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Abstract 

In knowledge representation, when we have to use logical connectives, various con- 
tinuous t-norms and t-conorms are used. In this paper, we show that every continuous t- 
norm and t-conorm can be approximated, to an arbitrary degree of accuracy, by a strict 
Archimedean t-norm (t-conorm). © 1998 Elsevier Science Inc. All rights reserved. 

1. Introduction 

B r i e f  idea .  W h e n  we represent expert knowledge in expert systems and  in in- 
telligent control ,  it is impor t an t  to adequately describe no t  only the experts '  
s ta tements  themselves, bu t  also the experts '  degrees of confidence in the corre- 
sponding  statements.  It is also impor t an t  to adequately describe which opera- 
t ions with these degrees of confidence are best representing the expert 's  use of 
logical connectives " a n d "  and  "or" .  The experimental  de te rmina t ion  of these 
" a n d "  and  "o r "  opera t ions  (known as t -norms and  t -conorms)  is a very com- 
plicated task because, in principle, very complicated operat ions  are possible. 
Do we really need all these complicated operat ions,  or some simple subclass 
is sufficient? 
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In this paper, we show that operations from a certain known class (strictO~ 
Archimedean operations) can approximate an arbitrary operation with an arbi- 
trary accuracy. This means that whatever the actual t-norm and t-conorm are, 
we can, with an arbitrary accuracy, approximate then with strict Archimedean 
operations. 

Thus, strict Archimedean t-norms and t-conorms are sufficient for describ- 
ing expert knowledge. 

t-norms and t-conorms. To design intelligent systems capable of performing 
complicated tasks on par with the best human experts, we must represent the 
knowledge of these experts in the computer. This knowledge consists of differ- 
ent statements. 

Not all these statements have equal weight to the experts: experts may be 
absolutely sure in some of them, and much less sure in others. Therefore, when 
we represent expert knowledge in expert systems and in intelligent control, it is 
important to adequately describe not only the experts' statement, but also the 
experts' degrees of confidence in the corresponding statements. These degrees 
of belief are usually represented by numbers from the interval [0, 1] so that 1 
corresponds to "absolutely sure", and 0 to no belief at all (see, e.g., [1,2]). 

In human reasoning, we combine different statements by using different log- 
ical connectives. For example, we may argue about A and B being true, or 
about A or B taking place. To be able to adequately deal with such logical com- 
binations, we must be able to estimate degrees of  belief in these logical combi- 
nations. If  we are either absolutely sure, or have absolutely no belief in each of 
these statements, then we can use the rules of classical 2-valued logic to com- 
pute the degree of belief in the composite statements A&B and A V B. 

In order to handle the frequent situations when we are not 100% sure in A 
and B, we must be able, given the degrees of beliefd(A) and d(B) in A and B, to 
estimate the degree of belief in the composite statements d(A&B) and d(A V B). 
In other words, we must have two junctions J~(a, b) and j~,(a, b) that, given 
d(A) and d(B), return an estimate J~.(d(A),d(B)) for the degree of belief in 
A&B and and estimate f~.(d(A),d(B)) for the degree of belief in A V B. 

These functions must satisfy several natural properties: e.g., since A&B 
means, intuitively, the same as B&A, it is reasonable to expect that the esti- 
mates for the degrees of belief in A&B and in B&A be the same, i.e., that 
f~.(d(A),d(B)) =f~,(d(B),d(m)) for all A and B. Since the statements A and B 
can have arbitrary degrees of belief a and b, this property means, in effect, that 
we must have Jk.(a, b) = f~(b, a) for arbitrary a and b. 

Similarly, from the fact that A&(B&C) and (A&B)&C mean the same thing, 
we conclude that f~.(a,f~ (b, c)) ./i~ (.L-(b, c)) for all real numbers a, b, and c. 

Functions that satisfy these properties are called t-norms and t-conorms (for 
completeness, precise definitions are given in Section 2). 

It is important to choose t-norms and t-conorms properly. It is often ex- 
tremely important to choose t-norm and t-conorm properly: 
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• Historically the first successful expert system M Y C I N  became successful 
when its authors  managed  to find (after a t remendous  effort) " a n d "  and 
" o r "  operat ions  that  adequately  describe medical experts [3,4]. At  first, they 
thought  that  these operat ions  consti tute a universal law o f  human  reasoning, 
but  it turned out  that  for other  applications, e.g., for applications in geo- 
physics, radically different operat ions  are needed. 

• Different " a n d "  and " o r "  operat ions  lead to radically different results in fuz- 
zy control  (see, e.g., [5]). 

t -norms and t -conorms are difficult to determine; how can we make eliciting 
them easier? It is rather difficult to determine a t -norm and a t -conorm,  for 
two reasons: 
• First, for that, we need to query lots o f  experts, and then process the result- 

ing data.  This takes quite some time [3,4]. This difficulty is, probably,  un- 
avoidable. 

• Second, in general, t -norms and t -conorms can be very complicated.  The 
task o f  eliciting t -norms and t -conorms f rom the experts will be much  easier 
if we were able to show that  only simple tonorms and t -conorms have to be 
considered as possible options. 

H o w  complicated are the general t -norms and t -conorms? According to the 
classification theorem [6], every t -norm (correspondingly,  every t -conorm) 
can be represented as a kind o f  combina t ion  o f  Archimedean  t -norms (t-co- 
norms),  strict and non-strict  (see Section 2 below). Accord ing  to this classifica- 
tion result, Archimedean  t -norms and t -conorms are the basic tools f rom which 
more  general ones are built. In this sense, Arch imedean  t -norms and t -conorms 
are the simplest. 

In this paper,  we will show that  these simplest (strictly Archimedean)  t- 
norms and t -conorms are sufficient in the sense that  every cont inuous  t -norm 
and t -conorm can be approximated,  to an arbi t rary degree o f  accuracy,  by a 
strict Arch imedean  t -norm (t-conorm).  Thus, eliciting t -norms and t -conorms 
can be made easier. 

What was known before? It is a well-known result (proven in 1963 [7]) that  
we can approximate ,  to an arbi t rary degree o f  accuracy,  the t -norm 
J~(a,b)--min(a,b) by strictly Archimedean  t-norms, and f v ( a , b ) :  
max(a,  b) by strictly Archimedean  t-conorms.  

In this paper, we generalize this result by showing that  an arbitrary contin- 
uous t -norm ( t -conorm) can be approximated  by strictly Archimedean  t -norms 
(t-conorms).  

2. Definitions 

Definition 2.1 (see, e.g., [1,2]). A function f~: : [0, 1] x [0, 1] --~ [0, 1] is called a t- 
norm if it satisfies the following four condit ions:  
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• f~.(1,a)  = a for  all a; 
• JL(a, b) = f~.(b, a) for  all a and  b; 
• fa . (a , f~(b ,c ) )  = f~ . ( f~ (a ,b ) , c ) )  for  all a, b, and  c; 
• if a ~< a' and  b ~< b', then f~.(a, b) <~J~(a', b'). 

Definition 2.2 (see, e.g., [1,2]). A func t ion  J r :  [0, 1] × [0, 1] --+ [0, 1] is called a 
t - c o n o r m  if it satisfies the fo l lowing fou r  condi t ions :  
• f v ( 1 , a )  a for  all a; 
• f v ( a ,  b) = f~(b,  a) for  all a and  b; 
• .£s(a,./~(b, c)) =.[~.Cf~(a, b), c)) for  all a, b, and  c; 
• if a ~< a'  and  b <~ b', then fv(a ,  b) <~.fv(a', b'). 

It is also usual ly  requi red  that  a t - n o r m  and  a t - c o n o r m  are continuous func-  
tions. 

O f  all possible  c o n t i n u o u s  t -no rms  and  t - conorms ,  the m o s t  widely used are  
the idempotent ope ra t i ons  J~(a, b) = min(a ,  b) and  fv(a ,  b) = max(a ,  h) an d  
Archimedean t - no rms  and  t - c o n o r m s  that  are defined as follows: 

Definition 2.3 [1,2]. 
• A t - n o r m  fs~(a, b) is called A r c h i m e d e a n  if it is c o n t i n u o u s  and  J ) ( a ,  a) < a 

for  all a E (0, 1). 
• A n  A r c h i m e d e a n  t - n o r m  is called strictly A r c h i m e d e a n  if it is strictly increas-  

ing in each var iable  for  a, b E (0, 1). 

Definition 2.4 [l,2]. 
• A t - c o n o r m  f v  (a, b) is called A r c h i m e d e a n  if it is c o n t i n u o u s  and  fv  (a, a) > a 

for  all a E (0, 1). 
• An  A r c h i m e d e a n  t - n o r m  is called strictly A r c h i m e d e a n  if it is strictly increas-  

ing in each var iable  for  a, b E (0, 1). 

Strict ly A r c h i m e d e a n  t -no rms  and  t - c o n o r m s  are  easy to represent :  

Proposit ion 2.1 [1,2,6,7]. 
• For every continuous strictly increasing function 0 :  [0, 1] ---+ [0, 1], the Junction 

faT(a, b) = O- l (O(a ) .  ~p(b)) is' a strictly Archimedean t-norm. 
• I f f~T(a,b)  is a strictly Archimedean t-norm, then there exists a continuous 

strictly increasing J~mction ~ :  [0, 1] ---+ [0, 1] ./or which f~.(a,b) = ~ ' (O(a) .  
~(b)). 

A similar represen ta t ion  exists for  strictly A r c h i m e d e a n  t - conorms .  
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3. M a i n  results  

Definition 3.1. We say that  two funct ions f ( a ,  b) and f ' ( a ,  b) are e-close if for 
every a and b, we have If(a,  b) - f ' ( a ,  b)l ~< e. 

T h e o r e m  3.1. For every continuous t-norm fs~, and fo r  every e > O, there exists a 
strictly Archimedean t-norm f £  that is e-close to fx,. 

T h e o r e m  3.2. For every continuous t-conorm fv ,  and fo r  every e > O, there exists 
a strictly Archimedean t-norm f v  that is e-close to f v .  

Since the real da ta  always come with some accuracy,  these results mean  that  
whatever  empir ical  da ta  we have abou t  the actual  exper t ' s  use of  " a n d "  and 
"o r " ,  and  however  accurate  these da ta  are, these da ta  can always be explained 
within an assumpt ion  that  bo th  the " a n d " - o p e r a t i o n  ( t -norm) and the " o r " -  
opera t ion  ( t -conorm)  are strictly Archimedean .  

Thus,  to explain arbi t rar i ly  compl ica ted  h u m a n  reasoning,  it is quite suffi- 
cient to use strictly Arch imedean  t -norms  and t -conorms.  

Comment." After  this paper  was submit ted  to the journal ,  we learned that  a 
similar ( somewhat  weaker)  result by F o d o r  and Janei was announced  by in [8]: 
namely,  the main  result f rom tha t  pape r  states that  every cont inuous  t -norm 
can be approx ima ted ,  with a rb i t ra ry  accuracy,  by cont inuous  Arch imedean  
t -norms that  are not necessarily strictly Archimedean ,  while we prove  the pos- 
sibility of  app rox ima t ing  an a rb i t ra ry  cont inuous  t -norm by strictly Archime-  
dean t -norms.  

4. P r o o f  

4. 1. General idea o f  the p roo f  

The  p r o o f  o f  Theo rems  3.1 and 3.2 is based on the classification theorem for  
t -norms  and t -conorms  that  was first p roven  in [6]. Accord ing  to this theorem,  
for  every t -norm f~(a ,  b), on the interval [0, 11, there exists finitely or  countab ly  
m a n y  (possibly none) non-intersect ing intervals I~ such that: 
• on each o f  these intervals I~, fs:(a, b) is: 

- either i somorphic  to a .  b, i.e., has the fo rm 0 -1 (O(a)O(b)) for  some strict- 
ly increasing funct ion 0), 

- or i somorphic  to m a x ( a  + b - 1,0), i.e., has the fo rm 

~b-l(max (~b(a) + ~(b) - 1,0)) 

for  some strictly increasing funct ion ~b; 



244 H. 7". Nguyen et al. / Internat. J. Approx. Reason. 18 (1998) 239 249 

• if  a and  b do  no t  be long to the same interval  l~, or  if  one o f  the values a, b 
does no t  be long  to any o f  the intervals  1~ at  all, then .fa.(a, b) = min(a ,  b). 
Comment." In par t i cu la r ,  if we have no intervals  at  all, we get a t -norm 

f~.(a, b) rain(a,  b); to get a t -no rm fa. (a, b) = a • b, we mus t  take  the ent ire  in- 
terval  [0, 1] as the only in terval  I~. 

A similar  classif icat ion theo rem for t - conorms  can be easily deduced  f rom 
the fact that :  
• for  every t -norm .~,~(a,b), its dual f v ( a , b )  = 1 - f , , . ( 1  - a ,  1 - b )  is a t-co- 

norm;  and 
• vice versa, for  every t - conorm fv (a ,  b), its dual 

.f~.(a,b) = 1 - f v ( 1  - a, 1 - b) 

is a t -norm.  
The  desired a p p r o x i m a t i o n  result  says tha t  an a rb i t r a ry  (and a rb i t ra r i ly  

compl ica ted)  t -norm can be a p p r o x i m a t e d ,  with an a rb i t r a ry  accuracy,  by a 
strictly A r c h i m e d e a n  t -norm.  We will prove  this result  s tep-by-s tep:  
• Fi rs t ,  we will show tha t  an a rb i t r a ry  t -norm can be a p p r o x i m a t e d ,  with an 

a rb i t r a ry  accuracy,  by a t -norm tha t  has  only finitely m a n y  intervals.  
• Then,  we will show that  an a rb i t r a ry  t -norm with finitely m a n y  intervals  can 

be a p p r o x i m a t e d ,  with an a rb i t r a ry  accuracy,  by a t -norm in which these in- 
tervals  cons t i tu te  the entire interval  [0, 1], and  in which on each interval ,  the 
t -norm is i somorph ic  to a • b. 

• F ina l ly ,  we will show tha t  a t -norm with k > 1 intervals  on each o f  which 
this t -norm is i somorph ic  to a • b, can be app rox ima te d ,  with an a rb i t r a ry  ac- 
curacy,  by a t -no rm with the same p rope r ty ,  but  with only k - 1 intervals.  By 
repea t ing  the last r educ t ion  finitely m a n y  times, we will f inally get an ap-  
p rox ima t ing  t -norm tha t  has only one interval :  [0, 1], and  tha t  is i somorph ic  
to a - b, i.e., tha t  is s tr ict ly Arch imedean .  

If, on each o f  these three mega-s teps ,  we choose  an a p p r o x i m a t i o n  with an ac- 
curacy  c~ -- e/3,  then af ter  these three steps, we get a t -no rm tha t  a pp rox ima te s  
the or ig inal  one with the desired accuracy  e. 

Similar ly,  to achieve the accuracy  e/3  on the their  megas tep ,  we must ,  
on each subs tep  o f  this mega-s tep ,  take  an a p p r o x i m a t i o n  with an accu- 
racy  e / (3N) ,  where  N is the number  o f  intervals  at  the beginning  o f  this 
mega-s tep.  

Comment: It is sufficient to be able to a p p r o x i m a t e  t -norms.  Indeed,  if  we 
can a p p r o x i m a t e  an a rb i t r a ry  t -norm .f~ by an e-close str ict ly A r c h i m e d e a n  
t -no rm f(:,  then, given an a rb i t r a ry  t - conorm J(/, we will be able  to approx i -  
mate  its dua l  f ,~(a,b)= 1 - f v ( 1 - a ,  1 - b )  by an e-close strictly Arch ime-  
dean  t -norm f~.(a,b). One can then easily show tha t  the dual  fv  to ./[. is a 
str ict ly A r c h i m e d e a n  t - conorm tha t  is e-close to the or iginal  t - conorm 
fv (a ,  b) (because two t - conorms  are  e-close iff their  duals  are  e-close, and  vice 
versa).  
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4.2. Step 1: Reduction to finitely many intervals' 

Let us show how to approximate  an arbi t rary t -norm fs~ with an arbi t rary 
accuracy ,5 > 0, by a t -norm whose classification requires only finitely many  in- 
tervals. 

Indeed, since the intervals I~ that  characterize the original t -norm are all lo- 
cated within the interval [0, 1], and these intervals do not  intersect with each 
other, the total number  o f  intervals I~ whose length is ~> ,5 is finite (~< 1/,5). 

We can thus define a new t -norm f~(a ,  b) as follows: 
• if in the character izat ion o f  f~ ,  the numbers  a and b belong to the same in- 

terval I~ o f  length ~> `5, then f~.(a,b) = Lf~(a,b); 
• for all other  pairs (a, b), f~(a ,  b) = min(a, b). 
It is clear that  the new t -norm f~  can be characterized in the same manner  as 
the original t -norm f~ (a ,b ) ,  but  with only finitely many  intervals I ' .  So, to 
prove that  this first step does do the desired approximat ion,  it is sufficient to 
show that  the new t -norm f £ ( a , b )  is ,5-close to the original one, i.e., that  
If;,- (a, b) - fx, (a, b)l ~< ,5 for all a and b. 

Indeed, the only case when the difference Lf£ (a, b) - f a - ( a ,  b) is different f rom 
0 (i.e., for which f£ (a ,  b) ¢ f~(a,  b)) is when both  a and b belong to one o f  the 
original intervals [a , a +] o f  width a + - a < `5. In this case, a-  <~fs~(a, b) <~ a +. 
Similarly, f( .(a, b) = min(a, b) also belongs to the interval [a-, a+]. So, fs~(a, b) 
and f£ (a ,  b) are two numbers  on the same interval [a , a +] of  width < `5. Thus, 
the difference between these two numbers  cannot  exceed the width o f  this inter- 
val, and is, therefore < `5. 

So, fa- and f~_ are, indeed, ,5-close. The first part  is proven. 

4.3. Step 2." Reduction to t-norms that are strictly Archimedean on each interval 

Let us start with a t -norm f~  that  has finitely many  intervals l~. Since there 
are finitely many  intervals, the space between and outside these intervals l~ (if 
there is any space left) is also a union o f  finitely many  intervals, on each of  
which fs:(a, b) = min(a, b). Let us add these new intervals to the intervals I~ 
that  characterize the t -norm fa.(a, b). When combined,  the intervals f rom this 
enlarged set {J~} cover the entire interval [0, 11. 

We will now show that  it is possible to approximate  the t-norm.f~- by a new 
t -norm f£ ,  with the same (extended) set o f  intervals {J~}, but for which on each 
of  these intervals, the t -norm is isomorphic  to a • b. 

We will approximate  the original t -norm interval-by-interval.  (This is OK,  
since the values o f  the two t -norms that  are characterized by the same intervals 
are only different when both  a and b belong to the same interval; otherwise, we 
have J~(a,  b) = f~.(a, b) = min(a,  b).) These intervals [a-, a+l are o f  two types: 
• intervals on which f~(a ,  b) = min(a, b); 
• intervals on which f~(a ,  b) is i somorphic  to max(a  + b - 1,0). 
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Let us show how we can approx ima te  intervals o f  both  types. 
First, we reduce a t -norm defined on each interval to a t -norm defined on the 

interval [0, 1]. Indeed,  there exists an easily computab le  linear t r ans fo rmat ion  
L(x) = (x - a ) / ( a  + - a ) that  maps  the interval [a-, a-]  onto  [0, 1]: 
• i f a  E [a , a - I ,  then L(a) = (a - a ) / (a"  - a - )  E [0, 1]; and, vice versa, 
• i fA E [0,1], then L ' ( A ) = a  + A . ( a ' - a  ) E [ a  , a ' ] .  
Thus: 
• if fa . (a ,b)  is a t -norm on the interval [a ,a  +] (i.e., a funct ion 

[a , a +] x [a , a T] ---+ [a , a+]), then the opera t ion  

F.~.(A,B) = L ( f k . ( L  ' ( A ) , L  ~(B)) 

is a t -norm on the interval [0, 1]; and, vice versa, 
• if F~(A ,B)  is a t -norm on the interval [0,1], then the opera t ion  

f ~ ( a , b )  = L - l (F . v (L (a ) ,L (b ) )  is a t -norm on [a ,a+]. 
Hence,  if we will be able to approx ima te  the t -norm F,~.(A, B) on the interval 
[0, 1] by a close strictly Arch imedean  t -norm F~(A, B), then the cor responding  
opera t ion  f(_(a, b) = L I (F~(L(a ) ,L (b ) )  on [a , a ~ ] will be close to the original 
t -norm. 

So, it is sufficient to app rox ima te  the t -norm F~_ (A, B) defined on the interval 
[0, 1]. Depending  on w h e t h e r / ~  (and, hence, F~) is i somorphic  to rain or  to 
max(A + B - 1,0), we get two different approximat ions :  
• The  funct ion F,~.(A, B) = min(A, B) can be represented as 

e x p ( -  max(] In (m)l, ]ln (B)]). 

Since max(x ,y )  = l i m p ~  (x r' +yP)~/Q we can, with an arb i t ra ry  accuracy,  ap-  
p rox imate  rain(A, B) by 

F~ (A, B) = exp ( -  (I In (A)# + I ln (B)I") ' /").  

(this app rox ima t ion  was p roposed  by Schweizer and Sklar [71). This new func- 
tion is i somorphic  to A - B ,  with the i somorph ism given by a function 
~,(A) = exp ( - I l n  (A)IP). The  l a rgerp ,  the bet ter  the approx imat ion .  So, for suf- 
ficiently large p, we can get an arbi t rar i ly  close approx imat ion .  
• Fo r  opera t ions  that  are i somorphic  to max(A + B -  1,0), it is somewhat  

easier to describe an approx ima t ing  t -norm by describing a dual app rox ima-  
tion: to the dual t - conorm that  is i somorphic  to N ( A , B )  -- min(A + B, 1). 
I somorph ic  means  that  we have a function ~:  [0, 1] ~ [0, 1] that  implements  

the desired i somorphism,  i.e., for which, 

F~.(A,B) = ~--i (N(tp(A) ,  0(B)))  = 0 '~ (min(O(A) + 0(B),  1)). 

It is easy to see that  if we find a sequence N,, (A,B)  of  strictly Arch imedean  t- 
no rms  that  tend to N(A,  B) (in the uni form metric),  then the cor responding  is- 
omorph ic  opera t ions  #/ I (N, , (~(A) , tp (B)) )  will tend to ~ I(N(~9(A), O(B))) 
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= Fx:(A, B). Thus,  to be able to approximate  an arbi t rary t -norm that  is isom- 
orphic to N, it is sufficient to be able to approximate  N(A, B) itself. 

This can be done as follows: we choose ~ ~ 0, and approximate  N(a, b) by a 
strict Arch imedean  opera t ion G -~ (G(A) + G(B)), where G(A) = A/(1 - ~) for 
A ~< 1 - ct and G(A) = 1 - ~ + ~/(1 - A )  for  A ~> 1 - ~. This opera t ion coin- 
cides with min(A + B, 1) when A + B ~< 1 - c~, and leads to the results between 
1 - c~ and 1 when A + B ~> 1 - c~. Thus,  when c~ ~ 0, this operat ion tends to 
N(A, B). F r o m  this approximat ion  of  a dual operat ion,  we can easily obtain 
the approximat ion  of  the original t-norm. 

Step 2 is proven.  

4.4. Step 3." Reduction to a t-norm with one fewer interval 

We want  to get a reduct ion f rom a t -norm that  has k intervals to a 
t -norm that  has k -  1 intervals. To achieve this goal, it is sufficient to show 
that  a t -norm that  has two intervals can be approximated  by a t -norm that  
has only one interval. By using this construct ion,  we will be able to "merge" 
the two neighboring intervals and thus, reduce the number  o f  intervals by 
one. 

Let us consider the case when on two neighboring intervals, we have strictly 
Archimedean  operations.  Similarly to Step 2, we can prove that  it is sufficient 
to consider the case when these two intervals form the interval [0, 1], i.e., when 
the first interval is [0,p] and the second interval is [p, 1] for some bounda ry  
point  p E (0, 1). 

It is known  that  every cont inuous  funct ion on a compac t  is uniformly con- 
tinuous. In particular,  the funct ion f a ( a ,  b), is uniformly cont inuous,  so, there 
exists a v > 0 such that  if [ b -  b'[ _< v, then [fs~(a,b) -fs~(a,b')] <_ 6/3. Let us 
take p -  = p - min(6/3 ,  v); then, p - 6/3 _< p -  < p, and for every a, we have 
[f~(a,p ) -fs~(a,p)[ <_ 6/3. Since the point  p is the endpoint  o f  the first inter- 
val, we have J~,~(a,p)= a, so [fs~(a,p-)- al <_ 6/3. As p+, we will take 
p-~ = min(p + 6/3, (1 + p ) / 2 ) .  Then, p < p+ _< p + 6/3.  

Since the opera t ion f~  is strictly Archimedean  on both  subintervals, it is iso- 
morphic  to a - b  on both  o f  them. In other  words,  there exist functions 
Ol : [0,p] ~ [0, 1] and ~2 : [P, 1 ] -+  [0, 1] such that  for a,b f rom the first interval 
[0,p], we have f~(a, b) = O~l (01 (a) .  01 (b)), while for a and b f rom the second 
interval [p, 1], we have fs~(a, b) = ~21 (O2(a). ~2(b)). 

We want  to "merge" these two representations into a single formula  that  is 
close to the original two-par t  operat ion.  For  that  merger, we will take into con-  
sideration the fact that  a funct ion ~9 i is not  uniquely determined by the t -norm 
f~:  the same t -norm can be obtained if we use a funct ion Of(x) = (Oi(x)) ri for 
any positive real number  r~. 

When  ri --+ C)C, we have (O~(x)) r' -* 0; when ri -* 0, we have (Oi(x)) r' --* 1. 
Thus,  to achieve a merger, we choose rl large enough so that  (~'1 (x)) r~ -< 1/3 
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for all x C [0,p ], and we choose r2 small enough so that  (~2(x))": > 2/3  for  all 
[y,  1]. 

Then,  we take a mono ton ic  funct ion ~(x) that  is: 
• equal  to (~, (x))"' for  x E [O,p-], 
• equal  to (~2(x))": for  x E ~+, 1], and 
• linear on the remaining (small) interval [p-,p+],  
and define the new opera t ion  

f~.(a,b) : t) ~(tp(a). ~(b)). 

Let us show that  for  all a and b, the values of  f~-(a,b) and f~.(a,b) are 
,5-close. To  prove  this closeness, let us consider all possible cases, when 
a,b E [0,p ], [p ,p], [p,p~], [ y ,  1]. Due  to symmet ry  of  a t -norm,  it is sufficient 
to consider  a _< b. 
• I f a  and b belong to the same interval [0,p-I,  then the new t -norm coincides 

with the old one. 
• Let  a belong to the interval I0,p ] and let b be f rom the interval ~p ,p]. Then,  

due to the monoton ic i ty  of  a t -norm and to the p rope r ty  JL (a, b) _< a, we 
have fa-(a,p )<f~T(a,b)<_ a, and due to our  choice of  p - ,  we have 
f~(a,p-)  _> a - `5/3. Thus,  f~(a,b) E [a - ,5/3, a 1. Similarly, f~.(a,p-) < 
f~.(a,b) < a; since a,p C [0,p ], we have f~;(a,p ) = f , . - (a ,p-)  _> a - `5/3, 
so f~(a,b) belongs to the same interval [ a -  ,5/3,a] of  width `5/3 < `5. The 
difference between the two values fs~(a, b) and f~_ (a, b) f rom this interval can- 
not  exceed `5/3 < ,5, so these two values are indeed ,5-close. 

• Let a E  [0,p ] and b E  [p,l]. In this case, J ~ ( a , b ) = a  and f}.(a,p )<_ 
f,~_(a,b) <_ a. Since a,p E [0,p ], we have f~ . (a ,p-)=f~.(a,p-) .  Due to 
our  choice o f p  , we have .fa.(a,p ) _> a -  `5/3. Thus,  bo th  values f~(a,b) 
and f~.(a, b) belong to the interval [ a -  `5/3, a] and hence, these values are 
,5-close. We have thus covered all the cases in which a E [0,p ]. 

• Let now a E [p ,Pl and b c ~p ,p]. Then,.)ri~.~ ,p ) <_ f,~(a,b) <_ a <_ p. Due 
to our  choice of  p - ,  we have f ~ ( p - - , p - )  _> p -  - `5/3, a n d p  > p - `5/3. Thus,  
f~.(p ,p ) >_p-  2`5/3. Thus, f~(a,b) E ~ -  2'5/3,pl. Similarly, f ~ ( p  ,p  ) <_ 
f(.(a,b) <_p, and since J~(p - ,p - )=j~(p - - ,p - ) ,  we can also conclude that  
f~(a, b) c )) - 2,5/3,p]. Thus,  bo th  fs:(a, b) and f,,' (a, b) belong to the inter- 
val ~p - 2,5/3,p] and hence, they are ,5-close. 

• Let a E [p ,p] and b E [p, 1]. In this case, J~ ( a , b )  -- a E [p-,p] C ~p - ,5/3,p] 
and f~:(p-,p )<_f~(a ,b )<_a<p.  We already know that  f~(p ,p ) =  
f~-(p ,p  ) E [ p -  2`5/3,p]. Thus,  bo th  values fs,(a, b) and f£(a,b) belong to 
the same interval [ p - 2 , 5 / 3 , p ]  and thus, are ,5-close. We have covered all 
cases in which a E [p ,p]. 

• Let now a c  ~p,p+] and b E  [p, 1]. In this case, p<_fa:(a,b) < a <  
p -  _< p + ,5 /3 ,  and f~.(p ,p  ) < f ~ ( a , b )  _< a _< p + ,5 /3 .  We already know 
that  f~.(p-,p-) > p - 2`5/3. Thus,  bo th  values f~-(a, b) and .f;=(a, b) belong 
to the interval [p - 2,5/3,p + `5/3] and hence, they are ,5-close. 
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• The only remain ing  case is when both  a and  b belong to the same interval 
[p+, 1]; then the new t -norm coincides with the old one. 
Step 3 is proven,  and so is the theorem. [] 
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