surjective, so is the map ¢. It follows from that ¢;; preserves
addition and multiplication for 2 < i, j <n that ¢ is a ring homomorphism. The kernel of ¢ is

Iy I3 - I

L I3 - I

I Iz - I

Thus, we have a ring isomorphism
Ay /Iy 0 0
. . (L2, L2) (L2,L3) --- (L2, Ln)
_ | Bafle As/ls : Ls.l2) Usil)  (Lsily)
O] Ian/l Ia3/l3 As/ls - : : . .

0 (LﬂsLZ) (Ln,L3) (Ln,Ln)

In,2/12 In,3/13 1n,4/14 An/ln
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On the other hand, we have an algebra isomorphism ¢,
(72 A— EI'ldA(Ae])
ar> (fq:re1— Laeq)
and an isomorphism of abelian groups ¢s3
@3:(A/l2,A/l3, ..., A/l) > (Homy(Aeq, L), Hom4(Aeq, L3), ..., Hom, (Aeq, Ly))
(my,my,...,my) — (fmz, fm3, NN fmn)

where fi, : Aeqg = Amjeq for 2 <i<n.

Now, set
End(Lp) Homy(Lz, L3) --- Homyu(La, Aeq)
( 6 0 ) Hom (L3, L2) End A (L3) Hom (L3, Ae1)
= PR . .
Y3 @2 : . :
Homy(Aeq1,Ly) Hompyu(Aeq,L3) --- End(Aeq)
T2 T23 -+ T2p O $22(r22) $23(r23) -+ don(r2n) O
rs2 T3z - T3 $32(r32) $33(r33) -+ P3n(30)
H . . :
2 Th3 -+ Tmn O (%(THZ) (%(rﬁ) e (%(rnn) 0
mpy mz --- Mp d @3(my) @3(m3) - @3(mp)  @2(0)

Clearly, the map ¢ is an isomorphism of abelian groups. And it is easy to check that ¢ is a ring
isomorphism. The proof is completed. O

As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 3.2. Let A be a noetherian ring with identity, and suppose that I», I3, ..., I, are ideals of A.
(1) The two rings

All, 0 ... 0
Al I3 - - I /T2
A A I3 - - Iy 0 A/l3
AL A Iy - I : )
: A/l
Al Is A ... I,| ad /4
I Co 0 0 A/l 0
Al I3 - Iy I /In
A/l AJl3 Ally - A/l, A

are derived equivalent.
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(2) The two rings

Al Iy o Ihq Iy Az 0 0
A A Iz - Iy I A/l A/l
A A A Ino1 In
and | ATz Alls Al
Ino1 In . . .
o A In : : A/l, 0
AA A A A A/l AJls AJly --- AJl, A

are derived equivalent.

4. Applications

In Section 3, we have constructed derived equivalences of matrix subrings. In this section, we
will give some applications of the main result. At first, we define a class of rings which are called
general block extension of a ring with respect to a decomposition of the identity. Then we calculate
the finitistic dimension of a general block extension of a ring with respect to a decomposition of
the identity. At last, we will consider the finiteness of finitistic dimension of a tiled triangular ring.
Proposition 4.14, will give a condition under which the finitistic dimension of a tiled triangular algebra
is finite.

The following lemmas, which are taken from [17,10], are useful for this section.

Lemma 4.1. (See [17, Theorem 1.1].) If two left coherent rings A and B are derived equivalent, and if T® is a
tilting complex over A with n+ 1 non-zero terms such that B = End(T*), then fin.dim(A) —n < fin.dim(B) <
fin.dim(A) +n.

Remark. In Lemma 4.1, if we replace A and B by arbitrary ring with identity, then [.Fin.dim(A) —n <
I.Fin.dim(B) < L.Fin.dim(A) + n. The proof is similar.

Lemma 4.2. (See [10, Proposition 1.7].) Let A be a ring with identity, and let T* be a tilting complex over A
with End(T*®) = B. If T® has n + 1 non-zero terms, where n > 0O, then the following statements hold:

(a) Lgl.dim(A) —n < l.gldim(B) <l.gl.dim(A) + n;
(b) inj.dim(4A) —n < inj.dim(gB) < inj.dim(4A) +n.

The following lemma about the estimation of global dimension and finitistic dimension can be
found in [5, Corollary 4.21, p. 70].

Lemma 4.3. (See [5].) Let R and S be rings. Let M be an S-R bimodule and A := (’5, 2) Then the following
inequalities hold:

(1) LFin.dim(S) < L.Fin.dim(A) <1 + LFin.dim(R) + L.Fin.dim(S).

(2) LFin.dim(A) > sup{pd(rA) < oo | A € R-Mod satisfying Tor,-A(M, A) =O0foralli}. If M is flat as a
right-R-module, then |.Fin.dim(A) > [.Fin.dim(R).

(3) Ifproj.dim(sM) < oo, then proj.dim(sM) +1 < LFin.dim(A) < max{l.Fin.dim(R) + proj.dim(s M) +1,
L.Fin.dim(S)}.

(4) max{l.gl.dim(R), Igl.dim(S), proj.dim(sM)+1} < l.gl.dim(A) < max{l.gl.dim(R) + proj.dim(s M) +1,
L.gl.dim(S)}.

The corresponding statements hold for the right homological dimensions over A.
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4.1. General block extension of a ring with respect to a decomposition of the identity

In this part, we will define a class of rings which contains hereditary orders, block extensions of
basic algebras.

Definition 4.4. Let A be a ring with identity 14. And 14 = e +e3 + --- + e is a decomposition of
the identity where e; is an idempotent. Then A can be represented as the following matrix form

e1Ae;y eijAey --- e1Aen

erAer exAey --- exAen
A =

enAe1 epmAey --- emAen

Set A; =e;Ae; and A;j =e;Ae;. Then A; is the subring of A with identity element e;, and A;j is an
(A, Aj)-bimodule.

Let nq,ny,...,np e N. For 1 <i,s<m, 1 <j<n; and 1 <t < ng, we define
p,1) PQ@A,2) --- P(Q,m)
P2,1) P@2,2) --- P@2,m

P=AMn1,ny,...,Nm) =

P(m,1) P(m,2) --- P(m,m)

which is contained in the ring Enda((Aeq)™ & --- & (Aeyn)™) with the restrictions of the binary
operations of addition and multiplication of Ends((Ae1)™ & --- ® (Aep)™).

Pi1 51 Pi1s2 -+ Pit1sn,
Piz 51 Pias2 -+ Pigsn

P(,s) =

Pini,sl Pin,u,sZ"' Pin,-,sns nj Xns

satisfies that Py, 54 is an (A;, As)-bimodule.
For P(i,s), there are three cases:

Case I: i =s.
Ai I Iiz - ligj—1) g
Ai Bip ILiz - Iigj—1) g
_ Ai Iz Biz - limj—1) g
PAG.=1 A Ly Lz Ba - Iy
Af Iiniz e e Iini(nifl) Biﬂi

where By is the subring of A; with the same identity, I; and I;pq are ideals of A; satisfying I;;, €
liy—1) S --- Clip, [n S lip, [y S By for 2<I<nj, p#¢q, 3<p<n, 2<q<nj — 1.
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Case Il: i <s.

Ais Pil,s2 t Pi],sns
. Ais Pits2 -+ Pitsn,

P(i,s) :=
Ais Pi],sz t Pil,sns

Case IIl: i > s.

Ais Piisa -+ Pitsn
. Ais Pi2,s2 e PiZ,sns

P(i,s):=
Ais Pin,-,sZ t Pin,-,sns

Suppose that > P(i,))P(l, j) € P(i, j). Then P is a ring called general block extension of a ring
with respect to a decomposition of the identity.

General block extension of A with respect to a decomposition of the identity contains many classes
of subrings of M,(A). In the following, we will give some examples.

Example. (1) In Definition 4.4, we assume that m = 1. Then

A I I3 -+ In—q Iy
A A2 13 In—l In
A Isp Az - Ino1 Iy
P=14a 1y s A - Iy
A Ina o Inno1 An

where A is a ring with identity, A; is a subring of A with the same identity for 2 <i<n. I, [ j
are ideals of A for 2 <i<n, 2<j<n-—1.In particular, set [; =as2, A=A; = for 2 <i<n and
I j= £ for 2< j <i<n, where £ is a local R-order and a is a regular element in £2. Then £2/a- 2
is local and P is a QH-order with associated ideal | = w - P, where

o
o
—_
o

w =
00 1 0
0 0 O 1
a 0 --- .. 0 nxn
(2) In Definition 4.4, let A be a basic algebra, and let {eq,...,en} be a complete set of orthogonal

primitive idempotents of A.
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Set
A A
Piis1 Pits2 < Pt sng U (i=s)
Pi.s) = Piz,sl Pi2,52 ce Pi2,sn5 _ rad(A;) Aj
: : : Ais - Ags
Pin;s1 Pings2-++ Pingsng  Ping,sng (i#5s).
Ais -+ Ais

Then P is called the block extension of A which can be found in [16]. In particular, if A is a basic
QF-algebra, then P is a basic Harada algebra (see [16]).

Theorem 4.5. Let A be a noetherian ring with identity. Let P be a general block extension of A with respect to
a decomposition of the identity. Then

m nj m
LFindim(A) — 1 <LFindim(P) < LFindim(A) + Y > LFindim(A;/Ij;) + > ni—m+1.
j=1 i=2 i=1

. . . i . i . e
Proof. Denote by eZL1 nitj the matrix which has 14,,, in the (3_,_;m + j, }_;_; m + j)-th position
and zeros elsewhere for 1 < j <nj;q, 0<i<m—1.Thus er,...,en;, €041, -5 Cny4nys---»€ mlp 1
1=1
..eym o, are piecewise orthogonal idempotents in P such that 1p =eq +---+ ey -
n Nm

—_—
Set Y =Endp(Pe1 @ ---®Pe1®--- D Pezf:ll w1 DD Pez;n:;]n’]).

Since P is a subring of T with the same identity, T can be viewed as a P-module by restriction
of the scalars of 7" to P. There is an exact sequence

0P r 510
in P-Mod, where A is the inclusion map and L is the cokernel of L. Thus there is an exact sequence

*n,—nj

inj
0— Pezll;ll —— — Pez;;} w1 T Lninj —0

in P-Mod, where Anpn; is the composite of the inclusion map Pezi—l
I=

L i nin; and the
isomorphism Tezi—l - for 1 <i<<m, 2<j<m. By Theorem 2.3, two rings P and
1=1 J

— TeZ
— Pez;:} n+1

Endp (D i=1...m Lnjn;) © (EBI.Z:"]:1 " pe;)) are derived equivalent.
j=2,...m
Note that

Endp((Lnlz@"'@Lnlm)@"'@(anl @"'@annm)@a)ezrglnﬁl @---®P€1))

((Lngis Ly j)2<ij<ng ((Lngis Lnp ) 2<isng -+ ((Lngis L)) 2<icng - ((Lngis P€1)) 2<imy
2<j<my 2<j<nm 1<j<m

((Lngis Ly j)) 2<i<n, ((Lngis Lnyi))2<isj<n, -+ ((Lngis L i) 2<in, ((Lnyis Pe)) 2<ing
2<j<m 2<j<m 1<j<m

((Lnpis Lny ) 2<i<ng . (Lagis Lng j)) 2<i<nn +++ ((Lnpis Lo j))2<isj<nm ((Lngis Pe€)) 2<igng,
2<j<sm 2<j<ny 1<j<m

((Pei, Lnyj)) 1<icnm ((Peiy Ly ) 2<inm <+ ((Lngis L )2 j<nm (Lo P€)) 2<iinm
2<jsm <jsmy 1<jsm
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(1) Homp(Lp,i, Ln,j) =0 for 2<i<np, 2<j<ng, 1<p<g<m.
There is an exact sequence
0— Pe p—1 .— Pe p—1
=1 1 n

et Pl —> Lp,i >0 ()

in P-Mod. Applying the functor Homp(—, L ;) to (x*), we get an exact sequence

0— Homp(an,-, anj) — Homp(Pe anj) — Homp(Pe anj) — 0.

p—1 p—1 :
> mA1 Doy mH

By calculation, we have HOmP(Pele:—ll Ly j) = HomP(PeZ,”:’,lnm’L‘U) = 0. Thus,

n+1’

Homp (Lp,i, Ln,j) =0 for 2<i<np, 2<j<ng, 1<p<g<m.
(2) Homp(Ly,i, Ly, j) =0 for 2<i<j<mg, 1<k<m.
Apply the functor Homp (—, Ly, j) to the exact sequence

0 — Pe — Lyi—0

k-1 . — Pecw-1
Yisinj+ Yisinj+1

in P-Mod. We have an exact sequence

0 — Homp (Lnki’ Lnkj) — HOI‘I‘lp(PEZk_f Lnkj) — Homp(PeZk_f} Lnkj) — 0.
Jj= j=

}nj-H’ nj+i’

Note that Homp(PeZ;;_: Ly, j) and Homp(PeZ;;j Ly, j) are both isomorphic to Ay /Iy j in

nj+1’ lnj+i’
Ak/Ik,j-Mod. It follows from Lemma 3.1 that Homp (Ly,, Ly, j) =0 for 2 <i < j<m, 1 <k <m.
Thus

Endp ((Lng2 @ -+ @ Liyny) & -+ & (L1 @ -+ @ Liyyny) B (Pesmi, ;@ ® Pey))
(Lny2,Lny2) O 0 0

* . .
(Lnyny s Lngony) 0

(anz s anz)

1

(Lnyny > Lngny)

R 0
" * Enda(Aen @ --- @ Aeq)

By Lemmas 4.3 and 4.1, we can get the conclusion. O
Corollary 4.6. Let A be as in Theorem 1.1. Then
n
LFindim(A) — 1 < LFindim(A) <n+ ) LFindim(A;/I;) + LFindim(A).
i=2
Proof. It follows from Theorem 1.1 and Lemma 4.1. O

As a consequence of Theorem 4.5, we can get the following corollary. By this corollary, we can get
a class of algebras which have finite finitistic dimension.
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Corollary 4.7. Let A be as in Theorem 1.1 and suppose that A is an Artin algebra. Then:

(1) Iffin.dim(A) < oo and fin.dim(Aj/I;;) < oo for 2 <i<nj, 1< j<m, then fin.dim(P) < oo.
(2) Iffin.dim(P) < oo, then fin.dim(A) < oo.

In [16], K. Yamaura proved that any block extension of a basic QF-algebra is a basic left Harada
algebra. And for any basic left Harada algebra T, there exists a basic QF-algebra R such that T is
isomorphic to an upper staircase factor algebra of a block extension of R. By Theorem 4.5, we can
get that the finitistic dimension is finite for the block extension of a QF-algebra. Thus, the finitistic
dimension conjecture holds for the class of left Harada algebras.

Corollary 4.8. Suppose that R is a QF-algebra and P is the block extension of R. Then

3

fin.dim(P) < ni—m+1<oo.

i=1

Proof. Note that fin.dim(R) =0, fin.dim(Aj/radAj) =0for 2<i<n;, 1<j<m. O
Proposition 4.9. Let A be as in Theorem 1.1. Then

max{l.gl.dim(A;/I;), L.gldim(A), 2 <i<n} — 1 < lgldim(A)

< Y Lgldim(A/Ij) + L.gldim(A) +n.
i=2,3,...,n

Proof. By Theorem 1.1, we can get that the two rings A and X' are derived equivalent via a tilting
module whose projective dimension is less or equal 1. It follows from 4.2 and Lemma 4.3. O

Corollary 4.10. Let A be a noetherian ring with identity, I», Is, ..., I, ideals of A. Set

Ay I3 oo ooy
A A I3 o oy
AL, A Iy - Iy
I =
AL Is A - I
A I I3 -+ Ih1 A

Then max{l.gl.dim(A/I;) — 1,l.gl.dim(A) — 1,proj.dim(al;) + 1,2 < i < n} < Lgldim(I") <
max{l.gl.dim(A/I;) + proj.dim(alj) + 3, l.gl.dim(A) + 1,2 <i, j <n}.

Proof. By Corollary 3.3(2) and Lemma 4.3, we can get the conclusion. O

4.2. Tiled triangular rings

Before we turn to the second topic, we recall the definition of recollement, given by Beilinson,
Bernstein and Deligne in their work on perverse sheaves.

Definition 4.11. (See [2].) Let D, D’ and D” be triangulated categories. Then a recollement of D
relative to D’ and D”, diagrammatically expressed by
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- -
D—D——=7D"
- -
is given by six exact functors

i,=i:D—>D, j=j:D->D" i*i':D>D, j,j.:D" —D,
which satisfy the following four conditions:

(R1) (i*,i, =i1,iY) and (ji, j* = j', j«) are adjoint triples, i.e., i* is left adjoint to i, which is left
adjoint to i', etc.,

(R2) 'j. =0,

(R3) iy, ji and j, are full embeddings,

(R4) any object X in D determines distinguished triangles

ii'X > X > j,j*X = Zii'X and jij'X > X - i,i*X > Zjij'X
where the morphisms ii'X — X, etc., are the adjunction morphisms.

Using the notion of recollement, Happel proved the following result. The next lemma is useful to
provide a class of algebras which have finite finitistic dimension.

Lemma 4.12. (See [7,8].) Let A be a finite-dimensional algebra and assume that 2°(A) has a recollement
relative to PP (A") and 9 (A”) for some finite-dimensional algebras A’, A”. Then fin.dim(A) < oo if and only
if fin.dim(A’) < oo and fin.dim(A”) < oc.

The following lemma, showing how to construct a recollement, is useful in our proof.

Lemma 4.13. (See [15, Theorem 3].) Let A, B and C be algebras. The following assertions are equivalent:

(1) 27 (A-Mod) is a recollement of 2~ (C-Mod) and 2~ (B-Mod).
(2) There are two objects P, Q € 2~ (A-Mod) satisfying the following properties:

(a) There are isomorphism of algebras C = Hom g a-mod) (P, P) and B = Homga-mod)(Q, Q).

(b) P is exceptional and isomorphic in 2(A-Mod) to a bounded complex of finitely generated projective
A-modules.

(c) For every set A and every non-zero integer i we have Homga-mod)(Q , Q WIi]) = 0, the canoni-
cal isomorphism Homg s mod) (Q , Q)™ — Homga-mod) (Q , Q V) is an isomorphism, and Q is
isomorphic in 2(A-Mod) to a bounded complex of projective A-modules.

(d) Homga-mody (P, Q[i]) =0 foralli € Z.

(e) P @ Q generates Z(A-Mod).

Now, we turn to consider “tiled triangular ring,” i.e., rings of the form

A LIip -+ Iin
A= A A

: In—1n

A A

for I;; ideals of A.
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Now, let us prove the last result in this paper.

Proposition 4.14. Set

A Ly Lz -+ Iipor hip
A A Iz - Ip1 Iop
A A A - I3p1 I3p
P=1A A A A - gy
A A .. .. A A

Suppose that @ is an Artin algebra, I; j are ideals of A for 1 < i < j <n, proj.dim(ay; ;,; liv1,j+1/1i,j+1) <
oofor1<i<j<n—1andfin.dim(A/I;t+1) <oo, fin.dim(A) < oo for1 <i<n—1.Then fin.dim(®) < co.

Proof. Set I" = M, (A). The exact sequence

050 5>T 150

in @-Mod is an add(I")-split sequence. By the method which is similar to the ones in Theorem 1.1,
we can prove that the two rings

A hz hs - ha A/lip I3/liz -+ Ip/lin 0O
a4 A I3 : A/l A/l
=1 : : : and X =
Do In_1.n A/l A/hs -+ A/lp O
A A A A A A/l A/ls - Allin A
are derived equivalent.
Set
A/lip Is/liz -+ Da/lin
A/lia A/l
Dy =
- . . In—],n/’],n
A/l A/l - Allig
For simplicity, we denote &, by
At Ji2 iz - Jin
Ay Ja23
I = As
]n—l,n

A1 Ay A3z - Ap
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Claim. Suppose that proj.dim(a, J1k) < 00, 2 <k <nand proj.dim(a 5, Ji,j/Ji-1,j) <00, 2<i<j<
n — 1. Then fin.dim(I") < oo if and only if fin.dim(A1) < oo and fin.dim(A;/ Ji—1,;) < oo, for2<i<n.

Proof of Claim. Let e be an idempotent of I" which has 1 in the (1, 1)-th position and zeros else-
where. By easy computation,

Ar Jiz2 i3 - Jin

At Ji2 i3 - Jin
I'el’ = . . .

At Ji2 i3 - Jin

Since I'el” is projective as a right I"-module, we have Torir(F/FeF, r'/Tel')=0 for i > 0. Then
A: I — I'/Tel’ is a homological ring epimorphism [6, Definition 4.5]. By [15, Example 6], there is
recollement:

—-®%r/rer ~ @Y% rer
- -~
PMod—-I'/T'el’) —i.> P(Mod —I") — = Triagr-mod)(I"el")
RHom (I'/Tel’,—) Js

where Triagy(I"eI") is the smallest full triangulated subcategory of Z(Mod —I") containing I'el”
and closed under small coproducts, i, is the inclusion functor, — ®'1'~ I'/Terl, is the left derived func-
tor of — @~ I'/Tel’, — @ el is the left derived functor of —®,- I'eI" and RHom(I"/I"el", —)
is the right derived functor of Homp(I"/I"el’, —).

Note that I'/I"eI” has finite projective dimension as a right I"-module. Then, by Lemma 4.13 and
[15, Corollary 3 and Example 6], there is a recollement:

—-@Y%r/rer -®% rer
2 -(Mod—-I'/Tel’) —i,> 2~ (Mod —-I"') —— 27 (C)
< -
RHomp(I'/I'el’,—)

where C is the dg algebra CygI'(il'el’,il'eI") and iI'el” is an injective resolution of the right I"-
module I"eI". Note that I'eI” is isomorphic to (eI")" as right I"-module. By [11, Theorem 9.2], there
is a triangle equivalence between 2~ (C) and 2~ (Mod —H%(C)) = 2~ (Mod —eI'e). Hence there is a
recollement:

-@%r/rer ~®Lppel
2~(Mod—T"/Tel’) —i,= 2~ (Mod —I') —j~ 2~ (Mod —eIe)
< <
RHomp(I'/Tel’,—) Jx

where i, is inclusion functor, j' = RHomy(el",—) is the right derived functor of Hom(el", —),
jx = RHomepe(I'e, —) is the right derived functor of Homere(I'e, —), —®'1‘- r'/rerl is the left
derived functor of — @ I'/Iel’, —@Lr.el is the left derived functor of —®, el Since
proj.dim(a, J1 k) < 00,2 <k <n, we have that I'el” have finite projective dimension as a left I"-
module. Thus, the functors —@"% I'/Iel" and —®% -, el" send complexes of bounded homology
to complexes of bounded homology. Note that el” and I'/I"eI” have finite projective dimension as
right I"-modules. Then the functors RHom(el’, —) and RHom(I"/I"el", —) restrict to the functors
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2P Mod —I") — 2P(Mod —eI"e) and 2P (Mod —I") — 2(Mod —I"/I"eI") respectively. Then, we can
get a recollement:

-y r/rer - ®treel
Zb(Mod —I'JTel") ——i,= 2*(Mod —I') ——j'>= 2”(Mod —eIe) . (%)
-~ -~
RHomp(I'/Tel’,—) Jx

Since I' is an Artin algebra and the functors, appearing in (x), take finitely generated modules to
finite generated modules, it follows that the following diagram is a recollement [1].

gb(r/rer)y =——= ab(I'y =—= gP(ere) .

By Lemma 4.12, fin.dim(I") < oo if and only if fin.dim(A;) < oo and fin.dim(I"/I"el") < oco. Let
I'1—1 denote I'/Iel’. By similar discussion, we can get fin.dim(I") < oo if and only if fin.dim(A) <
oo and fin.dim(A;/Ji—1) <oofor2<i<n. O

By Claim, fin.dim(®,—1) < oo if and only if fin.dim(A/I;;j+1) < oo for 1 <i<n—1. By
Lemma 4.3, fin.dim(A) < fin.dim(X) < fin.dim(A) + fin.dim(®,_1) + 1. By Claim, fin.dim(A/I; i+1) <
oo, findim(A) < oo, 1 <i<n—1 imply fin.dim(X;) < co. By Lemma 4.1, we can get that
fin.dim(X7) < oo implies fin.dim(®) <oco. O

The following is a typical case of Theorem 4.14.

Corollary 4.15. Set

A radA Liz - I1n
A A rad A
A A A
(D =
In—z,n
: : . radA
A A A A

Suppose that @ is an Artin algebra, I; ; is an ideal of A for i, j=1,2,...,n. If fin.dim(A) < oo, then
fin.dim(®) < cc.

Proof. Let [; ;1 =radA fori=1,2,...,n—1. O
5. Examples
In this section, we display several examples to illustrate our theorem.

Example 1. Let A be a noetherian ring with ideal I. Let I" be the ring

ATl I P
A A2 P
r= 3
Al A I
AT I A
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By Proposition 4.9, max{l.gl.dim(A), L.gl.dim(A/I), Lgl.dim(A/I?), l.gl.dim(A/I?)} —1 < Lgl.dim(I") <
L.gl.dim(A) + L.gl.dim(A/I) + L.gl.dim(A/I?) + Lgl.dim(A/I3) + 4.

Example 2. Let A =k[x]/(x") for n > 1, and I =rad(A). Let

> > > >
> > >~
S
—

Since k[x]/(x") is representation-finite, the finitistic dimension of k[x]/(x") is finite. By Corol-
lary 4.15, fin.dim(A) < oo.

Example 3. Let A be a k-algebra given by the following quiver

with relations {a® = 88, B =0, sa = 0}.
Then A can be represented as the following matrix form:

A_(k[oz]/(oz)“ kg >
B ks k[5B1/(38)* )

Suppose that P(3,2) is the block extension of A.

klel/ (@)t klal/ ()t K[al/ () kp kp

(@)/@)?* klal/(@)?* klel/(@)* kB kB

P3B.2)=| @/@?* (@/(@* klal/(@)* kp kp
ks ks ks k[881/(88)% k[881/(8B)>
ks ks ké (88)/(8B)*  k[8B1/(8B)?

P(3,2) can be described by the quiver

with relations {e(®) = B11811612811611812811 = B12621 P21 = e(B3), e(@B) = P11811812812 = 0, e(dax) =
B21811812811 = 0}, where e is the extension map defined in [21]. By Corollary 4.8, we have
fin.dim P (3, 2) < 4.
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