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Abstract

A single amino acid substitution, from glutamic acid to lysine at position 627 of the PB2 protein, converts a nonlethal H5N1 influenza A

virus isolated from a human to a lethal virus in mice. In contrast to the nonlethal virus, which replicates only in respiratory organs, the lethal

isolate replicates in a variety of organs, producing systemic infection. Despite a clear difference in virulence and organ tropism between the

two viruses, it remains unknown whether the dissimilarity is a result of differences in cell tropism or the reduced replicative ability of the

nonlethal virus in mouse cells in general. To determine how this single amino acid change affects virulence and organ tropism in mice, we

investigated the growth kinetics of the two H5N1 viruses both in vitro and in vivo. The identity of the PB2 amino acid at position 627 did not

appreciably affect viral replicative efficiency in chicken embryo fibroblasts and a quail cell line; however, viruses with lysine at this position

instead of glutamic acid grew better in the different mouse cells tested. When the effect of this substitution was investigated in mice, all of the

test viruses showed the same cell tropism, but infection by viruses containing lysine at position 627 spread more rapidly than those viruses

containing glutamic acid at this position. Further analysis showed a difference in local immune responses: neutrophil infiltration in lungs

infected with viruses containing lysine at position 627 persisted longer than that associated with viruses lacking a glutamic acid substitution.

Our data indicate that the amino acid at position 627 of the PB2 protein determines the efficiency of viral replication in mouse (not avian)

cells, but not tropism among cells in different mouse organs. The presence of lysine leads to more aggressive viral replication, overwhelming

the host’s defense mechanisms and resulting in high mortality rates in mice.
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Introduction 1998; Wuethrich, 2003). Viruses isolated from patients in
In 1997, H5N1 avian influenza viruses were transmitted

to humans, resulting in six deaths among 18 persons

infected (Claas et al., 1998; Subbarao et al., 1998). In

2003, another H5N1 virus also killed one of two persons

infected (Wuethrich, 2003). These outbreaks demonstrated

direct avian-to-human transmission of H5N1 viruses and

the potential for avian viruses to directly infect humans and

cause fatal disease (Claas et al., 1998; Subbarao et al.,
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the 1997 outbreak were divided into two groups based on

their virulence in mice: virulent viruses, which caused

lethal systemic infection characterized by an LD50 (dose

required to kill 50% of animals) of less than 0.3 plaque-

forming units (pfu), and avirulent viruses, which were

nonlethal even at a dose of 104 pfu (Gao et al., 1999; Katz

et al., 2000). A reverse genetics approach identified a single

amino acid substitution, Glu-to-Lys, at position 627 in the

PB2 protein as being responsible for this difference in

virulence (Hatta et al., 2001). The exact same mutation

was found in an H7N7 virus from a person who died due to

severe pneumonia but not in those isolated from birds or

from persons with conjunctivitis during an outbreak in

Europe in 2003 (Fouchier and Osterhaus, 2003). The



Table 1

Virus spread in intranasally infected micea

Virus Amino LD50 Virus titers (log10 PFU/g) in Viral antigen distribution

(background of virus) acid

at 627

(pfu)b
Days Nasal Lung Brain Respiratory Days post inoculation

p.i. turbinate organ
1 2 3 4 5 6 7

HK483RG Lys 1.7 3b 3.4 F 0.6 7.1 F 0.6 1.4, 1.4 nasal T (R)c �d � ++ ++ ++ +++ +++

(HK483) nasal T (O)e � � � � + +++ +++

6b 5.4 F 1.3 6.1 F 0.1 3.9 F 1.0 trachea, bronchus � + +++ +++ +++ +++ +++

alveolus + ++ ++ +++ +++ +++ +++

HK3PB2-627E Glu 2.3 � 103 3 <f 5.1 F 0.2 < nasal T (R) � � � � ++ � ++

(HK483) nasal T (O) � � � � � � �
6 < 6.8 F 0.2 < trachea, bronchus � + ++ +++ +++ +++ ++

alveolus � + ++ ++ ++ ++ +

HK486RG Glu 4.6 � 104 3 < 5.3 F 0.3 < nasal T (R) � � � � � � �
(HK486) nasal T (O) � � � � � � �

6 5.3 6.5 F 0.2 < trachea, bronchus � � + ++ ++ ++ +++

alveolus � � + ++ ++ ++ ++

HK6PB2-627K Lys 5.8 3 < 7.2 F 0.2 < nasal T (R) � � � � � ++ �
(HK486) nasal T (O) � � � � ++ +++ �

5 6.6 F 0.8 7.7 F 0.1 6.6 F 0.2 trachea, bronchus + ++ +++ +++ +++ ++

alveolus � + ++ ++ +++ +++ +++

a Balb/c mice were intranasally infected with virus, and the presence of viral antigens was determined daily by immunohistochemistry.
b Data from previous report (Hatta et al., 2001).
c Respiratory region of nasal turbinate.
d The frequencies of stained cells are scored as: +++, widely distributed; ++, patchy; +, rare; �, not detected.
e Olfactory region of nasal turbinate.
f Less than 101.3 pfu/g.
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contribution of this mutation to the enhanced virulence of

influenza A virus (lethal systemic infection vs. nonlethal

respiratory infection) has remained poorly understood.

Specifically, it is unknown whether the PB2 mutation

affects viral tropism among cells in different mouse

organs or viral growth in mouse cells in general. This

information is critical for selecting appropriate strategies

for elucidating the mechanism by which avian influenza

A viruses exhibit high virulence in mammals due to the

PB2 mutation.

To gain insight into the role of PB2 in influenza virulence

and host range restriction, we performed in vitro and in vivo

studies using four viruses (Table 1); virulent A/Hong Kong/

483/97 (HK483RG; H5N1), its avirulent mutant with a Lys-

to-Glu substitution at position 627 in PB2 (HK3PB2-627E),

avirulent A/Hong Kong/486/97 (HK486RG; H5N1), and its

virulent mutant with a Glu-to-Lys substitution at this posi-

tion (HK6PB2-627K).
Results

Avirulent and virulent H5N1 Hong Kong viruses replicate

equally well in avian cells, although the latter replicate

more efficiently in mouse cells

To evaluate the replicative potential of the different

H5N1 viruses, we tested their growth kinetics in cultured

cells. In primary chicken embryonic fibroblasts (CEF) and a

quail fibrosarcoma cell line (QT6), all four viruses grew to
high titers (>107 pfu/ml) without any appreciable difference

in their growth kinetics (Figs. 1A, B). In Madin–Darby

canine kidney cells (MDCK) cells (Fig. 1C), both PB2

mutants (HK3PB2-627E and HK6PB2-627K) grew to

higher titers than their parents, but the difference was less

than 1.5 log among the four viruses. By contrast, virulent

HK483RG and HK6PB2-627K viruses replicated more

efficiently in cultured mouse astroctyes and LA-4 mouse

lung adenoma cells than did avirulent HK486RG and

HK3PB2-627E viruses (Figs. 1D, E). A similar result was

obtained with NIH-3T3 mouse fibroblasts (data not shown).

These findings suggested that the Glu-to-Lys substitution at

position 627 of PB2 increases the replicative efficiency of

viruses in mouse cells.

A single amino acid substitution in the PB2 protein of Hong

Kong H5N1 viruses promotes wider spread of virus in

intranasally infected mice, but does not affect cell tropism in

respiratory organs

To further explain how a single amino acid change in the

PB2 protein could account for increased virulence in vivo

(i.e., more than a 3-log difference in the LD50 dose; Hatta et

al., 2001), we intranasally infected mice with 100 pfu of

virus. The extent of viral replication in nasal turbinate was

not directly correlated with the PB2 amino acid residues at

position 627 (Table 1). However, viruses with glutamic acid

at position 627 in PB2 (HK3PB2-627E and HK486RG)

were localized to respiratory organs and spread slowly,

whereas those with lysine at this position (HK483RG and



Fig. 1. Difference in the growth kinetics of Hong Kong H5N1 viruses in cultured cells. CEFs (A), QT6 (B), MDCK cells (C), primary mouse astrocytes (D), or

LA-4 mouse lung adenoma cells (E) were infected with HK483RG (.), HK3PB2-627E (o), HK486RG (5), or HK6PB2-627K (n) at an MOI of 10�4, and

virus titers in supernatants were determined with MDCK cells. The results represent three experiments.
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HK6PB2-627K) spread rapidly and were widely distributed

(Table 1). All viruses showed similar cell tropism in these

organs; nasal, tracheal, bronchial, and alveolar epithelia

were infected. Interestingly, in the alveolar wall of

HK483RG- and HK6PB2-627K-infected mice, infiltrating

neutrophils were seen continuously during the experimental

period, although lymphocytes were not recruited until day 5
postinfection (p.i.). In HK3PB2-627E- and HK486RG-

infected mice, neutrophil recruitment was transient (to day

3 p.i.) followed by extensive lymphocyte infiltration (Fig.

2). Late in infection with virulent HK483RG and HK6PB2-

627K, viral antigens were widely distributed among the

nonrespiratory organs: nerve tissues (including ganglia),

lymphatic organs, liver, heart, and fatty tissue (Table 2).



Fig. 2. Histologic changes in the lungs of mice intranasally infected with the virulent HK483RG virus or the avirulent HK3PB2-627E virus. Prominent

differences were observed in the pattern of neutrophil (5) and lymphocyte (5) recruitment: in mice infected with HK483RG (A, C), persistent infiltration of

neutrophils was characteristic during the entire experimental period (from days 2 to 7), while the lungs of mice intranasally infected with avirulent HK3PB2-

627E (B,D) showed transient neutrophilic inflammation followed by rapid infiltration of lymphocytes by day 3 p.i.
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By contrast, HK3PB2-627E and HK486 viruses were lim-

ited to the respiratory organs and to some ganglia associated

with respiratory organs (vagoglossopharyngeal ganglia and

peribronchial autonomic ganglia). Electron microscopy

demonstrated the production of progeny viruses in these

ganglia (Fig. 3).

These data demonstrate the same cell tropism in the

tissue of respiratory organs (bronchiolar and alveolar

epithelia) for all tested viruses in intranasally infected

mice. However, infection with viruses containing lysine

at position 627 of PB2 (HK483RG and HK6PB2-627K)

spread faster along the respiratory tree than did those

containing glutamic acid at this position (HK486RG and

HK3PB2-627E).

The single amino acid change in PB2 that promoted

virulence does not affect CNS cell tropism

Upon intranasal inoculation, virulent but not avirulent

Hong Kong H5N1 viruses were recovered from the CNS

(Gao et al., 1999; Hatta et al., 2001; Katz et al., 2000;

Lipatov et al., 2003). To determine whether this discrepan-
cy in organ tropism reflects cell tropism due to the single

amino acid alteration in PB2 at position 627, we inoculated

the viruses directly into mouse brain. Mice intracerebrally

infected with virulent HK483RG or HK6PB2-627K virus

were lethargic at 4 days p.i. and died by 6 days p.i.,

whereas these symptoms were absent in mice infected with

avirulent HK486RG or HK3PB2-627E virus as well as in

mock-infected animals. In mice infected with virulent

HK483RG or HK6PB2-627K, viral antigen-positive cells

were distributed throughout the parenchyma during later

infection, whereas in the brains of mice infected with

avirulent HK486RG or HK3PB2-627E, they showed only

a limited distribution even late in infection (Fig. 4).

Although initially the types of antigen-positive cells dif-

fered between virulent and avirulent viruses (fibroblasts in

pia mater in days 1 to 2 p.i. vs. ependymal/choroidal cells

around ventricules in day 3 p.i.), viral antigens were

eventually found in all cell types within nervous tissue:

neurons, glial cells, ependymal and choroidal cells, and

fibroblasts (Fig. 5).

To determine if the avirulent viruses replicating in brain

had acquired mutations enabling their growth in this organ,



Table 2

Extent of virus spread in intranasally infected micea

Viral antigen distribution in organs and tissues of mice

infected withb
Tissue

HK483RG HK3PB2-

627E

HK486RG HK6PB2-

627K

Brain +++ � � +++

Cranial

ganglia

+++ + + +++

Spinal cord +++ � � +++

Gangliac +++ F � +++

Lungs +++ ++ ++ +++

Nasal

turbinate

+++ ++ � +

Liver ++ � � ++

Spleen F � � F
Lymph node F � � F
Kidney � � � �
Heart ++ � � ++

Teethd ++ � � �
Skin ++ � � �
Fatty tissue +++ � � +++

Intestinee � � � +

a Balb/c mice were intranasally infected with virus, and organs collected on

days 1–7 p.i. were analyzed for viral antigen positivity by immunohisto-

chemical methods. This table summarizes antigen distribution throughout

the experimental period.
b +++, many; ++, some; +, sporadic;F, transient detection; �, not detected.
c Autonomic ganglia.
d Viral antigens were detected in cells of dental pulp.
e Viral antigens were detected in Auerbach’s ganglia.
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we sequenced HK486RG or HK3PB2-627E virus in brain

samples harvested on day 7 after intracerebral inoculation.

Sequence analysis revealed that among eight isolates from

the brains of mice inoculated with HK3PB2-627E, two

harbored a Glu-to-Lys substitution at position 627 of PB2,
Fig. 3. Viral replication in autonomic ganglia. Autonomic ganglia of a mouse in

microscopy at 6 days p.i. (A) Ganglion cells surrounded by satellite cells (SC). (B

virions are apparent on the surface of the ganglion cell (GC). Scale bar = 500 nm
two had an Asp-to-Asn substitution at position 701, while

the remaining four lacked mutations. None of the six

isolates from brain inoculated with HK486RG strain had

amino acid substitutions in PB2. Thus, although growth in

mouse brain clearly selects for influenza A variants with a

mutation enhancing the replicative potential, viruses with

glutamic acid at position 627 in PB2 are still able to

replicate in this organ, but spread more slowly than

virulent viruses.
Discussion

Here, we show that the increased virulence of Hong

Kong H5N1 viruses with a Glu-to-Lys substitution at

position 627 of PB2 is related to a difference in replicative

efficiency, but not cell tropism. Although the H5N1 viruses

tested in this study did not differ in their growth in MDCK

cells, the PB2 amino acid at position 627 affects the

replicative efficiency of an avian–human reassortant, but

not that of its parent influenza A viruses in these cells,

further emphasizing the importance of this amino acid

residue in host range restriction of these viruses (Subbarao

et al., 1993). Because H5N1 viruses differing in this amino

acid had similar growth kinetics in avian cells, but not in

mouse cells, we conclude that the primary effect of the Glu-

to-Lys substitution is mediated through interactions with

host proteins. The more rapid growth of PB2 mutant viruses

appears to overwhelm host defense mechanisms, which

otherwise limit infection to respiratory organs.

How does the PB2 amino acid substitution at position 627

affect viral replication in mice? The PB2 regions involved in

interactions with PB1 protein (amino acids 51–259), cap

binding (amino acids 552–565, 363, 404, and 633–650),

transcription (amino acids 660–759), nuclear localization
tranasally infected with HK6PB2-627K virus were processed for electron

) High magnification of square area (inset) in panel A. Numerous budding

.



Fig. 4. Viral antigen distribution in the brains of mice intracerebrally infected with highly pathogenic HK483RG or HK6PB2-627K viruses (at 6 days p.i.) or

less pathogenic HK486RG or HK3PB2-627E (at 7 days p.i.) viruses. In contrast to the restricted infection of periventricular areas in mice infected with

avirulent HK486RG or HK3PB2-627E (containing glutamic acid at position 627 of PB2), viral antigens as detected by immunohistochemistry were widely

distributed in brain parenchyma, including spinal cord, in mice infected with virulent HK483RG or HK6PB2-627K (containing lysine at position 627 of PB2).

Dark areas indicate the presence of viral antigen-positive cells. (A–J) Coronary sectioning of mouse brain. (K–N) Coronary sectioning of spinal cord at the

cervical, thoracic, lumbar, and sacral sites.

Fig. 5. Cell tropism in the brains of mice intracerebrally infected with a virulent or avirulent strain. Balb/c mice were intracerebrally infected with virulent

HK6PB2-627K (A; cortical area beneath the pia mater, B; periventricules) or avirulent HK486RG (C; cortical area beneath the pia mater, D; periventricules)

virus. The organs were obtained every day during 6 (virulent strains) or 7 (avirulent strains) days p.i.; the viral antigen distributions were examined by

immunohistology. Both viruses showed the same cell tropism in brain, that is, viral antigen-positive cells (brown) were detected in neurons (z), glial cells (#),
ependyma and choroidal cells ( ), and fibroblasts ( ).

K. Shinya et. al / Virology 320 (2004) 258–266 263



K. Shinya et. al / Virology 320 (2004) 258–266264
(amino acids 449–495, and 736–739), and heat shock

protein (HSP) 90 (amino acid 1–515) have been mapped

(Fechter et al., 2003; Gonzalez et al., 1996; Hatta et al., 2000;

Li et al., 2001; Masunaga et al., 1999; Momose et al., 2002;

Ohtsu et al., 2002; Perales et al., 1996). Although residue

627 is not included among these sites, we suggest that it

influences the interaction of PB2 with host factors and thus

RNA synthesis (as suggested by Crescenzo-Chaigne et al.,

2002) in mouse cells. Because overexpression of PB2

abrogates the antiviral activity of interferon-induced Mx1

(Huang et al., 1992; Stranden et al., 1993), this host protein

would appear to offer an attractive candidate target. Howev-

er, most of the laboratory mouse strains including Balb/c

used in this study lack functional Mx1 protein (Jin et al.,

1998). Thus, the host proteins mediating viral replicative

efficiency through interactions with PB2 remain to be

determined.

The PB2s of all authentic human influenza A viruses

examined thus far (35 strains) possess lysine at position

627, while those of their progenitor avian viruses (Wright

andWebster, 2001) examined thus far (106 strains) all contain

glutamic acid at this position. Our previous (Hatta et al.,

2001) and current studies demonstrate that the amino acid

residue at this site is one of the major determinants of

influenza virus replicative potential in mice. Interestingly,

virulence in ferrets is not affected by this amino acid residue

(Zitzow et al., 2002). In fact, ferrets are highly susceptible to

both human and avian influenza viruses. Thus, the mouse

appears to offer a useful model with which to study the host

range restriction imposed by the PB2 protein.

Neutrophil infiltration persisted longer in the lung of

mice infected with virulent viruses, while lymphocytes

replaced neutrophils in mouse lungs soon after infection

with avirulent viruses (Fig. 2). Oxygen radicals produced by

neutrophils and phagocytes are important pathogenic factors

in influenza virus-induced pneumonia in mice (Oda et al.,

1989). Hence, long-lasting inflammation with neutrophil

infiltration may contribute to the outcome of infection

through production of oxygen radicals. Thus, our data

suggest that virulent influenza A viruses become lethal by

overwhelming host immune responses or restricting the type

of response elicited.

In conclusion, we demonstrated that replication of influ-

enza A viruses in avian cells is not affected whether the

amino acid residue at position 627 is glutamic acid or

lysine. The Glu-to-Lys mutation at this position in the avian

virus PB2 does not affect viral tropism among cells in

different mouse organs, but enhances its ability to support

efficient viral replication in mouse cells in general. Thus,

cellular components affecting viral virulence and organ

tropism with regard to the PB2 627 residue are not cell

type-specific in mice, rather commonly exist in this animal

species. This information is essential in selecting strategies

for elucidating the mechanism by which avian influenza A

viruses gain the potential for high replicative ability in

mammalian cells.
Materials and methods

Virus preparation

Four H5N1 viruses were previously generated by reverse

genetics (Hatta et al., 2001): HK483RG, constructed from

plasmids based on the consensus sequence of A/Hong

Kong/483/97; HK3PB2-627E, a mutant of HK483RG con-

taining a Lys-to-Glu substitution at position 627 of PB2;

HK486RG, constructed from plasmids based on the con-

sensus sequence of A/Hong Kong/486/97; and HK6PB2-

627K, a mutant of HK486RG containing a Glu-to-Lys

substitution at position 627 of PB2 (Table 1). Stock viruses

were made with MDCK cells. All experiments with live

Hong Kong H5N1 viruses were performed in a biosafety

level 3+ containment laboratory approved for such use by

the USDA and CDC.

Cells

293T human embryonic kidney cells, a derivative of 293

cells constitutively expressing the gene for the simian virus

40 T antigen, were maintained in Dulbecco’s Modified

Eagle Medium (DMEM; glucose concentration, 4.5 g/l)

supplemented with 10% fetal bovine serum (FBS), 4 mM

L-glutamine, and antibiotics. MDCK were grown in Mini-

mum Essential Medium with Eagle salts (EMEM) contain-

ing 5% newborn calf serum (NCS), 4 mM L-glutamine,

and antibiotics. QT6 quail fibrosarcoma cells (ATCC

#CRL-1708) and LA-4 mouse lung adenoma cells (ATCC

#CCL-196) were maintained in Ham’s F10 supplemented

with 10% FBS and 10% tryptose phosphate broth (TPB)

and in DMEM (glucose concentration, 4.5 g/l) supple-

mented with 10% FBS, 2 mM L-glutamine, and anti-

biotics, respectively. Primary cultures of astrocytes were

prepared from the cerebral cortex of newborn mice. After

removal of the meninges, brain tissue was forced gently

through a nylon sieve (pore size, 80 Am) and plated in

multiwell plates at a low cell density in DMEM supple-

mented with 20 mM glucose, 10% FBS, 2 mM L-gluta-

mine, and 50 Ag/ml gentamycin. Ten days later, 90%

confluent monolayers were infected with virus. The purity

of astrocyte cultures was evaluated by immunostaining

with antiserum against glial fibrillary acidic protein

(DAKO Japan Inc., Kyoto). CEF were prepared from

10-day-old embryonated eggs and maintained in DMEM

supplemented with 10% FBS, 2 mM L-glutamine, and 50

Ag/ml gentamycin.

Virus growth kinetics in cell culture

Cells were infected with virus at a multiplicity of

infection of 10�4, overlaid with DMEM or EMEM and

incubated at 37 jC. Aliquots of the supernatants were

collected at 8, 24, 48, and 72 h p.i. and titrated with MDCK

cells by plaque assay.



ology 320 (2004) 258–266 265
Sequencing of viruses recovered from mouse brain

The PB2 genes of viruses recovered from the brains of

mice intracerebrally inoculated with avirulent HK486RG or

HK3PB2-627E strain were sequenced as follows. Brain

homogenates from virus-infected mice were inoculated onto

MDCK cells and total RNAwas isolated 12 h later. The PB2

genes were amplified by RT-PCR into two fragments 1–

1453 and 1278–2341, using two pairs of gene-specific

oligonucleotide primers (for the 1–1453 fragment, 5V-AGC
AAA AGC AGG TCA ATT ATA TTC AAT ATG A-3Vand
5V-TTA GTG ACATTT CCG TGC TG-3V; for the 1278-2341
fragment, 5V-TTT GAA TTT CGT AAA CAG AGC AAA

TC-3V and 5V-AGT AGA AAC AAG GTC GTT T-3V) and

PfuUltra (Stratagene, La Jolla, CA). PCR products were

directly sequenced with an autosequencer (Applied Biosys-

tems Inc.).

Pathological examination

Four-week-old female BALB/c mice were intranasally

inoculated with 50 Al (100 pfu) of viruses. Mice were

euthanized on days 1–7 p.i. and tissues (liver, gall bladder,

spleen, kidney, heart, lungs, trachea, nasal turbinate, tongue,

esophagus, stomach, small and large intestine, pancreas,

thymus, tracheobronchial lymph node, brain, spinal cord,

ganglia, fatty tissue, tooth, and skin) were removed and fixed

in 10% phosphate-buffered formalin. They were then dehy-

drated, embedded in paraffin, and cut into 5-Am-thick sec-

tions that were stained with standard hematoxylin-and-eosin.

For viral antigen detection, sections were processed for

immunostaining by the two-step dextran polymer method

(DAKO), with a rabbit polyclonal antibody to A/whistling

swan/Shimane/83 (H5N3) used as the primary antibody. For

electron microscopy, ganglia were immersion-fixed in neu-

tral-buffered formalin and 2% glutaraldehyde in 0.1 M

phosphate buffer (pH 7.4). Tissues were postfixed in 1%

osmium tetroxide, rinsed, dehydrated in ethanol and propy-

lenoxide, and embedded in Epon 812 resin. Ultrathin sections

were cut, placed on 200-mesh copper grids, stained with

uranyl acetate and lead citrate, and examined with a trans-

mission electron microscope (JEM-100CXII).
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